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Transport properties of continuous-time quantum walks on Sierpinski fractals
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We model quantum transport, described by continuous-time quantum walks (CTQWs), on deterministic
Sierpinski fractals, differentiating between Sierpinski gaskets and Sierpinski carpets, along with their dual
structures. The transport efficiencies are defined in terms of the exact and the average return probabilities, as well
as by the mean survival probability when absorbing traps are present. In the case of gaskets, localization can be
identified already for small networks (generations). For carpets, our numerical results indicate a trend towards
localization, but only for relatively large structures. The comparison of gaskets and carpets further implies that,
distinct from the corresponding classical continuous-time random walk, the spectral dimension does not fully
determine the evolution of the CTQW.
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I. INTRODUCTION

Networks are sets of connected nodes [1,2], and their static
and the dynamic properties are of much interest. Applications
range from, say, polymer science [3], over traffic and power
grid studies [4], up to social networks [5]. A special class of
networks are deterministic fractals which as such can be built
iteratively. We remark that for them sometimes analytic results
can be obtained; see, e.g., Refs. [6–8].

Now, the classical dynamics of random walks (RWs) over
networks has been extensively investigated in the last decades
[9,10]. This effort has led to a very detailed understanding
of the influence of the network’s topology on RWs. When
the efficiency of transport is concerned, the question whether
the RW is recurrent or transient boils down to determining
the probability of the RW to return to its origin, which is
also related to the Pólya number [11]. Moreover, the global
properties of the RW can also be captured by introducing the
local probability decay channels and calculating the averaged
decay time of the excitation, known as the averaged mean
first passage time (MFPT) [9,12]. For simple undirected
networks the transfer matrix of the continuous-time random
walk (CTRW) is given by the connectivity matrix of the
network [13]. Many networks show scaling behavior for the
lower part of the spectrum of the connectivity matrix, with an
exponent ds which is called the spectral dimension [14]. As it
turns out, ds determines many of the dynamical properties of
the network, e.g., the return to the origin or the MFPT.

For the quantum mechanical aspects of transport on
networks, we choose as a model the continuous-time quantum
walk (CTQW), which is related to the classical CTRW [13]. In
this way, the Hamiltonian is determined by the connectivity of
the network. Therefore, by analyzing the connectivity matrix,
we obtain results for both CTRWs and CTQWs. While in
recent years CTQWs over several types of networks have
been analyzed [13], there is no unambiguous classification
according to, say, the spectral dimension. In many aspects,
the quantum dynamics is much richer (i.e., more complex)

*These authors contributed equally to this work.

than the classical CTRW counterpart, since it also involves
the wave properties of the moving object. In several cases of
tree-like networks, such as stars [15,16] or dendrimers [17],
it has been shown that the (average) quantum mechanical
transport efficiency, defined by the return to the origin, is
rather low compared to structures which are translationally
invariant. Quantum walks are interesting models also from the
point of view of quantum information processing [18]. Search
via quantum walks on fractal graphs has been considered in
Refs. [6,19,20].

A similar mathematical model arises for condensed matter
systems, in which one considers a particle moving on an
underlying fractal lattice (a Sierpinski gasket); here the
solution of Schrödinger’s equation has been studied within
the tight-binding approximation [21,22]. For several fractals
considered, the dynamics has been shown to be subject to
localization effects, similar to the classical waves in fractal
wave guides [23]. From an experimental point of view, recent
years have seen a growing number of possible implementations
of CTQWs, for example, using interference effects of light.
Those experiments range from photonic waveguides [24] to
fiber loops [25].

In this paper we study quantum transport over fractal
networks, namely, over Sierpinski gaskets (SGs) and their dual
structures (DSCs) as well as over Sierpinski carpets (SCs) and
their dual structures (DSCs). In the case of the SGs and of
their duals we find clear signatures of localization around the
initial starting node, indicating recurrent behavior. We seek to
answer the question whether the spectral dimension ds of the
graph determines the transport properties for CTQWs. Given
the great experimental control over, say, coupling rates and
decoherence, we believe that our results for fractal structures
can also be experimentally realized, say, through photonic
waveguides.

The paper is organized as follows, Sec. II gives an overview
over the quantities we use to determine the performance of
CTQWs over networks. In Sec. III we outline the determin-
istic construction rules of the SGs and SCs and their dual
transformations, along with their spectral properties. These
systems are then analyzed in detail in Secs. IV–VII. We close
with a summary of results in Sec. VIII.
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II. METHODS

We model the quantum dynamics of an excitation over
a given fractal network by the CTQW and compare this to
its classical counterpart, the CTRW, over the same network.
A network is determined by a set of N nodes and a set
of bonds. With each of the nodes we associate a state |k〉
corresponding to an excitation localized at node k. For both
CTQWs and CTRWs, the dynamics is determined by the
network’s connectivity, i.e., by its connectivity matrix A. The
off-diagonal elements of A are Akj = −1 if the nodes k and j

are connected by a single bond and are Akj = 0 otherwise; the
diagonal elements are Akk = fk , where fk is the functionality
of node k, i.e., the number of nodes connected to k through
a single bond. The matrix A is real and symmetric and has
only real and non-negative eigenvalues. For networks without
disjoint parts all eigenvalues are positive except one, Emin = 0.

