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Nonequilibrium relaxation and aging scaling of the Coulomb and Bose glass
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We employ Monte Carlo simulations to investigate the nonequilibrium relaxation properties of the two- and
three-dimensional Coulomb glass with different long-range repulsive interactions. Specifically, we explore the
aging scaling laws in the two-time density autocorrelation function. We find that, in the time window and parameter
range accessible to us, the scaling exponents are not universal, depending on the filling fraction and temperature:
As either the temperature decreases or the filling fraction deviates more from half filling, the exponents reflect
markedly slower relaxation kinetics. In comparison with a repulsive Coulomb potential, appropriate for impurity
states in strongly disordered semiconductors, we observe that, for logarithmic interactions, the soft pseudogap in
the density of states is considerably broader, and the dependence of the scaling exponents on external parameters
is much weaker. The latter situation is relevant for flux creep in the disorder-dominated Bose glass phase of
type-II superconductors subject to columnar pinning centers.
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I. INTRODUCTION

The Coulomb glass model was devised to describe the
physical properties of localized charge carriers in disordered
semiconductors [1–3]. It assumes that the localization length
ξ is small or of the order of the mean separation a0 between
acceptor or donor sites, whence the system can be essentially
described in classical terms: Charged particles are confined to
randomly distributed sites, and at low temperatures the system
equilibrates through rearrangement of the carrier distribution
to minimize the total interaction energy. In semiconductors,
these variable-range hopping processes are effected through
phonon-assisted tunneling between the acceptor and donor
sites. The strong spatial (anti) correlations resulting from
the long-range repulsive forces in turn induce a marked
depletion of the (interacting) single-particle density of states,
i.e., the distribution function g(ε) of the site energies, near the
chemical potential μc that separates low-energy (ε < μc) filled
states from empty states at elevated energies (ε > μc). In the
presence of this correlation-induced soft Coulomb gap, carrier
mobility thus becomes considerably impeded [2]: If g(ε) ∼
|ε − μc|γ follows a power law in the vicinity of μc with an (ef-
fective) gap exponent γ , the associated conductivity scales as
ln σ ∼ −T −p, with p(γ ) = (γ + 1)/(γ + d + 1) in d spatial
dimensions in the thermally activated transport regime at low
temperatures T . Note that p(γ ) � 1/(d + 1) = p(γ → 0), the
Mott variable-range hopping exponent applicable for a finite
density of states g(μc) > 0. Electron tunneling experiments
in doped semiconductors have confirmed the existence of
correlation-induced soft gaps in the density of states [4,5].

The two-dimensional Coulomb-glass model, with the elec-
trostatic 1/r potential essentially replaced by a logarithmic
repulsion, has furthermore been adapted to capture the static
properties as well as thermally activated flux creep in type-II
superconductors with extended linear disorder aligned along
the magnetic-field direction [6]. These columnar defects
serve as effective pinning sites for fluctuating magnetic flux
lines; at low temperatures T (and driving currents J ) they
undergo a continuous localization transition [7,8]. In this
localized Bose glass phase, the pinned flux lines are essentially

straight and parallel, rendering the system effectively two
dimensional, and vortex transport between columnar defects
proceeds in analogy to variable-range hopping through the
formation and subsequent relaxation of double kinks between
different pinning sites [9,10]. Long-range repulsive vortex
interactions again induce a soft gap in the density of states
which strongly suppresses flux creep, leading to a desired
much reduced resistivity ln ρ ∼ −J−p/T [11] (for magnetic
flux densities smaller than the matching field, at which the
number of flux lines equals the number of columnar defects;
for extensions to the regime near and beyond the matching
field, see Refs. [12,13]).

Over the past three decades, intense research into the
correlation-dominated equilibrium features [14–26] as well as
nonequilibrium relaxation properties [27–41] of the Coulomb
glass have considerably advanced our understanding of this
paradigmatic model system for highly correlated disordered
materials. In part motivated by the unambiguous experimental
confirmation of aging effects in relaxation measurements for
the conductivity of a two-dimensional silicon sample and
scaling near its metal-insulator transition [42,43], in this work
we focus on a numerical study of the nonequilibrium relaxation
properties of the Coulomb glass following a quench from a
fully uncorrelated, high-temperature initial state.

