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Solution of the antiferromagnetic Ising model with multisite interaction on a zigzag ladder
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We consider the antiferromagnetic spin-1/2 Ising model with multisite interaction in an external magnetic
field on an infinite zigzag ladder. The model is solved exactly by using the transfer matrix method. Using the
exact expression for the total magnetization per site, the magnetic properties of the model are investigated in
detail. The model exhibits the formation of magnetization plateaus for low temperatures, and it is shown that
their properties depend strongly on the strength of the multisite interaction. All possible ground states of the
model are found and discussed. The existence of nontrivial singular ground states is proven and exact explicit
expressions for them are found. The macroscopic degeneracy of the ground states is investigated and discussed.

DOI: 10.1103/PhysRevE.90.032108 PACS number(s): 05.50.+q, 75.10.Hk, 75.50.Ee

I. INTRODUCTION

One of the most interesting phenomena from the exper-
imental as well as the theoretical point of view observed
in the framework of antiferromagnetic systems on various
lattices is without doubt the phenomenon of frustration
(see, e.g., Ref. [1] and references cited therein). Roughly
speaking, an antiferromagnetic model on a regular lattice is
fully frustrated if all elementary (minimal) closed contours
are formed by odd number of sites [2]. Among the most
interesting frustrated models from the phenomenological point
of view are antiferromagnetic models on the kagome lattice,
on the triangular lattice, and on the tetrahedron (pyrochlore)
lattice. While the first two of them represent examples of
two-dimensional geometrically frustrated systems the third
one is an example of a three-dimensional frustrated system.
Although, for a deeper theoretical understanding of basic
properties of various frustrated systems, exact solutions of
the corresponding models are the most valuable, nowadays
only very few such frustrated models in two dimensions have
been exactly solved (for a review see, e.g., Refs. [3,4]). It
is also worth mentioning that even the simplest Ising and
Ising-like models on regular two-dimensional lattices have
been exactly solved only in zero external magnetic field (see,
e.g., Ref. [5] and references cited therein). In this respect,
e.g., the exact solution of the antiferromagnetic Ising model
in zero external magnetic field on a triangular lattice has been
known for a long time [6]. However, it is also well known
that the most interesting physical effects related to frustration
appear when an external magnetic field is present (e.g., the
formation of magnetization plateaus when the temperature
tends to zero). In this situation, it is evident that to obtain
relevant theoretical information about properties of various
frustrated systems in an external magnetic field it is necessary
to use an approximation.

An elegant technique for approximative investigation of
frustrated effects on real lattices is based on the analysis of
antiferromagnetic models on various recursive lattices, which,
on one hand, take into account the basic geometric structure
of real lattices that is responsible for frustration and, on the
other hand, are exactly solvable. Quite recently exact solutions
were obtained for antiferromagnetic spin-1/2 Ising models on
the corresponding pure Husimi lattice, which represents an
effective approximation of the model on the kagome lattice

[7,8] as well as on the tetrahedron recursive lattice [9]. The
existence of these solutions has allowed authors to perform
complete analyses of all possible ground states of the models.
Maybe the most intriguing result of these investigations is
the fact of the existence of so-called singular ground states,
i.e., ground states which are realized only for exactly defined
values of the external magnetic field for fixed values of all
the other parameters of the model, with exactly defined values
of the magnetization. Thus, it seems that transition between
various magnetization plateaus (the long-range-order ground
states) is always realized only through nontrivial singular
ground states (see discussions in Refs. [7–9]). However, here
a legitimate question immediately arises, namely, whether the
existence of the singular ground states is related only to the
recursive nature of the lattices or whether the singular ground
states are also always present in classical antiferromagnetic
models on regular geometrically frustrated lattices. It is evident
that to answer this question it is necessary to solve exactly
at least one classical antiferromagnetic model on a regular
lattice. In the present paper, we shall show that such an
exactly solvable antiferromagnetic model on a regular lattice
really exists, namely, we shall find the exact solution of the
antiferromagnetic spin-1/2 Ising model in the simultaneous
presence of multisite interaction and an external magnetic field
on the so-called zigzag ladder. We shall perform a detailed
exact analysis of the magnetization properties of the model
and we shall see that the model exhibits rather interesting
behavior with a nontrivial structure of the ground states which
consists of long-range-order ground states as well as of the
above-mentioned singular ground states which are realized
on the borders of the magnetization plateaus. Although the
model is an example of an antiferromagnetic model on a
regular one-dimensional lattice (or on a quasi-two-dimensional
lattice), nevertheless we think that the results obtained (at
least at the qualitative level) have to be considered seriously
and that similar properties of the magnetization as well as of
the ground states as functions of the external magnetic field
should also be expected on regular geometrically frustrated
two- and three-dimensional lattices in accordance with (again
at least at the qualitative level) the results obtained earlier in the
framework of antiferromagnetic models on recursive lattices
(see Refs. [7–9]).

