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Realization of nonequilibrium thermodynamic processes using external colored noise
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We investigate the dynamics of single microparticles immersed in water that are driven out of equilibrium in
the presence of an additional external colored noise. As a case study, we trap a single polystyrene particle in
water with optical tweezers and apply an external electric field with flat spectrum but a finite bandwidth of the
order of kHz. The intensity of the external noise controls the amplitude of the fluctuations of the position of the
particle and therefore of its effective temperature. Here we show, in two different nonequilibrium experiments,
that the fluctuations of the work done on the particle obey the Crooks fluctuation theorem at the equilibrium
effective temperature, given that the sampling frequency and the noise cutoff frequency are properly chosen.
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I. INTRODUCTION

The thermodynamics of small systems is strongly af-
fected by the thermal fluctuations of the surroundings [1].
Although often looked at as an unwanted source of noise,
fluctuations also bring to life phenomena such as stochastic
resonances [2], temporal violations of the Second Law of
Thermodynamics [3], or the possibility to build engines at the
microscale of a greater efficiency than that of their macroscopic
counterparts [4–6].

At the microscale, the amplitude of the fluctuations of
the thermodynamic quantities depends on the temperature
of the environment. Unfortunately, temperature control has
remained challenging due to the difficulties found in isolating
microscopic systems and the presence of convection effects
in fluids [7,8]. In Ref. [7] a thermal collar was attached
to an objective in order to heat up a sample fluid. In a
different approach, a laser line matching the absorption peak
of water was used to heat the sample uniformly, thus avoiding
convection [5]. Although the aforementioned methods were
proved capable of controlling the temperature, they were
limited to increase the temperature of the sample in a range of
tens of Kelvins.

To overcome the short range of accessible temperatures, it
has been suggested that random forces can mimic a thermal
bath for colloidal particles [9–11]. In fact, the existence of
fluctuations in the small scale is due to neglected degrees of
freedom in the description of the system [9]. In other words,
thermal fluctuations are produced by the constant exchange
of energy between the system under consideration and the
∼NA molecules of the surrounding environment, NA being the
Avogadro number. In Ref. [10] it was shown that the Crooks
work fluctuation theorem [12] fails if one assumes that external
random forces exert work on a colloidal particle. Therefore, by
virtue of the First Law of Thermodynamics, the energy trans-
ferred by external random forces should be interpreted as heat.
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Martı́nez et al. first tested such interpretation experimen-
tally [11] by observing that a colloidal particle subject to
an external random force with Gaussian white spectrum
behaves as if it were immersed in a thermal bath whose
effective temperature exceeds that of the surrounding fluid. The
concept of effective temperature was previously introduced as
a parameter that measures the deviation from the fluctuation-
dissipation relation at room temperature [13] in glassy and
amorphous materials [14–16], granular media [17], or active
matter [18,19]. However, deviations between the effective
temperatures in equilibrium and in nonequilibrium processes
were found that make dubious whether using random forces is
suitable to mimic a thermal bath.

Optical tweezers offer a robust and versatile platform
for micromanipulation [8,20–24] and for the study of the
thermodynamics of systems where fluctuations cannot be
neglected [1,9,25]. Interestingly, it can be easily combined
with other experimental techniques in order to broaden
its applicability. For example, optical trapping has been
combined with Raman spectroscopy [26,27] or fluorescence
microscopy [28] to study single molecule biology. When the
trapped objects are charged, the application of electric fields
can be used to perform single particle electrophoresis [29–32]
or study the fundamental laws of thermodynamics at small
scales [4,33,34].

In this article, we extend the use of random forces to mimic
a thermal bath for a colloidal particle undergoing nonequilib-
rium processes in an optical trap. In particular, we analyze
the validity of the interpretation of a noisy electric force as
a heat bath in out-of-equilibrium dragging and expansion-
compression processes. With data from both experiments
and numerical simulations, we demonstrate that the observed
mismatch between equilibrium and nonequilibrium kinetic
temperatures can be caused by an inappropriate sampling
rate during the experiment. We show that the fluctuations of
thermodynamic quantities are very sensitive to the sampling
frequency and to the actual properties of the external noise,
which in practice will always be colored.