Although the soft Coulomb gap in the site energy dis-
tribution forms quite fast, subsequent relaxation towards
the equilibrium terminal state is sufficiently slow to open
a sufficiently wide time window wherein time translation
invariance is broken and aging scaling is clearly observed
(for recent overviews on nonequilibrium relaxation and aging
phenomena, see Refs. [44,45]). Specifically, we employ a
variant of the Monte Carlo algorithm described in Refs. [31,32]
to investigate the dependence of the ensuing aging scaling
exponents for various Coulomb glass systems as function of
temperature T , filling fraction (total charge carrier density) K ,
dimensionality, and form of the repulsive interaction potential
(Coulomb 1/r potential in d = 2,3 dimensions; logarithmic
potential in two dimensions). A first, concise account of
aging in the two-dimensional Coulomb case was presented
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in Ref. [37]; further technical details and additional data can
be found in Ref. [46].

In Sec. II, we introduce our model Hamiltonian and explain
our Monte Carlo simulation algorithm. We also briefly discuss
basic simulation results pertaining to the emerging Coulomb
gap in the (interacting) single-particle density of states.
Section III addresses nonequilibrium relaxation properties
of our system as obtained from measurements of the two-
time density autocorrelation function, starting from random
initial conditions. The obtained aging scaling exponents and
their dependence on temperature, filling fraction, interaction
potential, and dimensionality constitute the central findings of
this work. We conclude with a brief summary and discussion.

II. MODEL DESCRIPTION AND MONTE
CARLO SIMULATIONS

In this section, we briefly describe the Coulomb glass
model, explain our Monte Carlo algorithm, and list our results
on equilibrium properties obtained from our simulation runs in
two and three dimensions with different interaction potentials.

A. Coulomb glass model

The Coulomb glass model was introduced by Efros and
Shklovskii to capture thermodynamic and transport properties
of localized charge carriers in doped semiconductors [1]. A set
of multiple, randomly (Poisson) distributed but fixed localized
pinning sites (here selected off lattice on a continuum) are
available to the charge carriers in d spatial dimensions.
Because of the strong intrasite correlations these sites labeled
by an index i can only contain at most a single particle, which
restricts the site occupation numbers to ni = 0,1. The system is
dominated by long-range repulsive interactions V (r) between
the charge carriers. The combination of quenched spatial site
disorder and long-range interactions induce strong correlation
effects.

For the case of unscreened Coulomb interactions, the
Hamiltonian of the Coulomb glass model reads [1,2]

H ({ni}) =
∑

i

niϕi + e2

2κ

∑
i �=j

(ni − K)(nj − K)

|Ri − Rj | , (1)

where e denotes the carrier charge, κ is a dielectric constant,
and Ri , ϕi , and ni respectively represent the position vector,
(bare) site energy, and occupancy of the ith site, i = 1, . . . ,N .
The first term corresponds to (random) site energies assigned
to each accessible location; since the system is dominated by
long-range forces, we choose all ϕi = 0 to further simplify the
model, while drawing the positions Ri at random from a two-
or three-dimensional continuous set [18,28,31,32]. The second
contribution encapsulates the repulsive Coulomb interactions
(with dielectric constant κ). In order to maintain global charge
neutrality, a uniform relative charge density K = ∑

i ni/N is
inserted; it constitutes the total carrier density per site or filling
fraction. Note that with ϕi = 0 the Hamiltonian (1) displays
particle-hole symmetry, i.e., systems with filling fractions K =
0.5 + k and K = 0.5 − k are equivalent. Upon replacing the
site occupation numbers with Ising spin variables σi = 2ni −
1 = ∓1, the Coulomb glass maps onto a random-site, random-

field antiferromagnetic Ising model with long-range exchange
interactions [14].

The Coulomb glass model may be adapted to describe the
low-temperature properties of magnetic flux lines in type-II
superconductors with strong columnar pinning centers [9–
11]. Deep in the Bose glass phase, the vortices become
localized at the linear material defects, and thermal transverse
wandering is strongly suppressed, which renders the system
essentially two dimensional. The mutual repulsion interaction
between two occupied sites is now characterized by a modified
Bessel function K0(r/λ); essentially a long-range logarithmic
potential that is screened on the scale of the London penetration
depth λ, and the Hamiltonian becomes

H ({ni}) = ε0

∑
i �=j

(ni − K)(nj − K)K0

( |Ri − Rj |
λ

)
. (2)

The energy scale is now set by ε0 = [φ0/(4πλ)]2 with the
magnetic flux quantum φ0 = hc/(2e). We shall address the
dilute low-magnetic-field regime where all site distances
rij = |Ri − Rj | � λ and thus K0(x) ≈ − ln x (aside from a
constant). The random site positions Ri are drawn from a
continuous flat distribution in two dimensions.