Finally, let us note that various antiferromagnetic models on
ladderlike lattices are also phenomenologically significant and
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are used for theoretical investigations of various physical sys-
tems such as SrCuO2 [10,11], SrCu2O3 [12], La6Ca8Cu24O41

[13,14], Cu2(C5H12N2)2Cl4 [15], KCuCl3 and TlCuCl3 [16],
NH4CuCl3 [17], Li2CuO2 and CuGeO3 [14], NaCu2O2 [18],
and many others. Although for theoretical investigation of
these systems various variants of the quantum Heisenberg
model are usually used (see, e.g., Refs. [19–30] and references
cited therein), nevertheless some properties of these systems,
such as the very formation of magnetization plateaus at low
temperatures (which have in fact a quantum nature), can also
be studied in the framework of the corresponding classical
models, e.g., in the framework of antiferromagnetic Ising and
Ising-like models (see, e.g., Refs. [31–34] and references cited
therein). Here, the main advantage of the classical models in
comparison to the quantum ones is the fact that very often
they can be solved exactly, i.e., many interesting properties of
the corresponding systems can be studied and analyzed in a
completely exact way (e.g., the exact structure of the ground
states as shown in the present paper). Therefore, we believe
that the exact results obtained in the present paper can be
considered as an interesting and important contribution for
deeper understanding of the magnetic properties of various
classical frustrated systems even in cases when the exact
solutions do not exist yet.

The paper is organized as follows. In Sec. II, the antiferro-
magnetic Ising model with multisite interaction on the zigzag
ladder is defined. In Sec. III, the exact solution of the model
is presented by using the transfer matrix method. In Sec. IV,
the properties of the magnetization are studied, and all ground
states of the model are found and their properties are discussed.
In Sec. V, the main results of the paper are reviewed.

II. THE ANTIFERROMAGNETIC ISING MODEL WITH
MULTISITE INTERACTION ON THE ZIGZAG LADDER

In what follows, we shall study the magnetic properties
of the antiferromagnetic spin-1/2 Ising model with multisite
interaction within elementary triangles in an external magnetic
field on the infinite zigzag ladder shown in Fig. 1. Thus, each
site has the coordination number z = 4 and the Hamiltonian
of the model is

H = −J
∑
〈i j〉

sisj − J ′ ∑
〈i j k〉

sisj sk − H
∑

i

si , (1)

where each variable si acquires one of the two possible
values ±1, J is the nearest-neighbor interaction parameter,
J ′ represents the multisite interaction within single triangles,
and H is the external magnetic field. In Eq. (1), the first sum
runs over all nearest-neighbor spin pairs, the second sum runs
over all triangles, and the third sum runs over all spin sites. In

si

si+1

si+2

si+3

FIG. 1. The structure of the infinite triangular zigzag ladder.

what follows, we are interested only in the antiferromagnetic
system, i.e., we always suppose that J < 0.

The partition function of the model given by the Hamilto-
nian (1) has the following general form:

Z ≡
∑

s

e−βH

=
∑

s

e
K

∑
〈i j 〉

si sj +K ′ ∑
〈i j k〉

si sj sk +h
∑
i

si

, (2)

where the standard notation is used, namely, β = 1/(kBT ), T

is the temperature, kB is the Boltzmann constant, K = βJ ,
K ′ = βJ ′, and h = βH . The sum over s in Eq. (2) means the
summation over all possible spin configurations on the lattice.

III. EXACT SOLUTION OF THE MODEL BY THE
TRANSFER MATRIX METHOD

As was already mentioned, our aim is to investigate model
(1) on the infinite zigzag ladder. For this purpose it is
convenient to introduce cyclic conditions (periodic boundary
conditions), i.e., we start with the assumption that the number
of all sites is finite and equal to N , where N is even, and we
suppose that sN+1 = s1 or, in general, sN+i = si . Introducing
cyclic conditions ensures that all sites are equivalent as well
as that the system obeys translational symmetry. Then, the
infinite zigzag ladder is obtained in the limit N → ∞.

Using the periodic boundary conditions the partition func-
tion (2) for the present model can be written in the standard
transfer matrix form

Z = TrV N/2, (3)

where V is the square transfer matrix which has the following
explicit form:

V =

⎛
⎜⎜⎝

a4bc2 ac (ab)−1c a−2

(ab)−1c 1 a−2b ac−1

ac a−2b−1 1 b(ac)−1

a−2 b(ac)−1 ac−1 a4b−1c−2

⎞
⎟⎟⎠ , (4)

where

a = eK, b = e2K ′
, c = eh. (5)

It also means that the partition function can be written in the
form of the sum of the (N/2)th power of the eigenvalues of
the transfer matrix (4), namely,

ZN =
4∑

i=1

λ
N/2
i , (6)

where λi, i = 1, . . . ,4, represent the eigenvalues of the trans-
fer matrix.

Because the characteristic equation of the transfer matrix
(4) is a polynomial equation of the fourth order, the transfer
matrix can have four real eigenvalues, two real eigenvalues
together with two complex conjugate eigenvalues, or even two
pairs of complex conjugate eigenvalues. However, by direct
numerical analysis of the eigenvalues it can be shown that the
transfer matrix (4) always has at least two real eigenvalues. At
the same time, one real eigenvalue is always larger than the
other three real eigenvalues (in the case when all eigenvalues
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are real) or it is also larger than the second real eigenvalue as
well as than the absolute values of the two remaining complex
conjugate eigenvalues. Thus, let λ1 be the largest eigenvalue.
Then, writing Eq. (6) in the form

ZN = λ
N/2
1

[
1 +

4∑
i=2

(
λi

λ1

)N/2
]

, (7)

it is evident that in the limit N → ∞ the partition function is
completely determined by the eigenvalue λ1 itself, namely,

ZN = λ
N/2
1 , N → ∞. (8)

