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Finite-size scaling analysis of pseudocritical region in two-dimensional continuous-spin systems
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At low temperatures, the two-dimensional continuous-spin systems exhibit large correlation lengths. Some
of them show the Berezinskii–Kosterlitz–Thouless-like transitions, and some others show pseudocritical
behaviors for which correlation lengths are extremely large but finite. To distinguish pseudo and genuine
critical behaviors, it is important to understand the nature of spin-spin correlations and topological defects
at low temperatures in continuous-spin systems. In this paper, I develop a finite-size scaling analysis which is
suitable for distinguishing the critical behavior and its applications to the two-dimensional XY , Heisenberg, and
RP2 models.
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I. INTRODUCTION

The finite-size-scaling (FSS) theory [1] has long been an
indispensable paradigm for accurate analyses in computational
physics. Using only a few data sets, the FSS theory enables
us to infer the dependence of physical quantities on system
size. In the field of phase transitions and critical phenomena in
particular, estimates of critical exponents and central charges
by FSS analyses provide approaches to grasp outstanding
issues. While the FSS theory has provided powerful tools for
investigating phase transitions and critical phenomena, there
are intricate issues that give ambivalent results when we apply
FSS analyses. One of the intricate issues is to distinguish
pseudo phase transitions in systems that show extremely large
but finite correlation lengths at finite temperatures. In such
systems, we could erroneously recognize disordered phases
as critical phases because conventional FSS analyses indicate
divergence of the correlation length and scale-invariant be-
havior below their pseudocritical temperatures. In fact, such
pseudocritical behavior would be found as fictitious were
meticulous FSS analyses executed. But these signs that the
system is in pseudocritical region are usually very subtle even
when we execute extensive simulations.

In view of the pseudocritical behavior, continuous-spin
models in a two-dimensional (2D) system give suitable test
grounds. While the Mermin–Wagner–Hohenberg theorem [2]
proved there is no true long-range order in the 2D continuous-
spin systems with short-range bilinear interactions, the 2D
XY model shows the Berezinskii–Kosterlitz–Thouless (BKT)
transition [3,4] in which the correlation length diverges.
Whereas the scenario of the BKT transition, the Z-vortex
binding-unbinding mechanism, is well established, the exis-
tence of the criticality in the 2D Heisenberg model is not
conclusive. Although the 2D Heisenberg model does not
exhibit a transition at a finite temperature in the majority view,
there are also reasons for skepticism about the absence of the
transition [5–7]. On the other hand, a transition in the 2D
RP2 model (also known as the Lebwohl–Lasher model [8])
is widely accepted [9–12]. Since the topological point defects
caused by the Z2 vortices are stable in the 2D RP2 model
[13,14], it is probable that the topological transition could take
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place at a finite temperature as in the 2D XY model. However,
the transition in the 2D RP2 model is recently questioned from
the point of view of the scaling theory and behavior of the
order parameter [15,16]. The origin of the above contradicting
results in the 2D Heisenberg and RP2 model is their extremely
large correlation length at low temperatures. Therefore, the
development of a new FSS analysis that works properly in the
pseudocritical region is highly desired.

The present paper gives a remedy for the above difficulty
in FSS analyses. Since the remedy is a simple combination
of an FSS analysis proposed by Caracciolo et al. [17] and
an analytical form of the two-point correlation function, it
is applicable to a wide range of problems. This paper is
organized as follows: In Sec. II, the FSS analysis is explained,
and a scaling function for systems that show a large but
finite correlation length is given. The applications of the
FSS analysis to the 2D continuous-spin systems, the 2D XY ,
Heisenberg, and RP2 models, are given in Sec. III. Section IV
is devoted to the summary and discussion.