The article is organized as follows. In Sec. II we discuss
the theoretical extension of the Crooks fluctuation theorem to
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small systems driven by external random forces. In Sec. III we
describe the experimental setup and the protocols that we use
to implement nonequilibrium processes with external colored
noise. In Sec. IV we show and discuss the experimental results
obtained in the implementation of two different nonequilib-
rium processes with a trapped colloidal particle, proposing
an optimal sampling rate to realize nonequilibrium processes
with our setup. Section V gives the concluding remarks of our
work.

II. CROOKS FLUCTUATION THEOREM
UNDER RANDOM DRIVING

Let us consider a Brownian colloidal particle that moves in
one dimension x and is immersed in a thermal bath at tem-
perature T . The particle is trapped with a quadratic potential
centered at the position x = x0, U (x,x0,κ) = 1

2κ(x − x0)2, κ

being the stiffness of the trap. The position of the particle
obeys the overdamped Langevin equation [35],

γ ẋ(t) = −κ(t)[x(t) − x0(t)] + ξ (t) + η(t), (1)

where γ is the friction coefficient and both the stiffness
and the position of the trap can change with time t . The
term ξ (t) is a stochastic force that accounts for the random
impacts of the molecules in the environment with the particle,
responsible for its Brownian motion, which is modeled by a
Gaussian white noise of zero mean 〈ξ (t)〉 = 0 and correlation
〈ξ (t)ξ (t ′)〉 = 2γ kT δ(t − t ′). We also consider the possibility
that an additional external random force η(t) is applied
to the particle, which satisfies 〈η(t)〉 = 0 and 〈η(t)η(t ′)〉 =
σ 2�(t − t ′), where �(t − t ′) is the correlation function of the
force and σ its amplitude. In the general case, this correlation
function is different from a δ function.

In the absence of external forces and being κ and x0 fixed at
a constant value, the fluctuations of the position of the particle
are Gaussian distributed. The amplitude of these fluctuations
depends on the temperature of the surroundings, as predicted
by the equipartition theorem, κ〈(x − x0)2〉 = kT , where the
brackets denote steady-state averaging. If we also include the
external random force η(t), the equipartition theorem allows
us to define a kinetic temperature of the particle from the
amplitude of its motion:

Tkin = κ〈(x − x0)2〉
k

. (2)

If η(t) has the same nature as the Brownian force, i.e., it
is described by a Gaussian white noise, then Tkin = T + σ 2

2kγ
.

Otherwise, the relation between Tkin and the noise intensity is
more complex and depends on the characteristic time scales of
the particle [11]. However, it always verifies Tkin � T [11,33].

Let us now consider a thermodynamic process along which
an external agent can change the energy of the Brownian
particle via a control parameter λ that can be arbitrarily
switched in time, for instance, the stiffness of the trap.
The duration of the process is τ and the control parameter
follows a protocol {λt }τt=0 ≡ {λ(t)}τt=0. For convenience, we
also consider the time-reversal process, described by {λ̃t }τt=0 =
{λτ−t }τt=0. We assume that the system is initially in canonical
equilibrium state and is allowed to relax to equilibrium at the
end of the process. The position of the particle is random and

describes a stochastic trajectory, {xt }τt=0 ≡ {x(t)}τt=0. Along
the process, the external agent exerts work on the particle,
which depends on the trajectory of the particle [9],

W =
∫ τ

0

∂U (xt ,λt )

∂λt

◦ dλt , (3)

where ◦ denotes Stratonovich product. Stratonovich product
consists in using the following prescription of the integral of a
function of a stochastic variable x:∫ τ

0
f (xt ) ◦ dyt =

∑
t

f (xt ) + f (xt+�t )

2
(yt+�t − yt ), (4)

y being a second (stochastic or deterministic) variable, �t

the time between two samplings, and t runs from t = 0 to
t = τ − �t [9].