B. Monte Carlo simulation algorithm

The Monte Carlo simulations were initiated by randomly
placing N sites within a square (cube) in two (three) di-
mensions. Initially, we prepared the system in a completely
uncorrelated configuration, distributing KN charge carriers at
random among the N available sites. The “charged” particles
may then attempt hops from occupied sites a (with na = 1)
to unoccupied sites b (nb = 0). Following Refs. [31,32],
two multiplicative factors determine the success rate of
this hop; namely, (i) a strongly distance-dependent transfer
process that respectively models phonon-mediated tunneling
in semiconductors and vortex superkink proliferation in type-
II superconductors, and (ii) thermally activated jumps over
energy barriers represented by a Metropolis factor:

�a→b = τ−1
0 e−2rab/ξ min[1,e−�Eab/T ], (3)

where τ0 represents a microscopic timescale, rij = |Ri − Rj |
is the distance between sites i and j , while ξ characterizes the
spatial extension of the localized carrier wave functions or ther-
mal wandering of the magnetic flux lines (we set Boltzmann’s
constant kB = 1). The rate for a thermally activated move from
occupied site a to empty site b is determined by the energy
difference �Eab = εb − εa − V (rab), with the (interacting)
site energies εi = ∑

j �=i(nj − K)V (rij ), and where the long-
ranged interactions are governed by the Coulomb potential
V (r) = e2/(κr) for semiconductor charge carriers, whereas
V (r) = 2ε0K0(r/λ) for magnetic vortices.

The simulation consecutively performs the following four
stochastic processes [37,46]: (i) Randomly select an occupied
site a (na = 1). (ii) Choose an unoccupied site b (nb = 0) from
the exponential probability distribution in the first “tunneling”
term in Eq. (3). (iii) Attempt a hop with a success probability
determined by the Metropolis factor in Eq. (3). (iv) If the
hop attempt fails, return to step one. If it is successful,
move the particle from site a to site b. Each Monte Carlo
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time step (MCS) consists of N iterations of (i)–(iv). Note
that all pair potential values V (rab) may be calculated at the
beginning of the simulation run. Subsequently, only the site
energies of sites a and b need to be evaluated, which merely
requires a summation of the precalculated pair potentials.
Collecting these interacting site energies and averaging over
many independent realizations with different random site
placements, we then compiled the (interacting) single-particle
density of states g(ε), to be discussed in the following section.
With all occupation numbers ni recorded at each time step, we
could furthermore study the temporal evolution of the two-time
carrier density autocorrelation function; see Sec. III.

In the following, distances are measured relative to the
mean separation a0 between sites, and energies as well as
temperature scales are given in units of the typical energy
scales e2/(κa0) and 2ε0K0(a0/λ), where we used λ/a0 = 8.
As in Refs. [31,32], we set ξ = a0; we have in fact explored
other values for ξ as well, 0.5a0 and 2a0, but (within the
applicability range of the model) found that the ensuing
changes can simply be absorbed into a renormalized overall
timescale τ0. Initially, KN particles were placed at random on
the N = Ld available sites to mimic a quench from a very high
temperature. Then the system was evolved for typically 106

MCS at temperature T with the Monte Carlo dynamics defined
by the generalized Metropolis rate (3). We employed periodic
boundary conditions, whence the potential due to charges
outside the simulation cell was calculated by mirroring it on
the 2d adjacent faces. The minimum of the distances between
any given sites i and j and the latter’s 2d mirror images in
neighboring cells are used to compute the interaction potential
V (rij ).

We performed simulations for different system sizes 8 �
L � 32, with temperatures in the range 0.001 � T � 0.1, and
filling fractions in the interval 0.25 � K � 0.5 (equivalent
to 0.5 � K � 0.75 due to particle-hole symmetry). Running
the simulations with various system sizes L, we noticed no
measurable finite-size effects; for example, deviations between
the obtained density autocorrelations at L = 10 and L = 16
were less than 2% [46]. For each configuration (temperature T ,
filling fraction K , etc.), the data were averaged over at least
1000 independent simulation runs. Temperatures larger than
0.03 turned out not to be useful for our study of aging processes
since equilibrium was then reached far too quickly. In contrast,
for T < 0.01, the kinetics slowed down too much to gather
statistically significant data within computationally reasonable
time frames. As will be discussed in more detail below, the
dynamics also freezes out within the numerically accessible
simulation times for filling fractions K < 0.4 (or K > 0.6).