II. FIXED-SCALE-FACTOR FINITE-SIZE-SCALING
ANALYSIS

In this section, we explain a FSS analysis proposed by
Caracciolo et al. [17] [hereafter we call this FSS analysis
the fixed-scale-factor FSS (FSF-FSS) analysis] and give an
asymptotic scaling function by combining an analytic form
of the two-point correlation function with the FSS analysis.
The asymptotic scaling function gives a criterion for judging
a system as whether the system is in the critical region or in
the pseudocritical region.

The essential point of the FSF-FSS analysis is to calculate
the ratio of an observable O for different system sizes at the
same temperature. According to the FSS theory, the ratio can
be written as follows:

O (β,sL)

O (β,L)
= FO(ξ (β,L) /L) + O(ξ−ω,L−ω), (1)

where L, ξ , ω, and β denote the linear size of the system, the
correlation length, the correction-to-scaling exponent, and the
inverse temperature T (the Boltzmann constant kB is set to
unity). The parameter s (>1) in Eq. (1) is a fixed scale factor,
and FO is a scaling function. We call the function FO the
FSF-FSS function. The correlation length, ξ (β,L), is estimated
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by the second-moment correlation length [18],

ξ (β,L) = 1

2 sin (�k/2)

√
K (0)

K (�k)
− 1, (2)

where the function

K (k) = 1

N

∑
i,j

〈S(r i) · S(rj )〉eik·r ij (3)

is the structure factor for an order parameter S. Here, �k =
2π/L, and N is the number of spins. The angle brackets
〈· · · 〉 denote a thermal average. The behavior of the FSF-FSS
function is categorized by the critical inverse temperature βc

and β as follows:

FO(ξ (β,L) /L) =
⎧⎨
⎩

s�−(β,L) (for β > βc)
s�O (for β = βc)
s�+(β,L) (for β < βc) ,

(4)

where �O is the scaling dimension of the observable O,
and �−(β,L) and �+(β,L) are monotonic functions of the
system size L around the critical temperature. The relation
above is especially powerful when we choose an observable
O whose �O is self-evident. For example, a critical point
is easily identified by a point where FO(ξ (βc,L)/L) = 1
(�O = 0), when we choose the Binder parameter [19] as
the observable O. Or it can be identified by a point where
FO(ξ (βc,L)/L) = s (�O = 1) when the correlation length is
chosen as the observableO. This fact would be underestimated
when the phase transition is clearly observed. However, the
explicit criterion, e.g., FO(ξ (βc,L)/L) = 1, is an indispens-
able advantage when a severe crossover behavior is observed
around a phase transition.

Although the FSF-FSS analysis is quite useful, the analysis
of marginal critical phenomena like the BKT transition is still
difficult. To clarify the difficulty in the FSF-FSS analysis,
we show the asymptotic form of FO below. For calculating
convenience, we choose the correlation ratio C [20] as an
observable O:

C (β,L) = G (β,L/2; L)

G (β,L/4; L)
, (5)

where G(β,r; L) is the two-point correlation function of the
distance r in the system size L. When the system is in a
genuine critical region, we obtain FC = 1, i.e., �C = 0, by
the power-law form of the two-point correlation function,
G(βc,r) ≈ r−d+2−η for r � L. Here, d is the dimensionality
of the system, and η is the critical exponent of the correlation
function. However, when the system is in a pseudocritical
region, the asymptotic formula of the two-point correlation
function [21] is written by

G (β,r) ≈ e−κr

rd−2+η
, (6)

where κ is a parameter that is proportional to the inverse of the
correlation length, 1/ξ (β). While this two-point correlation
function behaves like a power function (≈r−d+2−η) in the
r � κ−1 region, it decays exponentially in the r � κ−1 region.
Using the asymptotic formula [22], the FSF-FSS scaling

function is given by

FC(ξ (β,L) /L) = exp

{
− (s − 1) κ (β) L

4

}
. (7)

Therefore, it becomes difficult to distinguish the between a
genuine (κ = 0) and a pseudocritical region (κ > 0) from the
behavior of FC when a system approaches a “critical” region
(κ � 0). However, Eq. (7) also says that FC never equals
unity when the correlation length does not diverge. For the
convenience of observing FC approaching unity, we define a
function