Now, we take for CTRWs the transfer matrix T = −A
and for CTQWs the Hamiltonian H = A (i.e., in the fol-
lowing we set � = 1 and normalize the transfer capacity
of each bond to unity; see also Refs. [13,26]), such that
the transition probabilities read pk,j (t) = 〈k| exp(Tt)|j 〉 and
πk,j (t) = |〈k| exp(−iHt)|j 〉|2, respectively. By diagonalizing
A we obtain the eigenvalues En and the eigenstates |�n〉 (with
n = 1, . . . ,N ) of A, resulting in

pk,j (t) =
N∑

n=1

exp(−Ent)〈k|�n〉〈�n|j 〉 (1)

for CTRWs and

πk,j (t) =
∣∣∣∣∣

N∑
n=1

exp(−iEnt)〈k|�n〉〈�n|j 〉
∣∣∣∣∣
2

(2)

for CTQWs. In principle all quantities of interest can be
calculated on the basis of the transition probabilities. In order
to quantify the efficiency of the transport, we will focus on
three quantities: the exact return probability and the related
Pólya number, the average return probability, and the mean
survival probability.

A. Pólya number

The so-called Pólya number allows to assess the local
transport properties. In classical systems, the definition of the
recurrence is straightforward: it characterizes the event that the
walker returns to its initial position. For quantum walks one
can imagine different definitions depending on the envisaged
measurement procedure [27–33].

Reference [34] suggests a possible quantum definition for
the Pólya number, which is directly related to the return
probability to the initial node (|ψ(0)〉 = |1〉):

π1,1(t) = |〈1| exp(−iHt)|1〉|2. (3)

The formal definition of the Pólya number reads

P = 1 −
∞∏
i=1

[1 − π1,1(ti)], (4)

where the set {ti ,i = 1, . . . ∞} is an infinite time series which
can be chosen regularly or be determined by some random

process. It can be shown that its value depends on the
convergence speed of π1,1(t) to zero: if π1,1(t) converges
faster than t−1, then the CTQW is transient, otherwise it is
recurrent [34].

For a finite network of N sites the probability that we find
the walker at the origin can be written as a finite sum of cosine
functions:

π1,1(t) =
∣∣∣∣∣

N∑
n=1

〈1|e−iEnt |�n〉〈�n|1〉
∣∣∣∣∣
2

=
N∑

n,m=1

|〈1|�n〉|2|〈1|�m〉|2 cos [(Em − En)t ] . (5)

A finite sum of cosine functions cannot be a decaying function
of time, and thus for any finite system the Pólya number equals
one, meaning that the walk is recurrent. On the other hand, in
an infinite network (N → ∞), π1,1(t) might tend to zero in
the t → ∞ limit. If the return probability has the asymptotic
form π1,1(t) ∼ f (t)t−δ where f (t) is a periodic or an almost
periodic analytical function, then, with regular and Poissonian
sampling, the walk is recurrent if δ � 1, and it is transient if the
envelope decays faster (δ > 1) [34]. For CTRWs on the fractals
considered in the following, the decay of the probability p1,1(t)
is slower than t−1, which can be seen from the fact that on a
fractal p1,1(t) scales as t−ds/2 and the fractals considered in
this paper have spectral dimension ds < 2 [35,36].

B. Average return probability

As a global efficiency measure, the average return proba-
bility is defined as the probability to remain or return to the
initial node j , averaged over all nodes:

p(t) ≡ 1

N

N∑
j=1

pj,j (t) (6)

and

π (t) ≡ 1

N

N∑
j=1

πj,j (t). (7)

While p(t) only depends on the eigenvalues, π (t) also depends
on the eigenstates. However, by using the Cauchy-Schwarz
inequality a lower bound, independent of the eigenstates, has
been introduced in Ref. [15]:

π (t) = 1

N

N∑
j=1

πj,j (t) �

∣∣∣∣∣∣
1

N

N∑
j=1

αj,j (t)

∣∣∣∣∣∣
2

≡ | α(t)|2. (8)

In Eq. (8) αj,j (t) = 〈j | exp(−iHt)|j 〉 is the transition ampli-
tude between two nodes. In the following we will compare
p(t) with

∣∣α(t)
∣∣2

and express both quantities in terms of the
(discrete) density of states (DOS):

ρ̃(E) = 1

N

N∑
n=1

δ(E − En). (9)
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Here δ(E − En) is the Dirac δ function. Integrating ρ̃(E) in a
very small neighborhood of an eigenvalue, say, Em, gives

lim
ε→0+

∫ Em+ε

Em−ε

ρ̃(E) dE = D(Em)/N ≡ ρ(Em), (10)

where D(Em) is the degeneracy of Em and we introduced ρ(E).
This yields

p(t) =
∑
{Em}

ρ(Em) exp(−Emt)

=
∫ ∞

−∞
ρ̃(E) exp(−Et) dE (11)

and

|α(t)|2 =
∣∣∣∣∣∣
∑
{Em}

ρ(Em) exp(−iEmt)

∣∣∣∣∣∣
2

=
∣∣∣∣
∫ ∞

−∞
ρ̃(E) exp(−iEt) dE

∣∣∣∣
2

, (12)

where the sums run over the set {Em} of distinct eigenvalues.
Now, if both p(t) and |α(t)|2 decay very quickly in time,

the average probability to find the excitation at any node but
the initial node increases quickly. Then we call the transport
over the network efficient, because (on average) the excitation
will efficiently explore parts of the network away from the
initial node. In contrast, if these quantities decay very slowly,
we regard the transport as being inefficient.

