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Exponential series expansion for correlation functions of many-body systems
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We demonstrate that in Hamiltonian many-body systems at equilibrium, any kind of time dependent correlation
function c(t) can always be expanded in a series of (complex) exponential functions of time when its Laplace
transform C̃(z) has single poles. The characteristic frequencies can be identified as the eigenfrequencies of the
correlation. This is done without introducing the concepts of fluctuating forces and memory functions, due to
Mori and Zwanzig and extensively used in the literature in the last decades. Our method is based on a different
projection technique in the Hilbert space S of the system and shows that appropriate approximations of the
exponential series are related to the contraction of S to a finite, usually small, number of dimensions. The time
dependence of correlation functions is always described in detail by a multiple-exponential functionality also at
long times. This result is therefore also valid for correlation functions of many-body Hamiltonian systems for
which a power-law dependence, observed in restricted time ranges and predicted to be the asymptotic one, can
be considered at most as a useful approximate modeling of long-time behavior.
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I. INTRODUCTION

Any kind of experimental spectroscopic study of the
dynamical properties of a many-body system at thermal
equilibrium is related to the time dependence of a correlation
function of relevant variables. This is true for any possible
probe acting within the linear response framework, such as, for
example, either photons or particles interacting with nuclear,
atomic, and molecular matter in the various aggregation states.
In the theory, these correlation functions are given by means
of the definition of a proper inner product (B,A) which
characterizes the L2 Hilbert space S of the variables of the
system. We will consider the class of either classical or
quantum-mechanical linear operators A and B corresponding
to the variables of the many-body system under discussion.
In this framework, the correlation function c(t) = [B,A(t)],
which represents either a cross correlation (for A �= B) or
an autocorrelation (for A = B), is studied starting from the
Hamiltonian formalization of the dynamics given by the
Liouville equation of motion dA(t)/dt = iLA(t). The latter
is a linear transformation determining the dynamics in S. The
linear Hermitian operator L, in the classical dynamics of an N -
particle system, is the Liouville operator L = i{H, · · · } where
{· · · , · · · } denotes the Poisson brackets, while in the quantum
N -body case, L = (1/�)[H, · · · ] and [· · · , · · · ] denotes the
commutator. The previous equation represents the Heisenberg
equation, where H is the total Hamiltonian of the system.

For the complex spectrum of c(t), given by C̃(z) = L [c(t)]
where L denotes the Laplace transform, the most general
approach up to now devised to the determination of a possible
spectral form is the one by Mori and Zwanzig (MZ) [1–3].
This procedure starts from (i) the determination of a basis of
vectors, also called “fluctuating forces,” which is constructed
by means of an ad hoc series of projection operators and
(ii) the introduction of memory functions as autocorrelations
of these basis vectors. Starting from these points, the theory
shows that c(t) satisfies a recurrence relation which is an
integro-differential equation of the second-order Volterra type,
usually indicated as the generalized Langevin equation (GLE).

The GLE for c(t) is linked by recurrence to a hierarchy
of integro-differential equations for the memory functions.
The solution to the problem is finally given by Laplace
transforming the equation hierarchy to obtain a continued
fraction representation of C̃(z).

One limitation of the MZ theory is that the basis created in
the projection procedure, i.e., the set of fluctuating forces, is not
complete. In fact, the projection of the operators A(t) or B(t)
onto the fluctuating-force basis contains a correlation integral
which involves memory functions [4]. Therefore, this basis
cannot be used as a general means of projection in S. Another
difficulty in the MZ theory arises from the fact that each vector
of the basis has a dynamics which is driven by a different linear
transformation, even though within the Liouville equation
scheme, so that dynamical behavior in the space S cannot be
univocally characterized. Due to this last fact, the link between
the various memory functions and the evolution of a generic
property of the system under study becomes rather indirect and
almost formal. The difficulty of understanding the physical
meaning of the concepts of fluctuating forces and memory
functions, and of the equation hierarchy in the MZ theory,
induces a consequent difficulty in the interpretation of the
continued fraction representation of the spectrum C̃(z), which
sometimes causes the application of improper approximations
to the continued fraction itself.