UC(ξ (β,L) /L) = 1 − FC(ξ (β,L) /L). (8)

In the asymptotic region, UC behaves like

UC(ξ (β,L) /L) ≈ (s − 1) κ (β) L

4
. (9)

Since the parameter κ is proportional to the inverse of the
correlation length, we can read from the curve of UC whether
the correlation length diverges or not. That is, UC reaches
zero at a genuine critical point, so that ln UC is recognized
as a concave function; κ(β) in a pseudocritical region never
diverges at finite temperature, so that ln UC is recognized as a
convex function. In the next section, we show the usefulness
of this simple criterion.

III. RESULTS

In this section, we show the FSF-FSS functions FC and UC
and analyze the criticality of the 2D continuous-spin systems.
The 2D XY model is employed as an example which possesses
the genuine critical region, and the 2D Heisenberg model
is employed as an example which shows the pseudocritical
region. The Hamiltonian of these models is written as

H = −J
∑
〈i,j〉

Si · Sj , (10)

where J is the ferromagnetic exchange-coupling constant
(J > 0) and Si is a spin variable at site i. In this paper, we fix
the constant J to unity. The length of the vector S is also fixed to
unity, and the vector has two-dimensional (three-dimensional)
degrees of freedom for the XY (Heisenberg) model. The
summation in Eq. (10) runs over all nearest-neighbor sites.
To examine the usefulness of the FSF-FSS function UC , we
choose the 2D RP2 model as a system which shows a nontrivial
“critical” behavior. The RP2 model resembles the Heisenberg
model but the interaction is biquadratic,

H = −J
∑
〈i,j〉

(Si · Sj )2. (11)

In the quite-low-temperature region, the RP2 and the Heisen-
berg models are described by the same spin-wave formalism.
Therefore, in the view of the point, the 2D RP2 model would
not exhibit the genuine critical region. But, in the view of
topological theory [13,14], the 2D RP2 model possesses the
nonremovable line singularities, there might be a BKT-like
critical point. In the BKT-like critical region, if it exists, the
2D RP2 model exhibits a (quasi) long-range order in the low
temperatures. To study the nematic order in the RP2 model,
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we measure the largest eigen value λmax of the nematic tensor
order parameter Q,

Q = 1

N

N∑
i=1

⎛
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⎞
⎟⎠. (12)

The thermal average of the nematic order parameter 〈m〉 is
defined by

〈m〉 = 3
2

(〈λmax〉 − 1
3

)
. (13)

By this definition, 〈m〉 is zero in a disordered phase and unity
in a fully ordered phase.

Physical quantities are calculated by Monte Carlo (MC)
simulations. We executed MC simulations on the square lattice
with the periodic boundary condition for all the three spin
systems. The Swendsen–Wang multicluster updates [10,23,24]
are employed for spin updates. For thermalization of the
systems, at most initial 3.2 × 105 MC steps are discarded
depending on the system size. The following 8 × 105 MC
steps are allotted to measure physical quantities. In order to
drive a system to its thermal equilibrium state as quickly as
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FIG. 1. (Color online) (a) FSF-FSS plot of correlation ratio for
2D XY model. Error bars are smaller than size of marks. (b) A
semilogarithmic plot of an FSF-FSS function UC for the 2D XY

model. Since ln UC is a concave function, UC reaches zero at the
critical temperature.
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FIG. 2. (Color online) (a) FSF-FSS plot of correlation ratio for
2D Heisenberg model. Error bars are smaller than size of marks.
(b) A semilogarithmic plot of an FSF-FSS function UC for the 2D
Heisenberg model. Since ln UC is a convex function in a sufficiently
large ξ (L)/L region, UC never reaches zero at a finite temperature.

possible, we chained MC simulations from the highest to the
lowest temperature. Ten independent samples are simulated to
obtain statistical errors. The fixed scale factor s is set to two
for the entire calculation of FSF-FSS functions.