However, for further analysis more important is the free energy
per site defined in the standard way by the partition function
as follows:

f = −(βN )−1 ln ZN, (9)

which in the limit N → ∞ [by using Eq. (8)] obtains the
simple form

f = − ln λ1

2β
. (10)

Thus, from Eqs. (8) and (10) it follows that all properties of
the model on the infinite zigzag ladder are given by a single
quantity, namely, by the largest eigenvalue λ1 of the transfer
matrix. Therefore, if an explicit analytic expression for λ1

exists then the model belongs among exactly solvable models.
The explicit expression for λ1 really exists and has the form

λ1 = 1

4

[
k1 + 2

√
z1 + w1 +

√
4(2z1 − w1) + z2√

z1 + w1

]
,

(11)

where

k1 = 2 + a4

(
bc2 + 1

bc2

)
, (12)

w1 = 1

3

[(
w2

2

)1/3

+ z3

(
2

w2

)1/3
]

, (13)

z1 = k2
1

4
− 2k4

3
, (14)

z2 = k3
1 − 4k1k4 − 8k3, (15)

and

w2 = z4 +
√

z2
4 − 4z3

3, (16)

z3 = k2
4 + 12k2 + 3k1k3, (17)

z4 = 2k3
4 + 9

[
3
(
k2

1k2 + k2
3

) + k4 (k1k3 − 8k2)
]
, (18)

k2 = [b2(1 + a8) − a4(1 + b4)]2/(a8b4), (19)

k3 = −{b2(b2 − a4)2 + 2a4bc2[b2(1 + a8) − a4(1 + b4)]

+ c4(a4b2 − 1)2}/(a4b3c2), (20)

k4 = {2a4[a4 − b2 + c4(a4b2 − 1)]

+ bc2(a12 + a4 − 2)}/(a4bc2), (21)

and a, b, and c are defined in Eq. (5).

Therefore, having the exact analytic expression for the
largest eigenvalue λ1 as it is given in Eqs. (11)–(21) one can
immediately use it for investigation of all important quantities
such as the magnetization, susceptibility, or specific heat,
which are defined as the corresponding derivatives of the free
energy (10). However, in what follows we shall concentrate
only on the magnetic properties of the model. Our aim is
to investigate in detail the frustration effects for low enough
temperatures as well as to find the full structure of the ground
states of the model.

Finally, it is also worth mentioning that the exact analytic
solution of the present model also exists on the zigzag lattice
with periodic boundary conditions with arbitrary finite number
of sites N (recall once more that N must be even). However,
here all four eigenvalues of the transfer matrix (4) must be
taken into account (it can be shown that analytic expressions
also exist for all three remaining eigenvalues) and, of course,
in this case all results strongly depend on the value of N ,
especially for low enough values of N .

IV. MAGNETIZATION AND THE GROUND
STATES OF THE MODEL

A. Magnetization properties of the model

The magnetization per site is given by the relation

m ≡ − ∂f

∂H
= −β

∂f

∂h
, (22)

taken at a constant temperature. Now, using Eq. (10) the
magnetization per site is given directly by the eigenvalue λ1,
namely,

m = 1

2λ1

∂λ1

∂h
. (23)

Having at hand the explicit expression for the largest eigen-
value λ1 as it is given in Eqs. (11)–(21) one can also
easily write out the corresponding explicit expression for the
magnetization. Therefore, it is not necessary to present its
explicit form here.

The typical behavior of the total magnetization as a function
of the external magnetic field for various values of the ratio
α = J ′/|J | and for various values of the reduced temperature
kBT /|J | is shown in Figs. 2–8. As it is evident from Fig. 2,
in the case when the multisite interaction is not present in
the model (α = 0) the magnetization exhibits the formation
of three magnetization plateaus (the long-range-order ground
states) when the temperature tends to zero with the values of
magnetization m = 0 and m = ±1/3. Each of them appears
in the corresponding interval of the external magnetic field,
namely, the magnetization plateau with m = 0 is realized in
the interval −1 < H/|J | < 1 and the magnetization plateaus
with m = 1/3 and m = −1/3 are realized in the intervals 1 <

H/|J | < 4 and −4 < H/|J | < −1, respectively.
On the other hand, when multisite interaction is present in

the model the behavior of the total magnetization as well as
the structure and the length of the plateaus are significantly
changed. As we shall see, there exist three disjoint intervals
of the absolute values of α in which qualitatively different
behavior of the total magnetization is observed. First of all, in
the interval −0.5 < α < 0.5, i.e., for |α| < 0.5, the behavior
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FIG. 2. The total magnetization per site as a function of the
external magnetic field for α = 0 and for various values of the reduced
temperature.

of the total magnetization for low temperatures is qualitatively
similar to the case with α = 0, i.e., there still emerge three
magnetization plateaus with m = 0 and m = ±1/3 when the
temperature tends to zero, but now they are realized in intervals
of the external magnetic field boundaries which depend on the
value of α. Namely, the magnetization plateau with m = 0 is
realized in the interval −1 + 3α < H/|J | < 1 + 3α, the mag-
netization plateau with m = −1/3 is realized in the interval
−4 − 3α < H/|J | < −1 + 3α, and, finally, the plateau with
m = 1/3 exists in the interval 1 + 3α < H/|J | < 4 − 3α.
Thus, it is evident that while the length of the plateau with
m = 0 is not changed in this interval of values of α the lengths
of the magnetization plateaus with m = ±1/3 significantly
depend not only on the absolute value of α but also on its
sign. Here, for −0.5 < α < 0, the length of the plateau with
m = 1/3 increases when the absolute value of α increases.
At the same time, the length of the plateau with m = −1/3
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FIG. 3. The total magnetization per site as a function of the
external magnetic field for α = −0.25 and for various values of the
reduced temperature.
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FIG. 4. The total magnetization per site as a function of the
external magnetic field for α = 0.25 and for various values of the
reduced temperature.