The average of the work over many different realizations
yields the classical result 〈W 〉 � �F , where �F is the free
energy difference between the final and initial (equilibrium)
states of the system [9]. The fluctuations of the work are not
symmetric upon time reversal of the protocol if the system is
driven out of equilibrium, as first shown by Crooks [12]. For an
arbitrarily far-from-equilibrium process, the work distribution
of the forward process ρ(W ) is related to the distribution of
the work in the backward (time-reversal) process, ρ̃(W ),

ρ(W )

ρ̃(−W )
= exp

(
W − �F

kT

)
. (5)

Equation (5) is known as the Crooks fluctuation theorem (CFT)
and is valid when initial and final states are both equilibrium
canonical states. CFT was first tested experimentally in DNA
pulling experiments [36]. One can also define the following
asymmetry function [37],

�(W ) ≡ ln
ρ(W )

ρ̃(−W )
, (6)

which measures the distinguishability between the forward
and backward work histograms. CFT can be rewritten in terms
of the asymmetry function,

�(W ) = W − �F

kT
. (7)

In the presence of an external random force, CFT is not
satisfied if the external force is considered to exert work on the
particle [10]. However, if the energy input by the random force
is considered as heat, that is, random forces are not included
in the calculation of the work, the following modified CFT is
satisfied [9]:

�(W ) = W − �F

kTc

, (8)

where Tc is an effective nonequilibrium temperature called
the Crooks temperature that is, in general, different to the
temperature of the surroundings, T . Equation (8) implies that
Tc can be calculated from the slope of �(W ) as a function
of W . The value of the effective Crooks temperature depends
strongly on the properties of the external noise. In general, Tc

and its equilibrium counterpart Tkin do not coincide. However,
if the external force is an external Gaussian white noise,
Tc = Tkin [11].
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FIG. 1. (Color online) Experimental setup described in
Sec. III A. A polystyrene sphere of radius R = 500 nm is immersed
in a microfluidic chamber filled with water and trapped with an
infrared laser using a high numerical aperture objective. Random
forces are exerted using a Gaussian white noise process applied to
two electrodes placed at the two ends of the chamber. The position
is detected projecting the forward scattered light of a green laser in a
quadrant photodiode.

III. EXPERIMENTAL METHODS

A. Experimental setup

Our experimental setup, shown in Fig. 1, was previously
described in Ref. [11]. We use a 40× objective to collimate the
laser beam from a single-mode fiber laser (ManLight ML10-
CW-P-OEM/TKS-OTS, 3W maximum power) and send it
through an Acousto Optic Deflector (AOD). After the AOD,
the beam is expanded with two lenses that also conjugate the
center of the AOD crystal with the entrance of a 100× objective
(Nikon, CFO PL FL NA1.3) (O1) that creates the field gradient
for the optical trap.

For position detection a λ = 532 nm fiber laser is expanded
with a 10× objective and sent through the same objective of
the optical trap (O1). The forward scattered light is collected
with a 20× (O2) objective and sent to a quadrant photodiode
with 50 kHz acquisition bandwidth and nanometer accuracy.

Our sample consists of polystyrene microspheres of diam-
eter D = (1.00 ± 0.05) μm (PPs-1.0, G. Kisker Products for
Biotechnology) injected into a custom-made electrophoretic
chamber that can be moved using a piezoelectric stage
(Piezosystem Jena, Tritor 102) [38].

The intensity and position of the trap center can be
controlled by changing the modulation voltage (Vκ ) and the
driving voltage of the AOD (VAOD), respectively. In order to
know the position of the trap and its stiffness we need to obtain
the calibration factors between Vκ and κ as well as between
VAOD and x0. First, we measure κ by fitting the power spectral
density of the position of a trapped bead to a Lorentzian
function [39] at different values of Vκ . Second, the calibration
of x0 as a function of VAOD is obtained from the analysis of the
average position of a trapped bead in equilibrium, for different
values of VAOD (data not shown).

The external random electric field is generated from a
Gaussian white noise process. The sequence was obtained

using independent random variables as described in Ref. [11].
The signal from the generator is amplified and applied directly
to the two electrodes connected at the two ends of the
electrophoretic chamber. Notice that the noise spectrum is flat
up to a cutoff frequency of 10 kHz (given by the amplifier),
which exceeds by one order of magnitude the cutoff frequency
used in Ref. [11].

B. Protocols

We consider two different nonequilibrium processes. First,
we study the dynamics of a microscopic sphere in an optical
trap that is dragged at constant velocity. Next, we realize a
process where the trap center is held fixed but the stiffness of
the trap is changed with time.