C. Coulomb gap properties

The long-range interactions quickly generate strong corre-
lations among the charged particles. As they maximize their
distances subject to the availability of randomly placed pinning
sites, in equilibrium a pronounced soft Coulomb gap forms at
zero temperature in the (interacting) single-particle density
of states or distribution of site energies g(ε) [2]. Following
Efros and Shklovskii’s insightful mean-field argument, this
interacting density of states vanishes precisely at the chemical
potential μc that separates the low-energy filled sites from

the more energetic empty sites, g(μc) = 0. For a power-law
repulsive interaction potential V (r) ∼ r−σ , the mean-field
analysis further predicts that, for σ < d,

g(ε) ∼ |ε − μc|γ (4)

vanishes algebraically near μc in d dimensions, with the pos-
itive gap exponent γ = (d/σ ) − 1 [2,11]. Beyond mean-field
theory, this expression still represents a lower bound for γ [26].
Indeed, Monte Carlo simulations typically yield gap exponent
values that exceed the mean-field estimate [11,14,16,17,19],
especially in the absence of random on-site disorder (ϕi = 0).
For example, in their very detailed numerical Coulomb glass
study with up to N = 125 000 and 40 000 sites in d = 3 and
d = 2 dimensions, Möbius and Richter measured γ = 2.6 ±
0.2 and γ = 1.2 ± 0.1, respectively [19]. More recent studies,
however, found gap exponents much closer to the mean-field
predictions [24,25]. Tunneling experiments on the nonmetallic
semiconductor Si:B samples yielded a gap exponent γ ≈
2.2 [4], while transport measurements on ultrathin Be films
were compatible with the mean-field value p = 1/2, i.e.,
γ = 1 for d = 2 [5]. For the two-dimensional Bose glass with
essentially logarithmic repulsion, the mean-field argument
predicts an exponential gap (σ → 0); in contrast, the data in
Ref. [11] from zero-temperature simulations with N = 400
sites could best be fit with power laws and (perhaps just
effective) gap exponents that increase with decreasing filling
fraction K , ranging from γ ≈ 2.2 for K = 0.4 to γ ≈ 2.9 for
K = 0.1. Indeed, correlation effects should be strongest far
away from half filling, since the charged particles are then
least affected by the Poissonian spatial disorder.

In our Monte Carlo simulations performed in the absence
of a background random site energy distribution, the Coulomb
gap in the single-particle density of states forms very quickly
and appears fully formed within ∼50 . . . 100 MCS [37,46]. To
make contact with previous work, we measured the interacting
density of states or distribution of site energies and obtained
approximate values for the effective gap exponents γ from best
linear fits near the chemical potential μc in double-logarithmic
plots. In Fig. 1(a), we display results for the temperature
dependence of the shape of g(ε) for the three-dimensional
Coulomb glass with repulsive 1/r interaction potential at
half filling. The graphs for T = 0.001 and T = 0.01 are
indistinguishable within the statistical errors. At elevated
temperature T = 0.1, g(μc) attains a nonzero value; when
the temperature scale reaches the width of the soft gap in the
density of states, the Coulomb gap begins to fill owing to
thermal excitations that wash out the sharp boundary between
filled and empty energy levels. As shown in Fig. 1(b), the
three-dimensional gap exponent γ (T ) becomes independent
of T once thermal excitations can be neglected. In contrast, in
two dimensions [Fig. 1(c)], we observe a stronger temperature
dependence of the effective gap exponent. Extrapolating to
T → 0, our numerical values γ ≈ 2.5 ± 0.2 for d = 3 and
γ ≈ 1.2 ± 0.2 deviate from the mean-field prediction γ =
d − 1 (for σ = 1) and are in good agreement with Ref. [19].
The displayed error bars merely represent the statistical errors
which vary with the number of independent realizations used
for each parameter set.

In Fig. 2, we study the dependence of the soft Coulomb
gap on the filling fraction K . Moving away from half filling,
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(a)

(b)

(c)

FIG. 1. (Color online) (a) Density of states g(ε) for the three-
dimensional Coulomb glass (L = 8, N = 512 sites) at half filling
K = 0.5, at temperatures T = 0.001 (black), T = 0.01 (green or
gray), and T = 0.1 (light blue or light gray). (b) Corresponding
(effective) gap exponents γ (T ) vs temperature; (c) gap exponent
γ (T ) in two dimensions (L = 16, N = 256, K = 0.5). The dashed
lines represent the mean-field prediction γ = d − 1.

g(ε) naturally becomes increasingly asymmetric. Yet near its
minimum at μc, the curves in Fig. 2(a) collapse onto each
other, resulting in gap exponents γ (K) that are essentially
independent of the total charge carrier density K , at least in
the small range 0.4 < K � 0.5.