decreases and completely vanishes when α tends to −0.5. On
the other hand, the situation in the interval 0 < α < 0.5 is
opposite. Here, the length of the magnetization plateau with
m = −1/3 increases when α is increasing and the length of
the plateau with m = 1/3 decreases and vanishes completely
for α = 0.5. The typical behavior of the total magnetization
as a function of the external magnetic field for positive as well
as negative values of α from the interval −0.5 < α < 0.5 for
various values of the temperature is shown in Figs. 3 and 4 for
α = −0.25 and α = 0.25, respectively.

The second qualitatively different type of behavior of the
magnetization is realized in the interval 0.5 < |α| < 1 as it is
evident in Figs. 5 and 6, where the total magnetization as a
function of the external magnetic field for various values of
the temperature is shown for α = −0.75 (Fig. 5) and α = 0.75
(Fig. 6). In this interval of the absolute values of α only two
magnetization plateaus appear when the temperature tends to
zero and, at the same time, their lengths also depend on the
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FIG. 5. The total magnetization per site as a function of the
external magnetic field for α = −0.75 and for various values of the
reduced temperature.
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FIG. 6. The total magnetization per site as a function of the
external magnetic field for α = 0.75 and for various values of the
reduced temperature.

value of α. Namely, for negative values of α, i.e., for α from the
interval −1 < α < −0.5, magnetization plateaus with m = 0
and m = 1/3 emerge for low enough temperatures, which
are realized in the intervals −3 − α < H/|J | < 1 + 3α and
1 + 3α < H/|J | < 4 − 3α, respectively. Thus, it is evident
that while the length of the magnetization plateau with m =
1/3 increases when the absolute value of α increases, the
length of the plateau with m = 0 decreases and it disappears
completely for α = −1. On the other hand, for positive values
of α, i.e., for α from the interval 0.5 < H/|J | < 1, the
situation is again opposite. Here, magnetization plateaus with
m = 0 and m = −1/3 emerge when the temperature tends to
zero and are realized in the intervals −1 + 3α < H/|J | <

3 − α and −4 − 3α < H/|J | < −1 + 3α, respectively. The
length of the magnetization plateau with m = 1/3 increases
when the value of α increases and the length of the plateau with
m = 0 again decreases and it disappears completely for α = 1.

The last qualitatively different type of behavior of the
magnetization is obtained for |α| > 1. As it is evident from
Figs. 7 and 8, where the total magnetization as a function
of the external magnetic field for various values of the
temperature is shown for α = −1.5 (Fig. 7) and α = 1.5
(Fig. 8), in this interval of absolute values of α only one
magnetization plateau exists when the temperature tends to
zero. Here, the magnetization plateau with m = 1/3 exists for
α < −1 and is realized in the interval −2 < H/|J | < 4 − 3α.
On the other hand, for α > 1, the plateau with m = −1/3
emerges for low temperatures and is realized in the interval
−4 − 3α < H/|J | < 2.

Let us also briefly discuss the behavior of the total
magnetization per site as a function of the reduced temperature
in various regimes which are given by the typical values of the
parameter α for various values of the external magnetic field.
First of all, it is important to realize that there exists a simple
relation between the values of the magnetization for positive
and negative values of α, namely,

m

(
kBT

|J | ,
H

|J | ,α
)

= −m

(
kBT

|J | , − H

|J | , − α

)
. (24)
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FIG. 7. The total magnetization per site as a function of the
external magnetic field for α = −1.5 and for various values of the
reduced temperature.

The validity of this relation can be also verified in the pairs
of Figs. 3 and 4, 5 and 6, and 7 and 8. Bearing in mind
Eq. (24), it is sufficient to restrict our discussion to the positive
values of α. Thus, in Figs. 9–11 three qualitatively different
behaviors of the total magnetization per site are shown as
functions of the reduced temperature for typical values of α,
namely, for α = 0.25 (Fig. 9), for α = 0.75 (Fig. 10), and for
α = 1.5 (Fig. 11), as well as for various values of the external
magnetic field. It is again evident that in the limit T → 0
for a given value of α the magnetization can acquire only a
few possible values which correspond to the possible ground
states of the model. The number of possible ground states as
well as the corresponding values of the magnetization depend
on the value of α, namely, whether |α| < 0.5, 0.5 < |α| < 1,
or |α| > 1. From Fig. 9 it is easy to see that for |α| < 0.5
there exist nine different ground states. Two of them are the
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FIG. 8. The total magnetization per site as a function of the
external magnetic field for α = −1.5 and for various values of the
reduced temperature.
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FIG. 9. The total magnetization per site as a function of the
reduced temperature for α = 0.25 as well as for various values of
the external magnetic field H/|J |.

trivial saturated ground states with m = ±1 and three of them
correspond to the nontrivial long-range-order ground states
(plateaus) with the values of magnetization m = 0 and m =
±1/3 (see also Figs. 2, 3, and 4). In addition, there exist four
other ground states which are realized only for exactly defined
values of the external magnetic field (the corresponding values
of the external field depend on the value of α) on the borders
between various long-range-order ground states and are called
the singular ground states (we shall discuss their properties in
detail later).