Figure 1(a) shows the FSF-FSS function of the correlation
ratio for the 2D XY model. Converging to unity of the function
in ξ/L > 0.7 indicates that the 2D XY model has the genuine
critical region. To confirm the existence of the critical region,
we plot the FSF-FSS function UC in Fig. 1(b). The function
ln UC of the 2D XY model is a concave function, and the func-
tion FC converges to unity in the range of 0.8 � ξ/L < 0.9.

Figure 2(a) shows the FSF-FSS function of the correlation
ratio for the 2D Heisenberg model. The FSF-FSS function
seems to converge to unity at sufficiently large ξ/L, but
the logarithmic plot of UC denies the possibility of the
convergence. The function ln UC of the 2D Heisenberg model
is a convex function in a sufficiently large ξ/L region, so that
we conclude the function UC never reaches zero at a finite
temperature.

The application to the 2D RP2 model demonstrates that the
FSF-FSS analysis is quite useful for distinguishing the genuine
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FIG. 3. (Color online) (a) FSF-FSS plot of correlation ratio for
2D RP2 model. (b) A semilogarithmic plot of a FSF-FSS function UC
for the 2D RP2 model. Since ln UC is a convex function in a sufficiently
large ξ (L)/L region, UC never reaches zero at a finite temperature.
The slope abruptly changes at the inflection point ξ×/L (∼0.6). The
solid line is a guide to the eye.

critical behavior from that of the pseudocritical behavior.
To estimate the correlation length ξ (β,L) in Eq. (2) and
the correlation ratio C in Eq. (5), spin-spin correlations in
biquadratic form [i.e., (Si · Sj )2] are used, while they are
in bilinear form [i.e., (Si · Sj )] for the XY and Heisenberg
models. Since Fig. 3(a) exhibits a smooth approach toward
unity, one might deduce that the 2D RP2 model possesses
a genuine critical region. But the logarithmic plot of UC
clearly denies the existence of the genuine critical region. The
rather large error bars in Fig. 3 compared with Figs. 1 and 2
originate from the difference in the computational method.
While we utilize improved estimators [25,26] constructed
by Swendsen–Wang clusters for the XY and Heisenberg
models, bare observables are calculated for the RP2 model.
Because Swendsen–Wang clusters in the RP2 model do not
directly relate to the spin-spin correlation, utilization of
improved estimators is not sufficiently effective. Therefore,
bare observables are chosen in the RP2 model.

Whereas both of the 2D Heisenberg and the 2D RP2 models
possess the pseudocritical region, the behavior of ln UC is
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FIG. 4. (Color online) FSS plot of correlation ratio C for 2D RP2

model.

not the same. The slope of the ln UC for the 2D Heisenberg
model is smooth in all the range of ξ/L, but the slope of
ln UC for the 2D RP2 model abruptly changes at the inflection
point ξ×/L (∼0.6). This abrupt change indicates that a mode
of development of the correlation length changes at ξ×/L.
This behavior has also been observed in the triangular-lattice
Heisenberg antiferromagnet [27–29] in which the topological
point defects caused by the Z2 vortices are stable as in the 2D
RP2 model. Assuming the correlation length develops as

ξ ≈ exp

[
c

(T − T×)ν

]
(14)