Next we explore the distribution of site energies in
the two-dimensional Bose glass with long-range essentially
logarithmic repulsion (λ = 8a0). As is evident in Fig. 3(a),
the emerging soft correlation gap is wider by a factor of five
as compared to the data for the Coulomb 1/r interaction.
Therefore, even at T = 0.1 no thermal effects can be visibly
discerned. Yet measuring the effective gap exponent reveals
an even steeper temperature dependence of γ (T ) than for
the two-dimensional Coulomb glass [compare Fig. 3(b) with
Fig. 1(c)], extrapolating to γ ≈ 3.5 ± 0.1 as T → 0 at half
filling K = 1/2, a considerably larger value than reported
in Ref. [11]; in that study, however, no neutralizing charge
background was employed, i.e., K was set to zero in the
Hamiltonian (2). As depicted in Fig. 4, the dependence of

(a)

(b)

(c)

FIG. 2. (Color online) (a) Coulomb-glass density of states g(ε) in
three dimensions (L = 8, N = 512 sites) at temperature T = 0.02,
for various filling fractions K = 0.5, 0.468 75, 0.4375, and 0.406 25
(from bottom to top on right). (b) Corresponding (effective) gap
exponents γ (K) vs filling fraction; (c) gap exponent γ (K) in two
dimensions (L = 16, N = 256, T = 0.02); the dashed lines show
the mean-field values γ = d − 1.

the effective gap exponent γ (K) on the filling fraction K is
rather weak within the interval 0.4 < K � 0.5.

III. NONEQUILIBRIUM RELAXATION
AND AGING SCALING

We now proceed to our numerical results for nonequilib-
rium relaxation features of the Coulomb and Bose glasses
initially prepared in a random, high-temperature state, as
measured in the two-time density autocorrelation function. We
first discuss the general relaxation scenario and the two distinct
aging scaling fits we implemented, and then we provide the
resulting scaling exponent values.

A. Two-time density autocorrelation function

In our initially entirely random distribution of charge
carriers in the system, inevitably many particles are placed
in close vicinity. They strongly repel each other and are
fast displaced to energetically much more favorable sites.
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(a)

(b)

FIG. 3. (Color online) (a) Density of states g(ε) for the two-
dimensional Bose glass (L = 16, N = 256 sites) for K = 0.5, at
temperatures T = 0.001 (black), T = 0.01 (green or gray), and
T = 0.1 (light blue or light gray). (b) Corresponding (effective) gap
exponents γ (T ) vs temperature.

Correspondingly, the soft-correlation-induced Coulomb gap in
the density of states develops quite rapidly within 50 . . . 100
MCS. Subsequently, subtle spatial rearrangements take place
that further reduce the total energy, as becomes clearly visible
in the temporal evolution of the energy-landscape contour plots

(a)

(b)

FIG. 4. (Color online) Bose glass density of states g(ε) in two
dimensions (L = 16, N = 256 sites) at temperature T = 0.02, for
filling fractions K = 0.5, 0.468 75, 0.4375, and 0.406 25 (from
bottom to top on right). (b) Corresponding (effective) gap exponents
γ (K) vs filling fraction.

shown in Fig. 5. These processes proceed on considerably
longer timescales; yet in this intermediate regime the system
retains memory of its initial configuration, and time translation
invariance is broken, in contrast with the asymptotic stationary
equilibrated state [44,45].

In order to monitor the slow structural relaxation kinetics in
the Coulomb and Bose glasses, we compute the (normalized)
two-time carrier density autocorrelation function [31,32,37]

C(t,s) = 〈ni(t)ni(s)〉 − K2

K(1 − K)
=

∑
i ni(t)ni(s) − K2N

K(1 − K)N
, (5)

where s indicates the elapsed time after the high-temperature
quench, when the Monte Carlo simulation runs are initiated,
while t > s refers to a later “measurement time” when the
temporal correlations are obtained relative to the “waiting
time” s. Since n2

i = ni and
∑

i ni = KN , at equal times
C(s,s) = 1.

Representative data from our simulation runs are displayed
in Fig. 6. The linear plot of C(t,s) vs the measurement
time t in Fig. 6(a) shows that even after 106 MCS no
stationary, equilibrium state has been reached yet. Graphing
the same autocorrelation data against the time difference
t − s in Fig. 6(b) on a logarithmic scale establishes that time
translation invariance is indeed manifestly broken. In accord
with the data of Ref. [31], we observe that, following a fast
initial decay towards an almost flat quasi- “plateau” region, the
graphs for different waiting times s become distinct. Indeed,
the longer “aged” runs for larger waiting times remain in
an intermediate state for more extended time periods before
the density autocorrelation ultimately resumes its slower
relaxation towards zero. In analogy with the phenomenology
in structural glasses (see, e.g., Ref. [47]), we term these two
distinct relaxation regimes visible in our data “β” and “α
relaxation,” respectively. In the following, we address the
power-law scaling for the slow density relaxation processes
in the α relaxation regime.