Nevertheless, the construction of a suitable orthogonal set
in S can be, in principle, realized following other routes, which
can be chosen in order to avoid the difficulties presented by
the MZ theory.

Here we will show that following the well-known Gram-
Schmidt (GS) procedure as modified by Lee [5–7], an
orthogonal and complete vector basis will be constructed
in S, and we will give an explicit functional expression of
correlation functions, showing that these can be written as a
series of time dependent exponential functions. While Lee’s
approach was limited to the discussion of autocorrelations
of Hermitian operators in order to deal with time-reversal
symmetric c(t), here we shall obtain a general result also for the
case of cross correlations of possibly non-Hermitian operators.
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This is a relevant generalization of what we have already shown
for special cases, namely those of autocorrelations in classical
[8] or quantum [9] systems. The result presented here has the
role of a general theorem which can be applied to any one of
the fields mentioned at the beginning. We will accomplish this
result without introducing the fluctuating force and memory
function concepts by using a hierarchy of differential equations
and clarifying the connection between possible approximate
forms of c(t) and the contraction of the dimensionality of the
Hilbert space under consideration. This theoretical derivation
is contained in Sec. II, while the conclusions are summarized
in Sec. III.

II. GENERAL THEORY

Let us start from the general time expansion representation
of the operator B(t) which can be immediately derived from
the Liouville equation, i.e.,

B(t) = exp(iLt)B =
∞∑

ν=0

ξν(t)B(ν), (1)

where ξν(t) = tν/ν! are time dependent coefficients, and
B(ν) = (iL)νB = [dνB(t)/dtν]t=0 are the time derivatives of
B(t) at t = 0 and B(0) ≡ B. Here we assume, as it is usually
done when Eq. (1) is used in theoretical physics, that all the
B(ν) exist and are univocally defined in terms of the variables
of the system.

The time evolution of the N -body system, as mentioned
before, can be studied in practice with reference to an
appropriate correlation function between two observables
defined in a Hilbert space S where Eq. (1) is a possible
representation of the time behavior of the operators of the
system. The detailed study clearly requires for two operators
the assumption of a specific form for the inner product (B,A)
and, consequently, the normalization and the metric of the
space S. Here, for the moment, we do not need to specify the
detailed form of the inner product (B,A).

We first observe that the solution of Eq. (1) gives B(t) in
terms of the complete set {B(ν)} in S which, however, is not an
orthogonal set.

Once a particular form of the inner product is defined in
S, the GS process permits one to construct an orthogonal
complete set {fν} out of {B(ν)} and write B(t) as an
expansion in terms of {fν} with new time dependent
coefficients in place of the {ξν(t)}. Since in the GS
process one of the {fν} can be chosen arbitrarily, we start
with the choice f0 = B. The GS when applied to {B(ν)}
gives the first few fν as linear forms of the quantities
B(ν) = (iL)νf0 and f0, . . . ,fν−1. In particular, we have
f0 = B(0) = B; f1 = B(1) − i�0f0 = iLf0 − i�0f0 where
i�0 = (B(1),B(0))/(B(0),B(0)) = (iLf0,f0)/(f0,f0); and f2 =
iLf1 − i�1f1 + �1f0 with �1 = −(iLf1,f0)/(f0,f0) =
(f1,f1)/(f0,f0) and i�1 = (iLf1,f1)/(f1,f1).

Instead of using the GS method applied to the {B(ν) =
(iL)νf0}, the expressions of f1 and f2 suggest construction of
the {fν} successively in terms of the {iLfν−1} which, in turn,
results in combinations of the B(μ) with μ � ν. Here we adopt
this alternative procedure, showing that it permits one to arrive
at a very useful recurrence relation.