1. Dragged trap

Our first case study consists of a particle that is driven
out of equilibrium by dragging the optical trap of stiffness
κ = (18.0 ± 0.2) pN/μm at constant speed v = 22 nm/ms.
The protocol is shown in Fig. 2 together with a time series
of the position of the particle sampled at different acquisition
frequencies. First, the trap is held fixed with its center at x0 =
−55 nm during τ1 = 7.5 ms. Then the trap center is displaced
in the x axis at a constant velocity from x0 = −55 to 55 nm in
a time interval of τ2 = 5 ms. The bead is then allowed to relax
to equilibrium by keeping the trap center fixed at x0 = 55 nm
for τ1 = 7.5 ms before the trap is moved back from x0 = 55
to −55 nm in τ2 = 5 ms. The duration of each cycle is τ = 25
ms, and every cycle is repeated 12 000 times; that is, the total
experimental time was 300 s. Every 300 s cycle is repeated for
different values of the amplitude of the random force, starting
with the case where no external force is applied.

The relaxation time of the position of the particle is
τr = γ /κ = 0.5 ms where γ = 8.4 pN ms/μm is the friction
coefficient calculated using Stokes’s law, γ = 6πηR, η =
0.89 mPa s being the viscosity of water at room temperature
and R = 500 nm the radius of the particle. The time spent
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FIG. 2. (Color online) Position of the trap (thick green dashed
curve) as a function of time and time traces of the position of the
particle sampled at 1 kHz (blue curve) and 10 kHz (thin red dashed
curve) in the dragging experiment. The trap moves at a constant
velocity of ±22 nm/ms.
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by the trap in the fixed stage of the protocol, τ1, exceeds
by one order of magnitude the relaxation time τr , which
ensures that the particle reaches equilibrium between the
nonequilibrium steps of the protocol. In the dragging steps,
the viscous dissipation is of the order of 〈Wdiss〉 ∼ γ vL,
where L = 110 nm is the distance traveled by the trap, which
yields 〈Wdiss〉 ∼ 20 pN nm � 5 kT (kT � 4 pN nm at room
temperature) indicating that the work dissipation cannot be
neglected and the system is therefore out of equilibrium.

In every cycle of the protocol, we calculate the work done
on the particle in the forward and backward process using
Eq. (3). In this case, the control parameter is the position of
the trap center, λ = x0, and therefore the work is calculated as

W =
∫

∂U

∂x0
◦ dx0(t) =

∫
−κ[x(t) − x0(t)] ◦ dx0(t), (9)

for every realization of the forward and backward processes.

2. Isothermal compression and expansion

As a second application of our technique, we analyze a
different thermodynamic process consisting in a “breathing”
harmonic potential, where the trap center is held fixed but its
stiffness is changed with time from an initial κini to a final
κfin value. Since the stiffness of the trap can be thought of as
the inverse characteristic volume of the system, κ ∼ 1/V [5],
such a process is equivalent to an isothermal compression
or expansion. At odds with the dragging process, in this
case the free energy changes along the process, yielding
�F = kTkin ln

√
κfin/κini [9,33].

In the experimental protocol shown in Fig. 3, the trap is
initially held fixed with stiffness κ1 = (16.5 ± 0.2)pN/μm for
τ1 = 3.5 ms. Then, the system is isothermally compressed by
increasing the stiffness linearly in time up to κ2 = (66.8 ±
0.2) pN/μm in τ2 = 2.5 ms. Further, the particle is allowed
to relax to equilibrium for τ1 = 3.5 ms with the trap stiffness
held fixed at κ2 before the system is isothermally expanded
linearly in time from κ2 to κ1 in τ2 = 2.5 ms. Every cycle
lasts τ = 2(τ1 + τ2) = 12 ms and is repeated 24 000 times for
different values of the amplitude of the external random force.
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FIG. 3. (Color online) Position of the particle (blue line, left axis)
and trap stiffness (green line, right axis) as functions of time in the
isothermal compression-expansion cycle. Sampling rate, f = 1 kHz.

For every isothermal compression (forward process) and
expansion (backward process), we measure the work done on
the particle as

W =
∫

∂U

∂κ
◦ dκ(t) =

∫
1

2
x2(t) ◦ dκ(t), (10)

where the control parameter is the trap stiffness in this case
[λ = κ in Eq. (3)].

IV. RESULTS AND DISCUSSION

We now discuss the results obtained when implemented the
two different nonequilibrium processes described in Sec. III B.
For both processes, we perform a quantitative study of the
nonequilibrium work fluctuations of the processes and their
time reversals using CFT, as discussed in Sec. II.