in the range of ξ < ξ×, the crossover temperature T×, the
exponent ν, and a nonuniversal constant c are estimated by
the FSS analysis combined with Bayesian inference [30]. It
should be mentioned that the correlation length ξ defined in
Eq. (14) is not equal to ξ (L) defined in Eq. (2). While ξ (L)
measures a correlation length in a finite system of size L, ξ is
an extrapolated correlation length in the thermodynamic limit.
In Fig. 4, we plot the scaled correlation ratio C. The estimated
values are T× = 0.3431 (2), ν = 0.247 (2), and c = 4.18 (4).
The results are consistent with preceding studies of the 2D
RP2 model [9–12]. It must be stressed that the FSS plot in
Fig. 4 does not mean the existence of the transition in the 2D
RP2 model, but the plot results from the subtle and persistent
crossover in the model. The FSS plot shows the data are well fit
except the data point L = 2048. Indeed, the fact erroneously
deduces results that claim the existence of the transition. This
difficulty in distinguishing the pseudocritical behavior from
that of genuine behavior can be overcome by using the FSF-
FSS analysis. That is, as shown in Figs. 1, 2, and 3, plotting the
FSF-FSS function UC , it can be seen whether the correlation
length diverges at a finite temperature or not.

The above FSF-FSS analysis shows that the critical behav-
ior in the 2D RP2 model is pseudocritical, while some studies
mention that the 2D RP2 model possesses the genuine critical
region. This discrepancy comes from a subtle and persistent
crossover in the model, which disguises the pseudocritical
region from that of the genuine. To see the crossover, we
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plot the distribution function of the nematic order parameter
[see Eq. (13)] at a couple of temperatures. The distribution
function P (L; m) of the order parameter m for the system size
L is scaled by the scaling function P̃ as

P (L; m) = LψP̃ ( (m − 〈m〉∞) Lψ ), (15)
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FIG. 5. (Color online) FSS plot of distribution functions of the
nematic order parameter m. (a) FSS plot at a high temperature (T =
1.0). (b) FSS plot at the crossover temperature (T = 0.3431). (c) FSS
plot at a low temperature (T = 0.3).

where 〈m〉∞ is the value of the order parameter at the
thermodynamic limit. In a critical region, the expected value
of 〈m〉∞ is zero, since 〈m〉 is proportional to L−ψ . At a high-
enough temperature, the distribution function P (L; m) should
be scaled by the Gaussian exponent (ψ = 1). Figure 5(a)
shows the scaled distribution function at a high temperature
(T = 1.0) for several system sizes. The estimated ψ and 〈m〉∞
are 0.994 (2) and −8.0 (9) × 10−6, respectively. The number
in parenthesis represents one standard error in the last digit.
Since both the temperature and the system sizes are finite,
the exponent ψ is a little smaller than unity. In a genuine
critical region, the exponent ψ is equal to β/ν, where β is the
critical exponent of the order parameter and ν is that of the
correlation length. When a system is in a pseudocritical region,
one might observe a pseudocritical exponent ψ . However,
the value of ψ converges to the Gaussian value when the
system size is sufficiently larger than the correlation length
[L � κ(β)−1]. Figure 5(b) shows scaled data at the crossover
temperature (T = T×), and Fig. 5(c) shows scaled data at a
low temperature (T = 0.3). Using the Bayesian inference,
pseudocritical exponents are estimated as ψ(T×) = 0.115 (6)
and ψ(0.3) = 0.08 (4), and the estimated order parameters are
〈m(T×)〉∞ = −0.211 (30) and 〈m(0.3)〉∞ = −0.249 (37). In
both temperatures, the distribution functions are scaled by a
single effective exponent ψ(T ) at a temperature T . In the
conventional FSS analysis, this fact means that the system is
in the critical region. However, because 〈m〉 is non-negative by
definition, observing negative 〈m〉∞ implies that the obtained
scaling plot of the distribution function is pathological. In fact,
as demonstrated by the FSF-FSS analysis above, the system
is in a disordered phase at finite temperatures, and therefore
the true value of ψ must be unity. The observation of the
pseudocritical exponents without any crossover indicates that
the crossover from the pseudocritical to the disordered phase is
quite subtle and persistent, at least in the range of L ∼ O(103).

IV. SUMMARY AND DISCUSSION

In this paper, we applied the FSF-FSS analysis [17] to three
two-dimensional continuous-spin systems and examined their
criticalities.