For CTRWs and not too short times, p(t) is dominated
by the small eigenvalues. For fractals, the DOS typically
scales with the so-called spectral dimension ds [14], i.e.,
ρ̃(E) ∼ Eds/2−1. Then, one finds in an intermediate time range,
before the equilibrium value is reached, that p(t) ∼ t−ds/2.
However, for CTQWs such a simple analysis does not hold
due to the coherent evolution. Instead, highly degenerate
eigenvalues dominate

∣∣α(t)
∣∣2

; see Ref. [21,37]. In the case that
one has a single highly degenerate eigenvalue Em, the lower
bound of the average return probability can be approximated
by [16]

|ᾱ(t)|2 ≈ ρ̃2(Em) + ρ̃(Em)

× lim
ε→0+

[ ∫ Em−ε

−∞
ρ̃(E) cos[(E − Em)t] dE

+
∫ ∞

Em+ε

ρ̃(E) cos[(E − Em)t] dE

]
. (13)

If there is at least one eigenvalue for which ρ̃(Em) is O(1),
then the average transition amplitude does not tend to zero.
Then the long-time average χlb of the transition probability
also allows us to quantify the global performance of CTQWs
through [16]

χlb = lim
T →∞

1

T

∫ T

0
|ᾱ(t)|2 dt =

∑
{Em}

[ρ̃(Em)]2. (14)

C. Mean survival probability

In order to corroborate our findings for the average return
probabilities, we define another (global) transport efficiency

measure which is based on the mean survival probability; see
also Refs. [38] for CTQWs and [39] for discrete time quantum
walks. Here the original network is augmented by local decay
channels which act as traps for the walker. These traps are
localized at a setM of nodes m of the original network. For this
the total number of nodes of the system is not changed, but the
transfer matrix T as well as the Hamiltonian H get augmented
by additional terms, such that the new (effective) matrices
read Teff ≡ T − � and Heff ≡ H − i�, respectively, where
the trapping matrix is diagonal, namely, � = 


∑
m∈M |m〉〈m|

with a trapping rate 
 which we set equal for all traps. We note
that such an effective Hamiltonian can be obtained within the
framework of quantum master equations of Lindblad type,
where the network is only coupled to the environment at the
trap nodes; see Ref. [40]. For CTRWs, such traps will still
lead to a real symmetric transfer matrix, but now with only
positive eigenvalues [9]. For CTQWs, the new Hamiltonian
Heff becomes non-Hermitian. Such Hamiltonians can have
complex eigenvalues En = εn − iγn with a real part εn and
an imaginary part γn. As has been shown in Ref. [38], by
averaging the transition probabilities over all possible initial
and final nodes one obtains the mean survival probability for
CTQWs as a function solely of the γn:

(t) ≡ 1

N

N∑
j,k=1

πk,j (t) = 1

N

N∑
n=1

exp(−2γnt). (15)

Note the slightly different definition of (t) compared to the
one in Ref. [38]. Here we do not exclude the trap nodes from
the sum, thus Eq. (15) becomes exact. For CTRWs a similar
approach with the new transfer matrix Teff yields [41]

P (t) ≡ 1

N

N∑
j,k=1

pk,j (t) = 1

N

N∑
n=1

exp(−λnt)

∣∣∣∣∣∣
N∑

j=1

〈j |�n〉
∣∣∣∣∣∣
2

,

(16)
where λn and |�n〉 are the eigenvalues and eigenstates of Teff ,
respectively. Thus, P (t) will eventually decrease to zero and
the asymptotical behavior will be dominated by the smallest
eigenvalue. Now, if (t) and P (t) decrease quickly we also
call the transport efficient (on average) because then an initial
excitation will reach the trap rather quickly.

For CTQWs one can relate the γn to the eigenstates of the
original Hamiltonian H within a (nondegenerate) perturbative
treatment, γn = 


∑
m∈M |〈m|�n〉|2 [13]. Thus, the imaginary

parts γn are determined by the overlap of the eigenstates |�n〉
of H with the locations of the traps. This implies that for
localized eigenstates this overlap can be zero, such that for
some n the imaginary parts vanish, γn = 0. This yields a mean
survival probability which does not decay to zero but which
reaches the asymptotic value

∞ ≡ lim
t→∞ (t) = N0

N
, (17)

where N0 is the number of eigenstates for which the γn vanish.
For the SG it has been shown that such eigenstates exist, which
in fact gives rise to localization effects [21].