B. Dynamical aging scaling

We consider the aging scaling limit, where both s,t 
 τ0

(or any other microscopic timescale), and in addition t 
 s,
i.e., t − s 
 τ0. In the α relaxation regime, time translation
invariance does not hold, whence the carrier density two-time
autocorrelation function (5) does not just depend on the time
difference t − s, but on both t and s separately. Following the
notation in Ref. [45], we posit the following general aging
scaling form:

C(t,s) = s−bfC(t/sμ), (6)

with scaling exponents b � 0 and μ � 1. In many simple,
analytically tractable situations, characterized by a single
algebraically growing length scale L(t) ∼ t1/z with dynamic
scaling exponent z � 1, one in fact obtains aging scaling laws
of the form (6) with μ = 1, often referred to as “full aging.” In
the limit t/s → ∞, in this situation one furthermore expects
the scaling function to follow the algebraic decay

fC(x) ∼ [L(t)/L(s)]−λC ∼ (t/s)−λC/z, (7)

with the autocorrelation exponent λC � 0. Prominent ex-
amples that display this full-aging scaling scenario are the
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(a) (b)

FIG. 5. (Color) Energy landscape contour plots for the Coulomb glass with 1/r potential in d = 2 dimensions (L = 16, K = 1/2, T = 0.02)
after (a) 10 MCS and (b) 106 MCS.

purely relaxational dynamics in the kinetic Ising model in one
dimension [48,49], time-dependent Ginzburg–Landau models
quenched to the critical point [50,51], and coarsening of the
spherical model A in the low-temperature phase, both with
short-range [52,53] and long-range [54–56] interactions.

In Fig. 7(a), we demonstrate scaling collapse of the two-
dimensional Coulomb glass density autocorrelation data from
Fig. 6 (L = 16) utilizing the full-aging scaling form (6)
with μ = 1. Focusing on the data for t − s in the range
3 × 104 . . . 106 MCS, and following the interpolation method
described in Ref. [57], we obtain optimal collapse onto a single
master curve for b = 0.032 ± 0.007. From the asymptotic

(a)

(b)

FIG. 6. (Color online) Nonequilibrium relaxation and aging for
the carrier density autocorrelation function (5) in the two-dimensional
Coulomb glass (for L = 16, K = 1/2, T = 0.02). (a) C(t,s) vs t for
various waiting times s = 100, 200, 500, 1000, 2000, 5000, 10 000
(from bottom to top); (b) same data plotted vs t − s on a logarithmic
scale.

long-time decay we furthermore infer λC/z ≈ 0.10 ± 0.02 for
T = 0.02 at half filling K = 1/2 [37].

Alternatively, one may impose b = 0 in Eq. (6) and instead
work with a nontrivial scaling exponent μ < 1; this “subaging
scaling” is frequently employed in the spin glass literature [45].
As purely phenomenological fits, both scaling ansatz are in
essence equivalent. The subaging scaling collapse of our data
for the two-dimensional Coulomb glass is depicted in Fig. 7(b),
best fit with the value μ = 0.66 ± 0.04 [37]. Similar scaling

(a)

(b)

FIG. 7. (Color online) Aging scaling collapse for the density
autocorrelation function (5) in the two-dimensional Coulomb glass
(for L = 16, K = 1/2, and T = 0.02), obtained for the set of waiting
times s = 100, 200, 500, 1000, 2000, 5000, 10 000 (from bottom to
top): (a) full-aging scaling according to Eq. (6) with μ = 1;
(b) subaging scaling, Eq. (6), with b = 0.
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(a)

(b)

FIG. 8. (Color online) Aging scaling collapse for density auto-
correlations as in Fig. 7, but now for the three-dimensional Coulomb
glass (L = 8, K = 1/2, and T = 0.02; waiting times s are the same
as in Figs. 6 and 7).

properties are obtained for the three-dimensional Coulomb
glass as well as for the two-dimensional Bose glass. Figures 8
and 9 show a characteristic example for each of these two
cases.

C. Coulomb and Bose glass aging scaling exponents

We collected data for the two-time density autocorrelation
function for the Coulomb glass model in two (with L = 16,
N = 256) and three dimensions (L = 8, N = 512), as well
as for the two-dimensional Bose glass with essentially loga-
rithmic repulsion (L = 24, N = 576) at various temperatures
and filling fractions. We then determined the associated
scaling exponents in the long-time-aging regime following
the procedures outlined in the previous section. (The resulting
scaling plots can be found in Ref. [46].)