A merit of the FSF-FSS analysis is that we know the value
of the scaling function with a self-evident scaling dimension
�O at the critical point, FO(ξ (βc,L)/L), in advance [see
Eq. (4)]. In the conventional FSS analysis, we have to identify
the crossing point of dimensionless quantities (e.g., Binder
cumulant [19]) in the two-dimensional parameter space,
temperature T and an observable O, but the identification is
executed in the one-dimensional parameter space (temperature
T ) in the FSF-FSS analysis. This merit reduces uncertainties in
the FSS analysis and improves reliability of the FSS analysis.
In particular, in the case of the correlation length is finite but
considerably long: we obtained asymptotic formulas of the
scaling functions [Eqs. (7) and (9)] by assuming the correlation
function in the pseudocritical region [21]. The analysis of the
2D RP2 model is consistent with the obtained formulae (see
Fig. 3), so that we conclude the correlation length of the model
is finite at finite temperatures.

We also executed an FSS analysis of the distribution
function of the order parameter, and quite slow and persistent
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crossover from the pseudocritical to the disordered phase
was shown in pseudocritical exponents ψ and the value of
the order parameter at thermodynamic limit 〈m〉∞. If the
correction form is given by a multiplicative logarithmic form
as in the 2D XY model, the system size dependence of the
order parameter is written by 〈m〉 ∼ (ln aL)φL−ψ . Here a and
φ are constants. Then the effective pseudocritical exponent is
obtained as a function of L, ψ(L) = ψ∞ − φ/(ln aL), where
ψ∞ is the Gaussian exponent (ψ∞ = 1). In this study, we
cannot recognize a correction in the pseudocritical exponent.
To reveal the correction form could be helpful to understand the
roles of correlations of topological defects in the pseudocritical
region.

While the correlation length was finite at finite temperature,
we observed notable change in the development of the corre-
lation length at the crossover temperature T×. This notable
change, which is not observed in the 2D Heisenberg model,
would be caused by the binding unbinding of the Z2 vortices.
The binding unbinding of the Z2 vortices is extensively
discussed in the antiferromagnetic Heisenberg model on the
triangular lattice [27–29]. Kawamura and coworkers insist
that there is a thermodynamic phase transition at a finite
temperature driven by the binding unbinding of the Z2 vortices
[28], but clear evidence of the existence of the phase transition
is not obtained in this study. Besides the study of the binding
unbinding of the Z2 vortices, Hasenbusch pointed out that

FSS functions of O(N ) and RPN−1 should be the same if the
boundary condition is properly controlled [31]. In this study,
although we employed the periodic boundary condition for
both the XY and Heisenberg models and the RP2 model, a
systematic study of the influence of the boundary condition on
FSS functions would shed a light on the discussion about the
universality class of the O(N ) and RPN−1 models. The effect of
the nonlinear interaction in the RP2 model is also an interesting
issue in view of the pseudocritical behavior. The effect of
nonlinearity in the interaction is studied by a nonlinear model
[32–35], H = ∑

〈i,j〉[(1 + Si · S j )/2]p, and the critical value
of p at which the first-order transition emerges is estimated as
pc � 20 [33,34]. Considering that the parameter p in the RP2

model (p = 2) largely deviates from pc, the pseudocritical
behavior in the RP2 model could hardly be affected by the
first-order transition point. However, it is interesting to study
the relation between the Z2 vortex and the first-order transition
when p is sufficiently large. I leave these issues open for future
study.
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[33] H. W. J. Blöte, W. Guo, and H. J. Hilhorst, Phys. Rev. Lett. 88,

047203 (2002).
[34] S. Caracciolo, B. M. Mognetti, and A. Pelissetto, Nucl. Phys. B

707, 458 (2005).
[35] A. C. D. van Enter and S. B. Shlosman, Commun. Math. Phys.

255, 21 (2005).