We have now defined the asymptotic quantity ∞, which
allows us to assess the transport properties of CTQWs by
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calculating the probability that the walker will stay forever in
the network.

III. THE SYSTEMS UNDER STUDY

We now discuss the systems under study and their topo-
logical properties. We consider two groups of Sierpinski
fractals, namely, gaskets and carpets, along with their dual
transformations. These fractals are built in an iterative manner:
In order to construct the SG, one starts from a triangle of three
nodes. In the next step two additional triangles are attached
to the corner nodes by merging them, so that they form a
bigger self-similar triangle. The procedure is then iterated; see
Fig. 1(a) for a gasket at generation g = 3. A similar idea is
used for creating the SC, where instead of triangles the central
building blocks are squares; see also Fig. 1(c). At generation
g the total number of nodes of the SG is NSG = (3g + 3)/2
and of the SC is NSC = 11

70 8g + 8
15 3g + 8

7 , so that at the same
(large) g the carpet has much more nodes than the gasket.

The dual networks of the Sierpinski fractals are easily
obtained by the following procedure: In the original structure
one replaces each of the smallest building blocks (triangles for
gaskets and squares for carpets) by a node and then connects
the nodes which belong to building blocks sharing a node (for
carpets we only allow connections in the horizontal and in
the vertical direction but not diagonally); see also Figs. 1(b)
and 1(d), which illustrate the procedure by also showing the
underlying lattices of the SG and SC, respectively. The number

Corner trap
location

Central trap
location

(a) SG (b) DSG

(c) SC (d) DSC

FIG. 1. (Color online) The graphs under study. The graphs are
at third generation (g = 3), except the DSC, for which g = 2. We
denoted the g = 1 graphs with green, and the holes with a gray
(striped) background. Traps are put either at the positions indicated
by the small diamonds or at the positions indicated by the small
squares.

of nodes of the DSG of generation g is N = 3g and of the DSC
of generation g is N = 8g .

Based on real space renormalization arguments, one can
show that a structure and its dual have the same fractal df

and spectral ds dimensions. For the SG and the DSG, the
corresponding values are df = ln(3)/ln(2) ≈ 1.5849 . . . and
ds = 2ln(3)/ln(5) ≈ 1.3652 . . . ; see Ref. [6]. For the SC and
the DSC, one has df = ln(8)/ln(3) ≈ 1.8928 . . . and ds ≈
1.805 [36].

For our calculations of the average return probabilities we
assume that every single node of the network can be the
origin of the walk with the same probability and that the
average runs over all sites j = 1, . . . ,N . For the individual
return probability πj,j (t) we use the outer corner node 1 as
initial node. As for the mean survival probabilities, we will
distinguish between two situations: (1) when there are three
(four) trap nodes at the outer corners of the gasket (carpet),
see the red diamonds in Fig. 1, and (2) when the three (four)
trap nodes are placed at the corners of the largest empty inner
triangle (square) of the gasket (carpet), see the red squares in
Fig. 1. Since the quickest decay of (t) for the linear networks
studied in Ref. [38] is obtained when the trapping strength 


is of the same order of magnitude as the coupling between the
nodes, we choose 
 = 1 in all calculations involving traps.

Let us first consider systems without traps. Since the
eigenvalue distributions are crucial for determining the global
efficiency measures, we start by considering the differences
between our four fractal structures. In Fig. 2 we plot for several
structures the normalized cumulative eigenvalue counting
function

N (x) = 1

N

N∑
n=1

θ

(
x − En

Emax

)
, (18)

where θ (x) is the Heaviside function. Now, Emin = 0 is the
smallest and Emax the largest eigenvalue; hence, the range of
x is [0,1].

Already here we can exemplify the role of highly degenerate
eigenvalues. For large N the eigenvalue counting function for

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N

x

DSG

SG
2D

DSC
SC

2D lattice
SC g = 6
DSC g = 5
SG g = 9
DSG g = 9

FIG. 2. (Color online) The eigenvalue counting function N (x)
[Eq. (18)] for several systems under study, compared to the simplest
case of an infinite discrete square lattice; see text for details.
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an N × N square lattice is a quite smooth function, which for
N → ∞ we plot as a reference in Fig. 2.

Also the SC for g = 6 leads to a quite smooth form for
N (x). However, N (x) for the DSC of g = 5 displays marked
steps, but its overall shape is close to the one for the SC.
For the SG for g = 9 and its dual, the DSG for g = 9, N (x)
has sharp discontinuities, which reflect the presence of many
highly degenerate eigenvalues. Already at this point we see a
clear distinction between gaskets and carpets: at similar g the
carpets do not have eigenvalues of such high degeneracy as
the gaskets.

IV. DUAL SIERPINSKI GASKET

We start by considering the DSG; see also Fig. 1(b). As
the SG, the DSG is a deterministic fractal, iteratively built
up generation by generation. CTQWs on DSGs of different
generations have been studied by us in Ref. [6]. We will
recapitulate the major results, since we will use the DSG as
a reference for our new results presented below. In fact, the
DSG is special, in that its eigenvalues, and hence its DOS can
be determined iteratively, in a simple way. This does not hold
for the other fractals considered here.