The thus-obtained full-aging scaling exponents b and
λC/z [see Eq. (6) with μ = 1 and Eq. (7)] are compiled in
Figs. 10(a) and 10(b) at half filling K = 1/2 as functions of
temperature T (see also Refs. [31,32]). As one would expect,
the nonequilibrium relaxation from the randomized initial
state slows down drastically upon lowering the temperature,
here clearly reflected in successively smaller values for b

and λC/z as T is reduced from 0.03 to 0.01. Indeed, for
even lower temperatures T < 0.01, our systems basically
freeze in and we could not obtain statistically meaningful
data for the ensuing extremely rare relaxation events. At
T = 0.01, we find b = 0.001 ± 0.001 for the two-dimensional
Coulomb glass [see the left panel in Fig. 10(a)], which is

(a)

(b)

FIG. 9. (Color online) Aging scaling collapse for the density
autocorrelations as in Fig. 7, for the two-dimensional Bose glass
with L = 24, K = 1/2, and T = 0.02; waiting times s are the same
as in Figs. 6 and 7.

borderline consistent with the recently developed mean-field
theory for aging relaxation in disordered electron glasses
that predicts logarithmic scaling [33,34,36,38]. However, in
three dimensions we measure b = 0.006 ± 0.001 at our lowest
accessible temperature T = 0.01 (center panel), while for
the two-dimensional Bose glass b = 0.0009 ± 0.0003 (right
panel). The associated autocorrelation to dynamic exponent
ratios at T = 0.01 are λC/z = 0.036 ± 0.005 (Coulomb glass,
d = 2), λC/z = 0.047 ± 0.002 (Coulomb glass, d = 3), and
λC/z = 0.026 ± 0.003 (Bose glass, d = 2), see Fig. 10(b).
Note that relaxation processes in the Bose glass generically
happen much slower as compared to the Coulomb glass (in
d = 2 and d = 3 dimensions), as a consequence of the much
shallower soft gap in the density of states; see Figs. 2(a)
and 4(a).

Our corresponding results from the alternative subaging
scaling analysis, Eq. 6 with b = 0, are plotted in Fig. 10(c).
Note that the drastic slowing down of the relaxation processes
with reduced temperature now becomes apparent as a marked
increase of the subaging scaling exponent μ, which almost
approaches 1 for the two-dimensional Coulomb glass at T =
0.01. At this lowest temperature and at half filling K = 1/2,
our data yield μ = 0.96 ± 0.008 and μ = 0.86 ± 0.05 for the
Coulomb glass in two and three dimensions, respectively, and
μ = 0.9 ± 0.0 for the two-dimensional Bose glass.

Intriguingly, our data reveal that the aging scaling exponents
also depend on the total charge carrier density K . As made
evident in Fig. 11, the nonequilibrium relaxation processes
from the initial high-temperature configurations proceed in-
creasingly slower as the filling fraction K is tuned away from
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(a)

(b)

(c)

FIG. 10. (Color online) Aging scaling exponents at K = 1/2 as
functions of T for the Coulomb glass (1/r interaction) in two
(left panels) and three dimensions (center), and for the Bose glass
(with logarithmic repulsion, right). (a) Full-aging scaling exponent b,
Eq. (6) with μ = 1, (b) autocorrelation decay exponent λC/z, Eq. (7),
(c) subaging exponent μ, Eq. (6) with b = 0.

K = 1/2. These plots list our results measured at T = 0.02
for K = 0.406 25, 0.4375, 0.468 75, and K = 0.5 for the
Coulomb glass model in two (left panels) and three dimensions
(center panels), as well as in addition for K = 0.375 for the
two-dimensional Bose glass system; but recall that, owing
to particle-hole symmetry, the same data apply for both
K = 0.5 ± k above and below half filling. At the lowest
filling fractions we investigated, for the two-dimensional
Coulomb and Bose glasses, we already obtain unphysical
values b < 0 and correspondingly μ > 1: These systems, at
K = 0.406 25 and 0.375, respectively, are already frozen in on
the time domain accessible to our Monte Carlo simulations. We
are hence limited to the carrier density range 0.4 < K < 0.6.