032109-6

http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1023/A:1013726826390
http://dx.doi.org/10.1023/A:1013726826390
http://dx.doi.org/10.1023/A:1013726826390
http://dx.doi.org/10.1023/A:1013726826390
http://dx.doi.org/10.1103/PhysRevD.57.1394
http://dx.doi.org/10.1103/PhysRevD.57.1394
http://dx.doi.org/10.1103/PhysRevD.57.1394
http://dx.doi.org/10.1103/PhysRevD.57.1394
http://dx.doi.org/10.1016/S0370-2693(98)00528-0
http://dx.doi.org/10.1016/S0370-2693(98)00528-0
http://dx.doi.org/10.1016/S0370-2693(98)00528-0
http://dx.doi.org/10.1016/S0370-2693(98)00528-0
http://dx.doi.org/10.1088/1751-8113/40/14/001
http://dx.doi.org/10.1088/1751-8113/40/14/001
http://dx.doi.org/10.1088/1751-8113/40/14/001
http://dx.doi.org/10.1088/1751-8113/40/14/001
http://dx.doi.org/10.1103/PhysRevD.70.107706
http://dx.doi.org/10.1103/PhysRevD.70.107706
http://dx.doi.org/10.1103/PhysRevD.70.107706
http://dx.doi.org/10.1103/PhysRevD.70.107706
http://dx.doi.org/10.1103/PhysRevA.6.426
http://dx.doi.org/10.1103/PhysRevA.6.426
http://dx.doi.org/10.1103/PhysRevA.6.426
http://dx.doi.org/10.1103/PhysRevA.6.426
http://dx.doi.org/10.1016/0378-4371(88)90148-3
http://dx.doi.org/10.1016/0378-4371(88)90148-3
http://dx.doi.org/10.1016/0378-4371(88)90148-3
http://dx.doi.org/10.1016/0378-4371(88)90148-3
http://dx.doi.org/10.1103/PhysRevB.46.662
http://dx.doi.org/10.1103/PhysRevB.46.662
http://dx.doi.org/10.1103/PhysRevB.46.662
http://dx.doi.org/10.1103/PhysRevB.46.662
http://dx.doi.org/10.1016/S0375-9601(03)00576-0
http://dx.doi.org/10.1016/S0375-9601(03)00576-0
http://dx.doi.org/10.1016/S0375-9601(03)00576-0
http://dx.doi.org/10.1016/S0375-9601(03)00576-0
http://dx.doi.org/10.1103/PhysRevE.70.066125
http://dx.doi.org/10.1103/PhysRevE.70.066125
http://dx.doi.org/10.1103/PhysRevE.70.066125
http://dx.doi.org/10.1103/PhysRevE.70.066125
http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.5488/CMP.9.2.283
http://dx.doi.org/10.5488/CMP.9.2.283
http://dx.doi.org/10.5488/CMP.9.2.283
http://dx.doi.org/10.5488/CMP.9.2.283
http://dx.doi.org/10.1103/PhysRevE.78.051706
http://dx.doi.org/10.1103/PhysRevE.78.051706
http://dx.doi.org/10.1103/PhysRevE.78.051706
http://dx.doi.org/10.1103/PhysRevE.78.051706
http://dx.doi.org/10.5488/CMP.13.13601
http://dx.doi.org/10.5488/CMP.13.13601
http://dx.doi.org/10.5488/CMP.13.13601
http://dx.doi.org/10.5488/CMP.13.13601
http://dx.doi.org/10.1103/PhysRevLett.74.2969
http://dx.doi.org/10.1103/PhysRevLett.74.2969
http://dx.doi.org/10.1103/PhysRevLett.74.2969
http://dx.doi.org/10.1103/PhysRevLett.74.2969
http://dx.doi.org/10.1103/PhysRevLett.75.1891
http://dx.doi.org/10.1103/PhysRevLett.75.1891
http://dx.doi.org/10.1103/PhysRevLett.75.1891
http://dx.doi.org/10.1103/PhysRevLett.75.1891
http://dx.doi.org/10.1016/0550-3213(82)90240-1
http://dx.doi.org/10.1016/0550-3213(82)90240-1