For DSGs the results for the CTRW and CTQW return
probabilities p1,1(t) and π1,1(t), along with the CTQW lower
bound |α(t)|2 of π(t) [see Eqs. (1), (2), and (8), respectively]
have been already presented in Ref. [6]. There it has been
verified that for the classical average return probability, the
decay to the equipartition value is determined solely by ds [42],
having namely p(t) ∼ t−ds/2. It follows that the classical walk
on DSGs is recurrent and that the Pólya number equals unity.
As we will show below for all the fractal types considered
here, such a quite simple law does not hold for CTQWs.

Turning now to the quantum case and evaluating the lower
bound |α(t)|2 of π (t) of the quantum average return probability
π(t) [see Eq. (8)], it has been found in Ref. [6] that its envelope
does not show a strong dependence on the size of the DSG.
Since the two eigenvalues 3 and 5 make up for about 1/3 of all
eigenvalues, they control most of the behavior of π (t). Then
ρ(3) and ρ(5) are known in closed form:

ρ(3) = 1

2 × 3g
(3g−1 + 3) (19)

and

ρ(5) = 1

2 × 3g
(3g−1 − 1). (20)

In particular, also the long-time average χlb can be calculated
exactly, based on Eq. (14):

χlb = 1

32g

[
3g

(
1 + 3g

14

)
+ 10

7
2g − 3

2

]
, (21)

which for large g is much larger than the equipartition value
3−g . The limit g → ∞ yields

lim
g→∞ χlb = 1/14 ≈ 0.0714. (22)

For both highly degenerate eigenvalues, Table I shows ρ(3)
and ρ(5) [Eq. (10)] for successive generations g from 2 to
8, calculated according to Eqs. (19) and (20). Also the exact
value of χlb [see Eq. (21)] is shown. Both ρ(3) and ρ(5) tend

TABLE I. The ρ(E) for the eigenvalues E = 3 and E = 5 and
the long-time average χlb for different generations of the DSG.

g ρ(3) ρ(5) χlb

2 1/3 ≈ 0.3333 1/9 ≈ 0.1111 0.2346
3 2/9 ≈ 0.2222 4/27 ≈ 0.1481 0.1221
4 5/27 ≈ 0.1852 13/81 ≈ 0.1605 0.0870
5 14/81 ≈ 0.1728 40/243 ≈ 0.1646 0.0763
6 41/243 ≈ 0.1687 121/729 ≈ 0.1660 0.0730
7 122/729 ≈ 0.1674 364/2187 ≈ 0.1664 0.0719
8 365/2187 ≈ 0.1669 1093/6561 ≈ 0.1666 0.0716

to the exact limiting value 1/6 [see Eqs. (19) and (20)] rather
fast, which, together with Eq. (13), means that the transport is
quite inefficient.

Now, we calculate for the DSG 
(1)
∞ and 

(2)
∞ using Eq. (17).

In order to do this, we numerically determine the eigenvalues
of the non-Hermitian Heff , paying particular attention to their
imaginary parts γ . We do this using the MATLAB / GNU
Octave eig() function, and in order to be more precise, we
employed the LAPACK zgeev() function in our FORTRAN

code with quadruple precision. Despite these efforts, the
procedure may not be exact, however. First, we cannot exclude
the existence of very small, but nonzero imaginary parts which
are smaller than 10−31 and are set to zero. Second, numerical
errors may induce small imaginary contributions where there
should be none. Thus, the values in our table for ∞ may not
be as exact as their form seems to imply.

Counting all the eigenvalues with vanishing imaginary part
we then obtain N0. From it we readily evaluate 

(1)
∞ and 

(2)
∞ ;

see Eq. (17). In the next sections, the same procedure will be
employed for the other fractals studied. The analysis of the data
of Table II shows that 

(1)
∞ and 

(2)
∞ increase with increasing

g, which means that N0 increases faster than N . Already for
g = 7, corresponding to a network of N = 2187 nodes, the
probabilities 

(1)
∞ and 

(2)
∞ that the walker survives within the

network are close to 0.855 and to 0.826, respectively. We note
that the values of 

(2)
∞ are somewhat below the ones for 

(1)
∞ ,

implying that here traps on the periphery act somewhat less
efficiently than centrally located traps.

V. SIERPINSKI GASKET

While the DSG allows for partly analytical results, we have
to resort to numerical calculations for the other structures

TABLE II. The asymptotic limit ∞ of (t) for DSGs of
generations g = 2,3, . . . ,7; case (1): the traps are placed on the corner
nodes, diamonds in Fig. 1(b); case (2): the traps are placed on the
central nodes, squares in Fig. 1(b); see text for details.

g (1)
∞ = N

(1)
0 /N (2)