Let us continue in the construction, first with f3 and then
in general. We start with the expression

f3 = iLf2 + X, (2)

and search for the explicit expression of the vector X requiring
orthogonality of f3 with all the other previous vectors, i.e.,

(f3,f0) = (iLf2,f0) + (X,f0) = 0, (3a)

(f3,f1) = (iLf2,f1) + (X,f1) = 0, (3b)

(f3,f2) = (iLf2,f2) + (X,f2) = 0. (3c)

The first one, by using the property of L of being Her-
mitian and the expression of f1, gives (f3,f0) = −(f2,f1) −
i�0(f2,f0) + (X,f0) = 0, where the first two terms vanish for
the orthogonality of f2 to both f1 and f0 so that X is orthogonal
to f0 as well. Then, Eqs. (3b) and (3c) allow one to write X as
a linear combination of f1 and f2, leading to

f3 = iLf2 − i�2f2 + �2f1, (4)

where �2 = −(iLf2,f1)/(f1,f1) = (f2,f2)/(f1,f1) and
i�2 = (iLf2,f2)/(f2,f2).

In general, we can apply the same procedure to fν+1 and
have the recurrence relation

fν+1 = iLfν − i�νfν + �νfν−1, (5)

with �ν = (fν,fν)/(fν−1,fν−1) and i�ν =
(iLfν,fν)/(fν,fν). These formulas hold for ν � 1 but
can be extended to the case ν = 0 if one defines f−1 ≡ 0,
while �0 is given a nonzero value explicitly defined later. The
quantities �ν and �ν are real, with �ν > 0.

Since the time evolution of all the vectors in S is governed
by the same Liouville operator equation, the same time shift
exp(iLt) applies to all of the members of the set {fν}. Then,
Eq. (5) can also be written as

fν+1(t) = d

dt
fν(t) − i�νfν(t) + �νfν−1(t), (6)

which is a differential recurrence relation connecting the time
dependent orthogonal basis vectors created with our method.

Equation (5) can be used starting from f0 to derive the
explicit expressions of all the

fν = fν(B,B(1), . . . ,B(ν); �1, . . . ,�ν−1; �1, . . . ,�ν−1). (7)

If we now expand an operator A(t) in terms of the set {fν} as

A(t) =
∞∑

ν=0

b∗
ν (t)fν, (8)

the expansion coefficients are the normalized correlations
b∗

ν (t) = (A(t),fν)/(fν,fν) and for their complex conjugate
we have bν(t) = (fν,A(t))/(fν,fν). The first of these is just
b0(t) = (B,A(t))/(f0,f0), which is the normalized version of
the correlation function c(t) that we are interested in. The
respective zero-time values are bν(t = 0) = 0 with ν > 0 and
b0(t = 0) = (B,A)/(f0,f0).

The substitution of Eq. (8) into the Liouville equation for
A(t) and the use of the recurrence relation in Eq. (5) permits

032106-2



EXPONENTIAL SERIES EXPANSION FOR CORRELATION . . . PHYSICAL REVIEW E 90, 032106 (2014)

one to derive a differential recurrence relation also for the
correlations bν(t), i.e.,

d

dt
bν(t) − i�νbν(t) + �ν+1bν+1(t) − bν−1(t) = 0, (9)

for ν � 0 and b−1 = 0.
The Laplace transformation of Eq. (9) gives

b̃ν−1(z) = (z − i�ν)b̃ν(z) + �ν+1b̃ν+1(z), (10)

where ν � 0 and we have defined b̃−1(z) = 1. Equation (10)
can also be written as

b̃0(z) =
[
z − i�0 + �1b̃1(z)

b̃0(z)

]−1

, (11a)

b̃ν(z)

b̃ν−1(z)
=

[
z − i�ν + �ν+1b̃ν+1(z)

b̃ν(z)