Within the full-aging scaling analysis, Figs. 11(a) and 11(b),
it is apparent that the Bose glass exponents display a much
weaker dependence on the filling fraction than is visible
for either the two- or three-dimensional Coulomb glass. We
tentatively attribute this observation to the considerably wider
soft gap in the density of states that emerges for the logarithmic
interaction potential as compared with the Coulomb 1/r

repulsion [compare Figs. 2(a) and 4(a)]. In the long-time
aging scaling regime, spatial rearrangements only redistribute
energy levels deep inside this Coulomb gap, which attains
a much more K-independent shape and still remains very
shallow for the Bose glass in, e.g., the interval |ε − μc| � 0.5,

(a)

(b)

(c)

FIG. 11. (Color online) Aging scaling exponents at T = 0.02 as
functions of K for the Coulomb glass (1/r interaction) in two
(left panels) and three dimensions (center), and for the Bose glass
(with logarithmic repulsion, right). (a) Full-aging scaling exponent b,
Eq. (6) with μ = 1, (b) autocorrelation decay exponent λC/z, Eq. (7),
(c) subaging exponent μ, Eq. (6) with b = 0.

for which the effects of modified filling fractions already
become clearly discernible in the Coulomb glass. Remarkably,
though, our data yield a noticeable dependence of the subaging
scaling exponent μ even for the Bose glass with logarithmic
interactions.

Consequently, the aging scaling exponents in the Coulomb
and Bose glass appear to be nonuniversal, depending both
on temperature and filling fraction, aside from dimension-
ality and the form of the long-range repulsive potential.
Nonuniversal aging scaling has also been observed in other
disordered systems, as for example the two-dimensional
random-site [58] and random-bond [59,60] Ising models or
the three-dimensional Edwards–Anderson spin glass with a
bimodal distribution of the coupling constants [60,61], where
some of the scaling exponents were found to depend on
temperature and/or the disorder. Our present work therefore
provides additional interesting examples of disordered systems
that display nonuniversal aging exponents.

IV. SUMMARY AND CONCLUSIONS

We have carefully investigated nonequilibrium relaxation
processes and aging scaling of the Coulomb glass model
in two and three dimensions and of the Bose glass system
in two dimensions through Monte Carlo simulations at low
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temperatures. We confirm that the long-time dynamics in the
α relaxation regime for the two-time autocorrelation function
can be described by the simple general aging scaling form (6).
We have employed either full-aging or subaging simplified
scaling forms and assess that neither version appears to provide
substantially superior scaling collapse, although on physical
grounds we tend to prefer full-aging scaling described by
Eq. (6) with μ = 1 and Eq. (7). The extracted aging scaling
exponents depend on the filling fraction and temperature, in
addition to dimensionality and form of the repulsive interaction
potential, and are hence not universal. Moreover they follow
a common trend: We observe that, as either the temperature
decreases or the charge carrier density deviates more from half
filling, the aging exponents reflect considerably-slowed-down
relaxation kinetics.

A series of recent studies [58,60,62] has shown that in
disordered coarsening systems governed by a single length
scale L(t) one typically encounters rather complicated growth
laws, characterized by a crossover from a transient power-law
growth to asymptotically logarithmic growth. Using this length

L(t) as variable in the aging scaling analysis reveals that the
full-aging scenario prevails in these systems. It it an interesting
question whether a similar crossover between different growth
regimes also exists in the Coulomb and Bose glasses, for which
we would tentatively interpret L(t) to describe the emerging
spatial (anti) correlations as the mutually repelling particles
relax towards more energetically favorable sites. One way
to extract a time-dependent length is through an analysis of
the spacetime correlation function. Computing this correlation
function is a challenging task for our off-lattice model with
long-range repulsive interactions. Because of the importance
of this length in the nonequilibrium relaxation process, we
plan to come back to this issue in the future.
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[19] A. Möbius, M. Richter, and B. Drittler, Phys. Rev. B 45, 11568

(1992).
[20] E. R. Grannan and C. C. Yu, Phys. Rev. Lett. 71, 3335 (1993).
[21] D. Menashe, O. Biham, B. D. Laikhtman, and A. L. Efros,

Europhys. Lett. 52, 94 (2000).
[22] D. Menashe, O. Biham, B. D. Laikhtman, and A. L. Efros, Phys.

Rev. B 64, 115209 (2001).

[23] M. Müller and S. Pankov, Phys. Rev. B 75, 144201 (2007).
[24] B. Surer, H. G. Katzgraber, G. T. Zimanyi, B. A. Allgood, and

G. Blatter, Phys. Rev. Lett. 102, 067205 (2009).
[25] M. Goethe and M. Palassini, Phys. Rev. Lett. 103, 045702

(2009).
[26] A. L. Efros, B. Skinner, and B. I. Shklovskii, Phys. Rev. B 84,

064204 (2011).
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