A. Dragged trap

Figure 4 shows the work distributions at different noise
intensities for both forward and backward dragging processes.
When increasing the noise amplitude, the average work
remains constant but the variance increases. Since in this
process, the free energy does not change, �F = 0, then
the average work coincides with the average dissipation
rate 〈W 〉 = 〈Wdiss〉. Therefore, the addition of the external
random force does not introduce an additional source of
dissipation and can be treated as a heat source. The work
distributions at different noise amplitudes fit to theoretical
Gaussian distributions obtained from Refs. [11,40] using as the
only fitting parameter the nonequilibrium Crooks temperature,
which enters in the asymmetry function, as indicated by
Eq. (8).

As already discussed, if we want this technique to be
applicable to the design of nonequilibrium thermodynamic
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FIG. 4. (Color online) Work distributions in the forward [ρ(W ),
filled symbols] and backward [ρ̃(−W ), open symbols] dragging
experiments depicted in Fig. 2. Different symbols and colors
correspond to different noise intensities, yielding the following values
of the Crooks temperature: Tc = 525 K (blue squares) Tc = 775 K
(red circles), and Tc = 1010 K (green triangles). Solid lines are the
theoretical values of the work distributions obtained for the same
values of kinetic temperatures. Work was calculated from trajectories
sampled at f = 10 kHz.
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FIG. 5. (Color online) Effective nonequilibrium kinetic tempera-
ture, Tc, vs effective equilibrium kinetic temperature, Tkin, for different
amplitudes of the external noise. Different symbols correspond to
results obtained for different sampling rates: 1 kHz (blue squares),
2 kHz (red circles), 5 kHz (green triangles), and 10 kHz (magenta
diamonds). Solid black line corresponds to Tc = Tkin. Error bars
represent statistical errors with a statistical significance of 90%.

processes, one would require that the equilibrium and nonequi-
librium kinetic temperatures, that is, Tkin and Tc, to coincide
within experimental errors. However, some discrepancies were
found in Ref. [11] when the sampling frequency was changed,
and their origin could not be fully understood.

In order to clarify this issue, we now compare the values of
Tkin and Tc obtained for different values of the noise amplitude
and different acquisition frequencies, ranging from 1 to
10 kHz. Figure 5 shows that equilibrium and nonequilibrium
effective temperatures do coincide within experimental errors
when the sampling rate exceeds f = 2 kHz. Tkin is measured
from the variance of the position of the particle [Eq. (2)] from
a time series of 20 s in which the trap is held fixed, yielding the
very same value in the analyzed range of sampling frequency.
When changing the position acquisition frequency, the value
of Tkin does not change, whereas Tc changes significantly up
to a saturating value, reached when f � 2 kHz.

We can get a deeper understanding of the mismatch
between Tkin and Tc by simulating the overdamped Langevin
equation (1) and taking into account the characteristic fre-
quencies of the system under study. We can identify three
such frequencies, namely, the corner frequency of the trap, a
low-frequency electrophoretic relaxation, and the cutoff of the
amplifier. The first one is given by the quotient between the
stiffness of the trap and the viscosity of the medium, fc =

κ
2πγ

= 340 Hz in this case, and is related to the characteristic
time τr = γ /κ below which the motion of the particle is purely
diffusive. The referred electrophoretic process is the α or
concentration polarization mechanism, defining a frequency
fα above which the electrophoretic response decreases due
to a relaxation of the polarization state of the particle and its
electric double layer. This relaxation is typically in the kHz
range for micron-sized particles [41,42]. Finally, the electric
field is applied in the chamber though an amplifier with a
finite bandwidth of 10 kHz. Since the last two are very close,
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FIG. 6. (Color online) Values of the quotient Tc/Tkin in the drag-
ging experiment as functions of the sampling frequency for different
values of the external field, corresponding to the kinetic temperatures:
Tkin = 525 K (blue squares), Tkin = 775 K (red circles), Tkin = 1010 K
(green triangles), and Tkin = 1520 K (magenta diamonds). We also
show the value of Tc/Tkin as a function of the sampling frequency
obtained from numerical simulations of the overdamped Langevin
equation for an external noise with flat spectrum up to fco = 3 kHz
and intensity σ 2/2kγ = 500 K (black dashed curve). Inset: Tkin (open
blue squares) and Tc (red filled circles) as a function of noise intensity,
σ 2/2kγ , for the experimental values of the experiment described
in Ref. [11], where fco = 1 kHz and the acquisition frequency
f = 20 kHz. Solid lines are included to guide the eye.

they cannot be resolved, but a cutoff of the random force at
fco = 3 kHz was recently observed in Ref. [33] with the same
experimental setup used here.