∞ = N
(2)
0 /N

2 1/9 ≈ 0.111 0
3 9/27 ≈ 0.333 6/27 ≈ 0.222
4 43/81 ≈ 0.531 36/81 ≈ 0.444
5 165/243 ≈ 0.679 150/243 ≈ 0.617
6 571/729 ≈ 0.783 540/729 ≈ 0.741
7 1869/2187 ≈ 0.855 1806/2187 ≈ 0.826
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FIG. 3. (Color online) Quantum return probability π1,1(t) to the
corner node j = 1 (green solid line) along with its classical analog
(red dashed line) for the SG of g = 7. Inset: CTQW lower bound
|α(t)|2 of π(t) on the SG at g = 7 (blue solid line) and χlb, the
long-time value (black dashed line).

considered in this paper. We proceed our investigation with
the SG. In analogy to our study on DSGs, we start with the
CTRW and CTQW return probabilities as well as with the
lower bound for the CTQW decay. These quantities involve
the eigenvalues and (depending on the functions considered)
sometimes also the eigenstates of the Hermitian operators
T and H; see Eqs. (1)–(2). Unlike the DSG case, for SGs
general recursive expressions for the eigenvalues of T and H
are not known. Therefore, we calculate both the eigenvalues
and the eigenfunctions numerically. For this, we again use
the MATLAB/GNU Octave eig() and eigs() functions. For
large generations, we calculate only the spectrum in order to
evaluate |α(t)|2 and the D(Em) degeneracy of the eigenvalue
Em using the filtered Lanczos algorithm in C++ [43], and the
MATLAB/GNU Octave eigs() function.

Figure 3 shows the classical p1,1(t) and the quantum
mechanical π1,1(t) return probabilities to the initially excited
node j = 1 for a SG with g = 7. The red dashed line in Fig. 3
gives the CTRW return probability p1,1(t). While the algebraic
decay of p1,1(t) ∼ t−ds/2 holds asymptotically only for an
infinite fractal, one can still recognize this scaling behavior in
an intermediate time domain in Fig. 3, before p1,1(t) saturates
to the equipartition value 1/N at long times. Figure 3 also
shows the exact quantum return probability π1,1(t) (green solid
line). After an initial decay to a local minimum, the return
probability starts to oscillate around its long-time average. In
the inset of Fig. 3 we present the quantum mechanical lower
bound |α(t)|2 of the quantum average return probability π (t);
|α(t)|2 does not decay eventually, but shows strong oscillations
with a long-time average χlb (dashed black line in Fig. 3) which
is orders of magnitude larger than 1/N . Now, in contrast to
CTRWs, there is no apparent relation between the spectral
dimension and the return probability.

The spectrum of the Hamiltonian already reveals whether
the CTQW shows localization. For different generations of
the SG, we calculate, based on Eq. (10), the ρ(E) of the
highly degenerate eigenvalue 6, ρ(6), and, based on the r.h.s.

TABLE III. The ρ(E) for the eigenvalue E = 6 and the long-time
average χlb for different generations of the SG.

g ρ(6) χlb

2 0 0.2778
3 3/15 = 0.2 0.1378
4 12/42 ≈ 0.2857 0.1179
5 39/123 ≈ 0.3171 0.1296
6 120/366 ≈ 0.3279 0.1374
7 363/1095 ≈ 0.3315 0.1408
8 1092 / 3282 ≈ 0.3327 0.1421
9 3279 / 9843 ≈ 0.3331 0.1426

of Eq. (14), the long-time average χlb. The data are presented
in Table III. As in the case of the DSG, also for the SG the ρ(6)
seem to converge with increasing g to the finite limiting value
1/3. As before, such a relatively large nonvanishing value lets
us infer that the transport is not very efficient.

We now turn to CTQWs on SGs in the presence of
traps, process which introduces non-Hermitian operators. In
Table IV we show 

(1)
∞ and 

(2)
∞ for two situations, namely,

when the traps are placed on the corners and when the traps are
placed in the center of the structure; see Fig. 1(a) for details.
Table IV suggests that the situation is quite similar to the one
for the DSG: the higher g, the less it is probable that the
excitation will be absorbed even after a very long time; see the
increase in the ∞ values. However, the amount of excitation
which stays localized in the network is higher in case (1) than
in case (2), since 

(1)
∞ > 

(2)
∞ .

VI. DUAL SIERPINSKI CARPET

We continue our analysis by considering the SC and the
DSC. We start with the DSC, the spectrum and harmonic
functions of which have been considered recently [44,45].

Figure 4 presents the lower bound |α(t)|2 of the quantum
π (t) for g = 5; see Eq. (8). The inset of Fig. 4 depicts the
classical return probability p1,1(t) given by Eq. (1). We note
that at intermediate times p1,1(t) shows an algebraic decay
with slope ds/2. Furthermore, |α(t)|2 displays at short to
intermediate time a decay of the maxima, while at longer times
it slowly approaches χlb, given in Fig. 4 through a dotted line
around which it oscillates. Given that for DSC χlb is much
smaller than the corresponding χlb for SGs and for DSGs, we

TABLE IV. The asymptotic limit ∞ of (t) for SG of gener-
ations g = 2,3, . . . ,7; case (1): the traps are placed on the corner
nodes, diamonds in Fig. 1(a); case (2): the traps are placed on the
central nodes, squares in Fig. 1(a); see text for details.