On the other hand, as it follows from Fig. 10, there exist
seven different ground states for 0.5 < |α| < 1. Two of them
are again trivial saturated ground states with m = ±1. At the
same time, there exist two nontrivial ground states in the form
of plateaus with m = 0 and m = 1/3 for −1 < α < −0.5 or
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FIG. 10. The total magnetization per site as a function of the
reduced temperature for α = 0.75 as well as for various values of the
external magnetic field H/|J |.
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FIG. 11. The total magnetization per site as a function of the
reduced temperature for α = 1.5 as well as for various values of the
external magnetic field H/|J |.

with m = 0 and m = −1/3 for 0.5 < α < 1. The last three
ground states are again realized only for exactly defined values
of the external magnetic field (the singular ground states)
and represent intermediate states between various long-range-
order ground states. Again, we shall discuss their properties a
little bit later.

In the end, in the case of |α| > 1 the model exhibits the
existence of only five ground states in the limit T → 0 (see
Fig. 11). As is standard, two of them represent saturated ground
states with m = ±1. In this case, however, there exists a single
nontrivial long-range-order ground state with m = 1/3 for
α < −1 or with m = −1/3 for α > 0. The remaining two
ground states are the singular ground states which represent
intermediate states between the only nontrivial plateau ground
state and both saturated ground states and which are realized
for exactly defined values of the external magnetic field.

In addition, however, specific situations come into being
for border values of the parameter α, i.e., for |α| = 0.5 as
well as for |α| = 1, when the absolute values of the multisite
interaction are half of or equal to the nearest-neighbor
antiferromagnetic interaction. For these special cases, the
behavior of the magnetization as a function of the reduced
temperature is shown in Figs. 12 and 13, respectively.
Although, at first sight it seems that the behavior of the
magnetization is similar to the corresponding behavior shown
in Figs. 10 and 11, respectively, nevertheless, here qualitatively
new singular ground states appear for exactly defined values of
the external magnetic field (exact values of their magnetization
will be found below). Namely, in the case |α| = 0.5, these
new singular ground states emerge for H/|J | = −2.5 and
α = −0.5 and for H/|J | = 2.5 and α = 0.5. On the other
hand, in the case |α| = 1, new singular ground states appear
for H/|J | = −2 and α = −1 and for H/|J | = 2 and α = 1.

B. The ground states of the model

Having the explicit expression for the total magnetization
per site [see Eq. (23)] it is also possible to perform a completely
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FIG. 12. The total magnetization per site as a function of the
reduced temperature for α = 0.5 as well as for various values of the
external magnetic field H/|J |.

exact analysis of the properties of all ground states of the
model, i.e., the structure of the total magnetization per site at
T = 0. All ground states of the model are shown in Fig. 14 in
the plane H/|J | versus α. From Fig. 14 it is immediately
evident that the whole plane H/|J |-α is divided into five
disjoint regions in which the plateaulike ground states with the
values of the magnetization m = 0, m = ±1/3, and m = ±1
are realized. These regions are separated by lines at which
various nontrivial singular ground states are obtained. In
addition, at points at which three regions meet (or in which
three different border lines join) additional nontrivial singular
ground states appear. Let us discuss the properties of all
singular ground states in some more detail.

The transitions between the saturated ground state with
m = −1 and the plateau with m = −1/3 (the left solid line
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FIG. 13. The total magnetization per site as a function of the
reduced temperature for α = 1 as well as for various values of the
external magnetic field H/|J |.
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m=1/3
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FIG. 14. The properties of the ground states of the model. The
solid lines denote the positions of the singular ground states with
total magnetization m ≈ −0.6115 (left solid line) and m ≈ 0.6115
(right solid line), the dashed lines denote positions of the singular
ground states with m ≈ −0.3967 (left dashed line) and m ≈ 0.3967
(right dashed line), the dash-dotted lines correspond to the singular
ground states with m ≈ −0.1593 [left (upper) dash-dotted line] and
m ≈ 0.1593 [right (lower) dash-dotted line], and the dotted lines
describe the singular ground states with m = −1/3 (left dotted line)
and m = 1/3 (right dotted line). The two filled circles determine the
positions of the singular ground states with m ≈ −0.4472 (left filled
circle) and m ≈ 0.4472 (right filled circle) and the two filled squares
show the positions of the singular ground states with m ≈ −0.2230
(left filled square) and m ≈ 0.2230 (right filled square).

in Fig. 14) as well as between the saturated ground state with
m = 1 and the plateau with m = 1/3 (the right solid line in
Fig. 14) are realized through the singular ground states with
the following exact values of the magnetization:

m = ∓93 c
1/3
1 (1 + 2

√
d1)2 − 25/3

√
93

(
c

2/3
1 − 22/3

)
372 c

1/3
1

√
d1(1 + 2

√
d1)

, (25)

where

d1 = 1

3

[
19

4
+

(
c1

2

)−1/3

+
(

c1

2

)1/3
]

, (26)

c1 = 29 + 3
√

93. (27)

Their approximate numerical values are m ≈ ∓0.611 492. The
negative value of this magnetization is obtained on the border
between long-range-order ground states with m = −1 and
m = −1/3 (the left solid line in Fig. 14) defined by the the
following relation:

α = −1

3

(
H

|J | + 4

)
,

H

|J | < −2.5. (28)

On the other hand, a positive value of the magnetization is
realized on the border between the regions of the ground states
with m = 1 and m = 1/3 (the right solid line in Fig. 14). This
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border is given by the equation

α = 1

3

(
− H

|J | + 4

)
,

H

|J | > 2.5. (29)

Further, the transitions between the saturated ground states
with m = ∓1 and the plateau with m = 0 (the dashed lines in
Fig. 14) are realized through the singular ground states with
the following exact values of magnetization:

m = ∓9e1 + 8d
3/2
2 (3 + e1 + 2e2) + 4d2(11 − 2e1e2)

16d
3/2
2 e2[1 + 2(e2 + √

d2)]
, (30)

where

e1 = 2d3 + d4 − 25

6
, (31)

e2 =
√

19

4
+ 9

4
√

d2
− d2, (32)

d2 = 1

3

[
19

4
+ 16(−1)2/3

(
c2

2

)−1/3

−
(

−c2

2

)1/3
]

, (33)

d3 = 1

3

[
19

4
+ 16(−1)2/3

(
c2

2

)−1/3

+
(

−c2

2

)1/3
]

, (34)

d4 = 21/3c3

3c
2/3
2

[
(−2)1/3 + 32(−1)2/3

c
2/3
2

]
, (35)

and

c2 = 155 − 3
√

849, (36)

c3 = −137 + 539

√
3

283
. (37)

Their approximate numerical values are m ≈ ∓0.396 651. The
negative value of this magnetization is obtained on the border
between plateaus with m = −1 and m = 0 (the left dashed
line in Fig. 14) defined by the the relation

α = − H

|J | − 3, − 2.5 <
H

|J | < −2. (38)

At the same time, the positive value of the magnetization is
realized on the border between the regions of the ground states
with m = 1 and m = 0 (the right dashed line in Fig. 14). This
border is given by equation

α = − H

|J | + 3, 2 <
H

|J | < 2.5 . (39)

On the other hand, the transition between the saturated
ground state with m = −1 and the plateau with m = 1/3 [the
left (lower) dotted line in Fig. 14 defined by the conditions
H/|J | = −2 and α < −1] as well as between the saturated
ground state with m = 1 and the plateau with m = −1/3 [the
right (upper) dotted line in Fig. 14 defined by conditions
H/|J | = 2 and α > 1] are realized through the singular
ground states with the values of magnetization m = −1/3 and
m = 1/3, respectively.

The last singular ground states which are realized on line
segments are those which separate the plateau with m = 0 from

the plateaus with m = ∓1/3 (they are denoted by the dash-
dotted lines in Fig. 14). Their exact values of magnetization are

m = ∓d5(4 + e3e4) − e3
(
1 + d

3/2
5

)
4d

3/2
5 e4(e4 + √

d5)
, (40)

where

e3 = 2d6 + d7 − 8

3
, (41)

e4 =
√

4 + 2√
d5

− d5, (42)

d5 = 1

3

[
4 + 16(−1)2/3

(c2

2

)−1/3
−

(
−c2

2

)1/3
]

, (43)

d6 = 1

3

[
4 + 16(−1)2/3

(c2

2

)−1/3
+

(
−c2

2

)1/3
]

, (44)

d7 = 21/3c4

3c
2/3
2

[
(−2)1/3 + 32(−1)2/3

c
2/3
2

]
, (45)

c4 = −173 + 1159

√
3

283
, (46)

and c2 is given in Eq. (36). Their approximate numerical
values are m ≈ ∓0.159 320. The negative value of this
magnetization is obtained on the border between plateaus
with m = −1/3 and m = 0 [the left (upper) dash-dotted line
in Fig. 14] given by the the relation

α = 1

3

(
H

|J | + 1

)
, − 2.5 <

H

|J | < 2. (47)

At the same time, the positive value of the magnetization is
realized on the border between plateaus with m = 1/3 and
m = 0 [the right (lower) dash-dotted line in Fig. 14]. This
border is given as follows:

α = 1

3

(
H

|J | − 1

)
, − 2 <

H

|J | < 2.5. (48)

As was already mentioned, there exist four other singular
ground states with nontrivial values of the total magnetization
per site which are realized at discrete points in the plane
H/|J |-α at which three different regions of the corresponding
long-range-order ground states meet. In Fig. 14, they are
denoted by filled circles and squares. As it is evident from
Fig. 14, two of these special ground states emerge at the
point at which the plateaus with values of magnetization
m = −1, m = −1/3, and m = 0 meet, i.e., at the point with
coordinates H/|J | = −2.5 and α = −0.5, as well as at the
point at which the plateaus with values of magnetization
m = 1, m = 1/3, and m = 0 meet, i.e., at the point with
coordinates H/|J | = 2.5 and α = 0.5. At these points the total
magnetization per site obtains the following values:

m = ∓ 5 + 3
√

5

5(3 + √
5)

. (49)

Their approximate numerical values are m ≈ ∓0.447 214.
The negative value of the magnetization is obtained for
H/|J | = −2.5 and α = −0.5 and the positive value for
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FIG. 15. The magnetization of the model as a function of
the external magnetic field for T = 0 and α = 0. The singular
ground states at H/|J | = ∓4 have the values of magnetization
m ≈ ∓0.611 492 and the singular ground states at H/|J | = ∓1 have
the values of magnetization m ≈ ∓0.159 320.