We performed numerical simulations of the overdamped
Langevin equation (1) using an Euler numerical simulation
scheme, with a simulation time step of δt = 10−3 ms. The
values of all the physical parameters are set to those of the
experiment. The spectrum of the external force is flat up to a
cutoff frequency of fco = 3 kHz, and its amplitude is arbitrarily
set to a value σ such that σ 2/2kγ = 500 K. The random force
was obtained generating a Gaussian white noise signal and
applying a filter with a cutoff frequency fco = 3 kHz, followed
by an inverse Fourier transform.

Figure 6 shows the values of the quotient Tc/Tkin as
a function of the sampling frequency plotted for different
values of the external field (different symbols in the Figure)
corresponding to those indicated in the caption of Fig. 5. The
dashed black line in Fig. 6 shows that the value of Tc/Tkin

as a function of the sampling frequency, as obtained from
the numerical simulations, is in good agreement with the
experimental measurements.

When sampling close to the corner frequency of the trap,
fc, equilibrium and nonequilibrium kinetic temperatures do
not coincide, and Tc is above its equilibrium counterpart,
Tc > Tkin. This result can be understood from the fact that the
Brownian fluctuations of the position of the particle cannot be
sampled accurately when f � fc. The poor statistics of the
position results in wrong estimates of the work fluctuations in
our nonequilibrium experiments. The work distributions are
Gaussian for all the sampling frequencies considered in this
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FIG. 7. (Color online) Average of the work distributions (blue
squares, left axis) and variance (red circles, right axis) for the dragging
process at positive velocity described by the protocol shown in Fig. 2
as a function of the sampling frequency. Solid lines are a guide to
the eye.

work and therefore can be fully characterized by their mean and
variance. For Gaussian work distributions, Tc is proportional
to the quotient between the variance σ 2

W and the mean 〈W 〉 of
the distribution of the forward process [11]

Tc = σ 2
W

2k〈W 〉 . (11)

Figure 7 shows the values of the mean and the variance of
the work in the dragging (forward) experiment as functions of
the sampling frequency. The average work increases with the
sampling frequency, as predicted in Ref. [43]. On the other
hand, the variance of the work decreases when increasing the
data higher acquisition rate. As a result, the quotient between
the variance and the mean, and hence Tc, decreases with the
sampling frequency, as shown in Fig. 6.

For sampling rates above the cutoff frequency, f � fco =
3 kHz, we observe that Tc lies below Tkin, as shown in Fig. 6.
This underestimation of Tc appears because of the missing
forcing at frequencies above the cutoff. Interestingly, stronger
deviations on this side (Tc < Tkin) were reported in Ref. [11]
for a similar dragging trap experiment, where the sampling
frequency, f = 20 kHz, was well above the cutoff frequency
of the noise, fco = 1 kHz in that case. From the experimental
point of view, we may note that in the present work the
noise cutoff frequency given by the amplifier is one order of
magnitude larger than the one in Ref. [11], and therefore the
drawbacks of a colored spectrum of the noise are reduced [33].
In the inset in Fig. 6, we show the results of simulations of
Langevin equation for the experimental conditions used in
Ref. [11] (fco = 1 kHz, κ = 6 pN/μm, τ1 = τ2 = 6.3 ms, and
L = 122 nm, for instance), which confirm the experimental
result Tc < Tkin for high sampling rates.