g (1)
∞ = N

(1)
0 /N (2)

∞ = N
(2)
0 /N

2 0 0
3 4/15 ≈ 0.27 1/15 ≈ 0.067
4 21/42 = 0.5 15/42 ≈ 0.357
5 82/123 ≈ 0.67 70/123 ≈ 0.569
6 285/366 ≈ 0.78 261/366 ≈ 0.713
7 934/1095 ≈ 0.85 886/1095 ≈ 0.809
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FIG. 4. (Color online) The average return amplitude |α(t)|2 on
the DSC of g = 5 (blue solid line) and the long-time average (black
dotted line). Inset: classical return probability p1,1(t) for DSCs of
g = 2,3, and 4 (dotted blue, dashed green, solid red line, respectively)
as well as the fitted decay (solid straight black line), 0.4 · t−1.8/2.

infer that localization effects are smaller for DSCs than for
SGs and for DSGs.

However, from the above results we cannot deduce whether
the walk is recurrent or not. Therefore, for DSCs we again
consider the spectrum of T and H and calculate, based on
Eq. (10), ρ(E) for the most highly degenerate eigenvalue; see
Table V. Clearly our calculations are limited by computational
power, and for the DSC we could not obtain results for g larger
than 6; for g = 6 there are already N = 262 144 nodes in the
network. It seems as if for very large g the ρ(3) series will
converge to a value somewhat above 4.4 × 10−3. This finite
limit again seems to indicate that there is localization in the
system, so that CTQWs may be recurrent in general.

Now, let us consider the CTQW trapping process for the
DSC. Table VI presents ∞ for two different trap placements
on the DSC of g = 2,3, and 4, as shown in Fig. 1(d). Our
calculations of the mean survival probabilities (t) and their
asymptotic values ∞ do not allow for a clear-cut statement
for the DSC. The first thing to note is that 

(1)
∞ and 

(2)
∞ are

very similar and that with increasing g their values stay rather
constant. This again is only a weak indication that also the
DSC shows localization.

VII. SIERPINSKI CARPET

Let us now consider the transport properties of CTRWs and
of CTQWs on SCs. We start again by calculating the lower

TABLE V. The ρ(3) for the eigenvalue E = 3 and the long-time
average χlb for different generations of the DSC.

g ρ(3) χlb

2 2/64 ≈ 3.13 × 10−2 2.44 × 10−2

3 4/512 ≈ 7.81 × 10−3 2.98 × 10−3

4 20/4096 ≈ 4.88 × 10−3 3.89 × 10−4

5 148/32 768 ≈ 4.52 × 10−3 6.60 × 10−5

6 1172/262 144 ≈ 4.47 × 10−3 –

TABLE VI. The asymptotic limit ∞ of (t) for DSCs of
generations g = 2,3, and 4; case (1): the traps are placed on the
corner nodes, diamonds in Fig. 1(d); case (2): the traps are placed on
the central nodes, squares in Fig. 1(d); see text for details.

g (1)
∞ = N

(1)
0 /N (2)

∞ = N
(2)
0 /N

2 15/64 ≈ 0.234 14/64 ≈ 0.219
3 126/512 ≈ 0.246 126/512 ≈ 0.246
4 1030/4096 ≈ 0.251 1030/4096 ≈ 0.251

bound |α(t)|2 of the quantum average return probability π (t)
[Eq. (8)]; see Fig. 5 for the DSC with g = 6. The inset shows
the behavior of the corresponding CTRW p1,1(t) for various
g, which for intermediate times scales with ds as expected.

Again the finite size of the network does not allow for a
definite statement about the recurrent behavior of the CTQW.
Therefore, we again calculate ρ(E) [see Eq. (10)] for the highly
degenerate eigenvalue E = 4; the corresponding values are
displayed in Table VII. There we also show the long-time
average χlb calculated using the r.h.s. of Eq. (14). Similar to
the DSC case, there is no strong evidence that CTQWs on SCs
show localization. Again, as for DSCs, the limiting value of
ρ(4) lies above 3 × 10−3, such that at this point we cannot
make any precise statement. We could not obtain results for
larger generations because (at present) we do not have the
computational facilities to calculate ρ(4) for g > 7; the size of
the corresponding matrix for a DSC of g = 7 is already larger
than 300 000 × 300 000.

Considering now absorption processes, when there are traps
placed on three nodes of each network [see, e.g., Fig. 1(c)],
we again calculate the quantum mechanical limit ∞ of (t);
the corresponding results are given in Table VIII. Here we
find that CTQWs on SCs are quite different from those on the
gaskets, but that they are similar to CTQWs on DSCs: both,


(1)
∞ and 

(2)
∞ , show a slow increase with increasing g.
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FIG. 5. (Color online) Average return amplitude on the SC at g =
6 (blue solid line) and the long-time average χlb (black dotted line).
Inset: classical return probability to the corner node for the SC at
g = 2, 3, 4, and 5 (pink dash dotted, blue dotted, green dashed,
red solid line, respectively) and the decay according to the spectral
dimension ds (black straight solid line).
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TABLE VII. The ρ(E) for the eigenvalue E = 4 and the long-
time average χlb for different generations of the SC.