H/|J | = 2.5 and α = 0.5. In Fig. 14, they are denoted by
filled circles.

Finally, the second and, at the same time, the last couple
of singular ground states, which are realized at discrete points
in the plane H/|J |-α and which are denoted by filled squares
in Fig. 14, emerge at the point at which the plateaus with
values of magnetization m = −1, m = 0, and m = 1/3 meet,
i.e., at the point with coordinates H/|J | = −2 and α = −1,
as well as at the point at which the plateaus with values of
magnetization m = 1, m = 0, and m = −1/3 meet, i.e., at the
point with coordinates H/|J | = 2 and α = 1. At these points
the total magnetization per site obtains the values

m = ∓ 62 c
4/3
5 − (2c5)2/3c6 + 24/3c7

62 c
4/3
5

[
1 + 7

(
c5
2

)−1/3 + (
c5
2

)1/3 ] , (50)

where

c5 = 47 + 3
√

93, (51)

c6 = 31 + 27
√

93, (52)

c7 = 3131 + 375
√

93. (53)

Their approximate numerical values are m ≈ ∓0.222 984. The
negative value of the magnetization is obtained for H/|J | =
−2 and α = −1 and the positive value for H/|J | = 2 and
α = 1 (see Fig. 14).

The existence of the various types of singular ground states
discussed above means that all transitions between different
long-range-order ground states (saturated ground states and
various plateaus) are realized through intermediate ground
states with nontrivial values of the total magnetization per site,
as is demonstrated explicitly in Fig. 15 for the special case with
α = 0. Using the phase diagram of all ground states (Fig. 14)
analogous figures can be immediately drawn for arbitrary
values of α. Thus, we can conclude that the properties of all
ground states of the present model are completely known now.

Without doubt the very existence as well as the rather com-
plicated structure of the nontrivial singular ground states are
some of the most important and intriguing results of the present
paper. Recently, the existence of the singular ground states was
also exactly proven in the framework of the antiferromagnetic
Ising model on the simplest pure Husimi lattice built up from
elementary triangles and with the coordination number z = 4,
which represents an approximation of the model on the regular
two-dimensional kagome lattice [7,8], as well as in the frame-
work of the antiferromagnetic Ising model on the tetrahedron
recursive lattice [9]. Nevertheless, in principle, the compli-
cated structure of the singular ground states in these models can
always be considered as an effect of the recursive form of the
lattices. However, as shown in the present paper, the nontrivial
structure of the singular ground states also exists in the frame-
work of the antiferromagnetic Ising model on a well-defined
regular lattice, namely, on the one-dimensional zigzag ladder
lattice. In our opinion, this is a nontrivial fact which must also
be taken into account when various classical antiferromagnetic
models are considered on regular two- or three-dimensional
geometrically frustrated lattices such as the kagome lattice,
the triangular lattice, or the tetrahedron (pyrochlore) lattice.

However, it is also worth mentioning that the exact prop-
erties of the singular ground states, e.g., such as those given
in the present paper, can be studied only in the framework of
exactly solvable models, where properties of the magnetization
can be analyzed in the limit T → 0. Therefore, we are
afraid that the properties of the singular ground states in
various antiferromagnetic models on frustrated regular two-
and three-dimensional lattices cannot be obtained (at least for
now) simply because there do not exist exact solutions of these
models in a nonzero external magnetic field. On the other hand,
the exact properties of the ground states in these models can
hardly be found by using approximative or pure numerical
methods.

The fact that the magnetization between various plateaulike
ground states behaves discontinuously lures one to consider
these transitions as first-order phase transitions. However,
we do not think that this is correct, simply because even
the principal condition for the existence of a first-order phase
transition is not fulfilled here, namely, there is no coexistence
of the phases at these points. Strictly speaking, in our model
only one phase exists for all values of the parameters of the
model, which is defined by the eigenvalue λ1 given in Eq. (11).
The magnetization related to this single phase is a continuous
function for arbitrary T > 0, and for T = 0 it becomes a
discontinuous function which decays into disjoint plateaulike
ground states and singular ground states. But it is necessary to
bear in mind that we are still working in the framework of the
same phase, i.e., all the ground states are defined by the same
solution (phase) of the model. Therefore, we think that we are
facing a diferent phenomenon here which cannot be simply
included and described in the framework of first-order phase
transitions.

C. The entropy and the degeneracy of the ground states

Having the exact expression for the free energy per site of
the present model given in Eq. (10) the macroscopic degen-
eracy of the ground states can be studied by calculation of the
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entropy. The macroscopic degeneracy � is related to the
entropy S of the entire system through the well-known relation
given in the framework of the microcanonical ensemble,
namely,

S = kB ln �. (54)

On the other hand, the entire entropy of the present model on
a lattice which consists of N sites is given as follows:

S ≡ −N
∂f

∂T
= kBN

2

(
ln λ1 + T

λ1

∂λ1

∂T

)
, (55)

where we have used the explicit expression for the free energy
per site given in Eq. (10). By performing the corresponding
calculations one can easily write out the explicit expression
for the entropy. Therefore, it is not necessary to present its
explicit form here. Instead let us discuss briefly the properties
of the entropy of all ground states of the model. At the same
time, by comparison of the expressions for the entropy given
in Eqs. (54) and (55) the macroscopic degeneracies of the
ground states can be immediately found.