http://dx.doi.org/10.1016/0550-3213(82)90240-1
http://dx.doi.org/10.1016/0550-3213(82)90240-1
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1103/PhysRevB.66.180401
http://dx.doi.org/10.1103/PhysRevB.66.180401
http://dx.doi.org/10.1103/PhysRevB.66.180401
http://dx.doi.org/10.1103/PhysRevB.66.180401
http://dx.doi.org/10.1016/0031-8914(62)90102-7
http://dx.doi.org/10.1016/0031-8914(62)90102-7
http://dx.doi.org/10.1016/0031-8914(62)90102-7
http://dx.doi.org/10.1016/0031-8914(62)90102-7
http://dx.doi.org/10.1063/1.1704197
http://dx.doi.org/10.1063/1.1704197
http://dx.doi.org/10.1063/1.1704197
http://dx.doi.org/10.1063/1.1704197
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1016/j.cpc.2012.01.017
http://dx.doi.org/10.1016/j.cpc.2012.01.017
http://dx.doi.org/10.1016/j.cpc.2012.01.017
http://dx.doi.org/10.1016/j.cpc.2012.01.017
http://dx.doi.org/10.1103/PhysRevLett.60.1461
http://dx.doi.org/10.1103/PhysRevLett.60.1461
http://dx.doi.org/10.1103/PhysRevLett.60.1461
http://dx.doi.org/10.1103/PhysRevLett.60.1461
http://dx.doi.org/10.1103/PhysRevLett.62.361
http://dx.doi.org/10.1103/PhysRevLett.62.361
http://dx.doi.org/10.1103/PhysRevLett.62.361
http://dx.doi.org/10.1103/PhysRevLett.62.361
http://dx.doi.org/10.1143/JPSJ.53.4138
http://dx.doi.org/10.1143/JPSJ.53.4138
http://dx.doi.org/10.1143/JPSJ.53.4138
http://dx.doi.org/10.1143/JPSJ.53.4138
http://dx.doi.org/10.1143/JPSJ.79.023701
http://dx.doi.org/10.1143/JPSJ.79.023701
http://dx.doi.org/10.1143/JPSJ.79.023701
http://dx.doi.org/10.1143/JPSJ.79.023701
http://dx.doi.org/10.1103/PhysRevB.48.13170
http://dx.doi.org/10.1103/PhysRevB.48.13170
http://dx.doi.org/10.1103/PhysRevB.48.13170
http://dx.doi.org/10.1103/PhysRevB.48.13170
http://dx.doi.org/10.1103/PhysRevE.84.056704
http://dx.doi.org/10.1103/PhysRevE.84.056704
http://dx.doi.org/10.1103/PhysRevE.84.056704
http://dx.doi.org/10.1103/PhysRevE.84.056704
http://dx.doi.org/10.1103/PhysRevD.53.3445
http://dx.doi.org/10.1103/PhysRevD.53.3445
http://dx.doi.org/10.1103/PhysRevD.53.3445
http://dx.doi.org/10.1103/PhysRevD.53.3445
http://dx.doi.org/10.1103/PhysRevLett.52.1535
http://dx.doi.org/10.1103/PhysRevLett.52.1535
http://dx.doi.org/10.1103/PhysRevLett.52.1535
http://dx.doi.org/10.1103/PhysRevLett.52.1535
http://dx.doi.org/10.1103/PhysRevLett.88.047203
http://dx.doi.org/10.1103/PhysRevLett.88.047203
http://dx.doi.org/10.1103/PhysRevLett.88.047203
http://dx.doi.org/10.1103/PhysRevLett.88.047203
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.027
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.027
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.027
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.027
http://dx.doi.org/10.1007/s00220-004-1286-1
http://dx.doi.org/10.1007/s00220-004-1286-1
http://dx.doi.org/10.1007/s00220-004-1286-1
http://dx.doi.org/10.1007/s00220-004-1286-1