g ρ(4) χlb

2 3/16 ≈ 1.88 × 10−2 1.25 × 10−1

3 6/96 = 6.25 × 10−2 1.89 × 10−2

4 8/688 ≈ 1.16 × 10−2 2.29 × 10−3

5 16/5280 ≈ 3.03 × 10−3 2.92 × 10−4

6 128/41 584 ≈ 3.08 × 10−3 4.54 × 10−5

VIII. SUMMARY

Our analysis of CTQWs over different types of Sierpinski
fractals revealed interesting aspects of quantum mechanical
transport. At first, for SGs and for DSGs we find strong
localization effects, supported by the fact that the long-time
averages χlb approach a finite limiting value with increasing
g; see Tables I and III. For the carpets we cannot make a
definite statement based on our numerical results for χlb for
generations up to g = 6.

Turning now to the DOS and monitoring in each case the
eigenvalues with the highest degeneracy, we find that ρ(3) and
ρ(5) for DSGs and ρ(6) for SGs tend with growing g each to
a constant, quite significant value; see Tables I and III. This
supports our view that the walkers are localized even for very
large g, in line with Refs. [13,15]. For the carpets, for which
the eigenvalue with the highest degeneracy is 3 for DSCs and
4 for SCs, we find that the corresponding values ρ(3) for the
DSC and ρ(4) for the SC are rather small, which renders a
clear-cut decision on localization difficult. We hence conclude
that one needs much larger carpets than the ones we could
(at present) numerically handle, in order to attain a definite
conclusion.

These results are confirmed by our findings for the mean
survival probabilities 

(j )
∞ (j = 1,2) for both arrangements of

traps. Here, the mean survival probability for SGs and DSGs
increases with N , meaning that for larger networks it becomes
less and less probable that the excitation will leave the network.
Since in each case we consider only three trap nodes, with
increasing g the number of nodes without traps increases.
Hence, due to localization, an excitation starting from a node
far away from the traps will not be able to reach them. For SCs
and DSCs, the mean survival probabilities show only a slight
increase with g (for the network sizes considered here), thus
the probability of being trapped is almost independent of the
size of the network; see Tables VI and VIII. In this respect,

TABLE VIII. The asymptotic limit ∞ of (t) for SCs of
generations g = 2,3,4, and 5; case (1): the traps are placed on the
corner nodes, diamonds in Fig. 1(c); case (2): the traps are placed on
the central nodes, squares in Fig. 1(c); see text for details.

g (1)
∞ = N

(1)
0 /N (2)

∞ = N
(2)
0 /N

2 2/16 = 0.125 2/16 = 0.125
3 23/96 ≈ 0.240 22/96 ≈ 0.230
4 168/688 ≈ 0.244 168/688 ≈ 0.244
5 1314/5280 ≈ 0.249 1314/5280 ≈ 0.249

it would be also interesting to investigate the effect when the
number of traps also increases with g.

In addition and in contrast to the corresponding classical
CTRWs, for CTQWs there is no apparent scaling behavior
with the spectral dimension ds . This is obvious for the gaskets;
see Ref. [6] for DSGs and Fig. 3 for SGs. However, for the
carpets one might still argue that for large generations g such
a scaling could exist for the envelope of |α(t)|2 at intermediate
times; see Figs. 4 and 5. But from our numerical results for
generations up to g = 7 we cannot draw this conclusion.

Nevertheless, the long-time behavior of the CTQW with and
without traps reveals clear-cut differences between gaskets and
carpets for the generations studied here. While classically the
difference is only manifested in a different scaling according
to ds , quantum-mechanically we find there appears to be
a fundamental difference between gaskets and carpets, at
least for the finite networks studied here. Our main results
are summarized in Fig. 6, where we plot, as a function
of the number of nodes N , the long-time average of the
lower bound of the averaged return probability, χlb, and (for
practical purposes) the long-time value of the mean trapping
probability, i.e., 1 − 

(j )
∞ (j = 1,2), for the two situations of

trap arrangements.
Already the spectra of the gaskets and of the carpets are

significantly different and contain, in principle, all the essential
information. Now, for the classical CTRW only the low-energy
part of the spectrum is important for the intermediate-to-long-
time behavior, whereas for the CTQW the whole spectrum
matters. Clearly, further investigations of these facts are in
order, but go beyond the scope of the present paper. In
general, a systematic study of the importance of the so-called
ramification number (the number of nodes/bonds which has to
be removed in order for the fractal to fall apart), along with
a careful analysis of localized eigenstates (e.g., “dark states”
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FIG. 6. (Color online) Long-time average χlb of π1,1(t) and probability 1 − ∞ for an excitation to get trapped as a function of the number
of nodes.
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for the trap) deserves further studies. From the point of view
of bond percolation, we have studied localized eigenstates of
two-dimensional lattices with traps and with randomly placed
bonds [46]. There we found that the localization feature is also
mirrored in the survival probablity. While these aspects have
been already touched upon in Ref. [21] for the SG, no detailed
analysis has been carried out for the SC.
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