First of all, as expected, the entropy of all plateaulike ground
states with values of magnetization m = 0, ± 1/3, and ±1 is
zero, i.e., all of them have finite degeneracies which can be
easily determined. However, the finite degeneracies also exist
for all the singular ground states which lie on dotted lines
in Fig. 14 with the values of magnetization m = ±1/3, i.e.,
the entropy of these singular ground states is also equal to
zero. This means that the direct transitions between the plateau
ground state with m = −1/3 and the saturated ground state
with m = 1, which is realized through the singular ground
state with m = 1/3, as well as between the plateau ground
state with m = 1/3 and the saturated ground state with m =
−1, which is realized through the singular ground state with
m = −1/3, are not accompanied by a discontinuity of the
entropy.

On the other hand, all the other transitions between
various plateaus are always accompanied by discontinuity
of the entropy, i.e., the corresponding singular ground states
have infinite macroscopic degeneracies. The corresponding
entropies are the following: the entropy of the singular
ground states with m ≈ ±0.6115 (solid lines in Fig. 14) is
S ≈ 0.3822NkB , the entropy of the singular ground states with
m ≈ ±0.3967 (dashed lines in Fig. 14) is S ≈ 0.3223NkB ,
the entropy of the singular ground states with m ≈ ±0.1593
(dash-dotted lines in Fig. 14) is S ≈ 0.1995NkB , the entropy
of the singular ground states with m ≈ ±0.4472 (filled circles
in Fig. 14) is S ≈ 0.4812NkB , and the entropy of the singular
ground states with m ≈ ±0.2230 (filled squares in Fig. 14)
is S ≈ 0.3822NkB . Here, it is also interesting that two
completely different singular ground states with |m| ≈ 0.6115
and with |m| ≈ 0.2230 have the same value of the entropy. It
also means that they have the same value of the macroscopic
degeneracy.

V. CONCLUSION

In conclusion, in this paper we have investigated the
antiferromagnetic spin-1/2 Ising model with multisite in-
teraction in the presence of an external magnetic field on
the infinite triangular zigzag ladder, which represents the

simplest geometrically frustrated system. First of all, it is
shown that the model is exactly analytically solvable and the
exact solution of the model is found by using the transfer matrix
method.

Further, by using the exact expression for the total
magnetization per site of the model, the properties of the
magnetization as a function of the temperature, as a function of
the external magnetic field, and as a function of the parameter
which describes the presence of the multisite interaction are
investigated in detail (see Figs. 2–13). It is shown that for low
values of temperature, i.e., for kBT /|J | � 1, magnetization
plateaus with m = ±1/3 and m = 0 appear as a consequence
of the frustration. At the same time, however, it is also shown
that the behavior of the magnetization strongly depends on the
ratio α = J ′/|J |, i.e., on the strength of the multisite inter-
action compared with the antiferromagnetic nearest-neighbor
interaction. In this respect, all three above-mentioned plateaus
at low temperatures exist only for |α| < 0.5 and their lengths
depend on the value of α. On the other hand, for 0.5 < |α| < 1
only two plateaus are realized, namely, the plateaus with m = 0
and m = −1/3 for positive values of α and the plateaus with
m = 0 and m = 1/3 for negative values of α. Finally, only
one plateau emerges at low temperatures for |α| > 1, namely,
the plateau with m = −1/3 for α > 1 and the plateau with
m = 1/3 for α < −1.

In addition, having the exact expression (23) for the total
magnetization per site we have also performed an exact
analysis of the properties of all possible ground states of
the model. It is shown that besides the plateaulike ground
states, i.e., the saturated ground states with m = ±1 and the
above-mentioned plateaus with m = ±1/3 and m = 0, there
also exists a nontrivial set of so-called singular ground states
which are realized on the line segments which correspond to
the borders between various regions in which the long-range-
order ground states exist. It is also shown that at points at
which three of these regions meet still other nontrivial singular
ground states emerge. The exact values of the magnetization
as well as their coordinates in the plane H/|J | versus α are
found for all these singular ground states.

The exact analysis of the properties of the ground states
with the existence of the singular ground states with nontrivial
values of magnetization is one of the main results of the present
paper. Another nontrivial conclusion of the paper is the very
fact that all transitions between different plateaus as well
as between plateaus and saturated ground states are always
realized through the corresponding intermediate singular
ground states, as was already seen earlier in the framework of
the antiferromagnetic Ising models on geometrically frustrated
recursive lattices (see Refs. [7–9]). Therefore, we suppose that
the existence of the singular ground states is not a specific
property of the present model but rather it is a general feature
of all classical models of frustrated magnetic systems.

In addition, we have also investigated and discussed briefly
the macroscopic degeneracy of all ground states of the model
by analyzing the explicit expression for the entropy in the limit
T → 0. It is shown that although most of the singular ground
states exhibit nonzero entropy, i.e., these ground states are
infinitely degenerate, there also exist singular ground states
with finite degeneracy, i.e., which have zero value of the
entropy.
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Thus, finally, we can conclude that the magnetization
properties of the antiferromagnetic Ising model with multisite
interaction on an infinite zigzag ladder are completely known
now. We also suppose that the technique used in the present
paper, which has allowed us to solve the model exactly, can
be generalized and applied for investigation of more general
antiferromagnetic Ising and Ising-like models on various
zigzag ladders. We believe that many interesting results can be
obtained in this direction.
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