From this discussion, we can conclude that a sampling
frequency f = 2 kHz is optimal for the experiment we de-
scribe next, since it is significantly above the corner frequency
(fc ∼ 300 Hz) to ensure that we observe Brownian fluctuations
and below any relaxation of the external force (fco ∼ 3 kHz),
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FIG. 8. (Color online) Work distributions in the isothermal com-
pression [ρ(W ), filled symbols] and isothermal expansion [ρ̃(−W ),
open symbols] for different values of the noise intensities correspond-
ing to the following nonequilibrium effective temperatures: Without
external field, Tc = 300 K (blue squares), Tc = 610 K (red circles),
Tc = 885 K (green triangles), Tc = 1920 K (magenta diamonds), and
Tc = 2950 K (orange pentagons). Solid and dashed curves are fits to
Eqs. (12) and (13), respectively. Vertical lines of the corresponding
colors show the expected value for the free energy change at the given
temperatures. Data acquisition rate to calculate the work: f = 2 kHz.

which yields a correct characterization of nonequilibrium work
fluctuations.

B. Isothermal compression and expansion

The distributions of the work (minus the work) in the
forward (backward) process of increasing (decreasing) the
stiffness of the trap (see Fig. 3) obtained using the optimal
frequency f = 2 kHz and for different values of the external
noise amplitude are shown in Fig. 8. We notice that the work
fluctuations are non-Gaussian for both isothermal compression
and expansion, as predicted theoretically [44]. The distribu-
tions can be fitted with a very good agreement to generalized
Gamma distributions,

ρ(W ) = CF WzF e−W/αF , (12)

ρ̃(−W ) = CB (−W )zB eW/αB , (13)

where the fitting parameters CF , CB , αF , and αB depend on
the amplitude of the external noise, but not zF and zB (data
not shown). The above result can be justified provided that the
work along isothermal compression and expansion is equal to
the sum of squared Gaussian variables [see Eq. (10)] which is
Gamma distributed [45,46]. Interestingly, the distributions (12)
and (13) are analogous to that of the work in the adiabatic
compression or expansion of a dilute gas [47].

The asymmetry between forward (compression) and back-
ward (expansion) work distributions is an indicator of the
irreversibility or the nonequilibrium nature of the process [25].
In Fig. 8 we show that the forward and backward work his-
tograms cross at the value of the effective free energy change
�F = kTkin ln

√
κfin/κini in all cases, with Tkin equal to the

equilibrium kinetic temperature, measured in an independent
equilibrium experiment. We measure the difference between
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FIG. 9. (Color online) Experimental values (markers) and theo-
retical values (solid lines) of the work asymmetry function obtained
from the work distributions in Fig. 8. Theoretical curves are computed
using the values obtained for Tkin. Inset: Tc as a function of Tkin (open
magenta circles, error bars are smaller than the symbol size). The
solid line has slope 1.

ρ(W ) and ρ̃(−W ) with the work asymmetry function [Eq. (6)],
whose values for different noise intensities are shown in
Fig. 9. The work asymmetry function depends linearly on
the work, with its slope equal to 1/kTkin, or equivalently
Tc = Tkin. The inset in Fig. 9 shows that this equality holds
throughout the range of temperatures we explored. This result
implies that our setup, when sampling at f = 2 kHz, is
suitable to implement nonequilibrium isothermal compression
or expansions in the mesoscale, with the externally controlled
temperature verifying all the requirements of an actual one.

V. CONCLUSIONS

In this paper we have studied the dynamics of an optically
trapped microsphere immersed in water and subject to an

external colored noise with flat spectrum up to a finite cutoff
frequency. We have shown that, under these conditions, the
fluctuations of the work in a nonequilibrium process define
a temperature that coincides with the kinetic temperature of
a particle in a thermal bath as obtained from equilibrium
measurements. This fact has been tested experimentally in two
different nonequilibrium processes. First, dragging the trap at
constant speed and, second, changing the trap stiffness linearly
with time. In the second case we have found that the work
fluctuations are non-Gaussian and fit well to a generalized
Gamma function.

The agreement between the temperature obtained from
work fluctuations under a nonequilibrium driving and the
kinetic temperature obtained in equilibrium is only found
when the work is calculated using a sampling rate significantly
greater than the corner frequency of the trap and below the
cutoff frequency of the noise, f = 2 kHz being an optimal
choice for the experimental conditions of the present work.

The main application of the experimental setup we intro-
duced will be the construction of thermodynamic heat engines
at the mesoscale where the temperature of the system can be
arbitrarily switched. Interestingly, we have been able to extend
by orders of magnitude the temperature range at which these
motors can perform [4,5]. This opens the possibility for the
design of nonequilibrium processes following the theoretical
proposals in Refs. [48–54].
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