]−1

, (11b)

with ν � 1. If we now define

K̃0(z) = b̃0(z), (12a)

K̃ν(z) = �ν

b̃ν(z)

b̃ν−1(z)
, (12b)

from Eqs. (11) it follows that

K̃0(z) = [z − i�0 + K̃1(z)]−1, (13a)

K̃ν(z) = �ν[z − i�ν + K̃ν+1(z)]−1. (13b)

Recursive application of Eqs. (13) gives the continued
fraction representation of any K̃ν(z) with ν � 0, which is also
the form of the final result of the MZ theory, i.e.,

K̃ν(z) = �ν

z − i�ν + �ν+1

z − i�ν+1 + �ν+2

z − i�ν+2 + · · ·

, (14)

where, in the case ν = 0, the definition �0 = b0(t = 0) =
(B,A)/(f0,f0) is adopted.

It can be noted that in the time domain, Eqs. (13) correspond
to

K̇ν(t) − i�νKν(t) +
∫ t

0
dt ′Kν+1(t − t ′)Kν(t ′) = 0 (15)

(with ν � 0), i.e., to a set of recurrent differential equation of
second-order Volterra type given in the MZ theory for the
memory functions and usually named Langevin equations,
which here appear to be just a direct consequence of the
dynamical behavior expressed in Eq. (9) and shows that the
solution of the many-body dynamics given by the complex
spectral distribution (14) does not need the introduction
of the concept of memory function, even though in some
case it may be useful. From Eq. (15), we also see that
(fν,fν)/(fν−1,fν−1) = �ν = Kν(t = 0) > 0 for ν > 0.

It can be observed that K̃ν(z) is defined with respect to the
subspace Sν ⊂ S = S0, which is also a Hilbert space, spanned,
however, by fν,fν+1, . . .. In the case of a Hermitian operator,
the autocorrelation (B,B(t)) is easily shown to be an even
function of time and all �ν vanish identically, so that the
expression given by Eq. (14) for K̃0(z) is identical to the one
previously derived in special cases [5,8,9] for the relaxation

function and to the one derived in the case of classical
many-body systems [8]. It is worthwhile to notice here that
in practical cases, the necessary approximations always reflect
a termination of the continued fraction in Eq. (14) at an
appropriate level, indicating, at the same time, a restriction
of the dimensionality of the Sν space considered.

The λth convergent of the continued fraction (14) can be
expressed as ratios of polynomials in z [10]:

K̃ (λ)
ν (z) = �ν

det D(λ,ν+1)(z)

det D(λ,ν)(z)
, (16)

where D(λ,ν)(z) is a (λ − ν)-dimensional tridiagonal symmetric
matrix whose elements are D(λ,ν)

αα = z − i�α+ν−1, D
(λ,ν)
αβ =

i�
1/2
α+νδα,β−1 where 1 � α < β � λ − ν.
By taking the limit for λ → ∞, Eq. (16) represents a

meromorphic function with an infinite number of poles that
can be written by applying the standard method of partial
fraction decomposition as a uniformly convergent series [11],
leading to

K̃ν(z) =
∞∑

j=1

I
(ν)
j

z − z
(ν)
j

, (17)

where we have dropped the superscript λ, having taken the
limit to infinity. Here, {z(ν)

j } = {z(ν)
1 ,z

(ν)
2 , . . .} is the set of poles

[12], and the residues I
(ν)
j are

I
(ν)
j = lim

z→z
(ν)
j

(
z − z

(ν)
j

)
K̃ (

νz). (18)

Since the series in Eq. (17) is uniformly convergent, term-
by-term Laplace antitransformation can be performed and we
can write, for t � 0,

Kν(t) =
∞∑

j=1

I
(ν)
j exp

(
z

(ν)
j t

)
. (19)

Equations (17)–(19) refer, for simplicity, to the case in
which all of the quantities {z(ν)

j } are distinct poles of K̃ν(z). It is
well known, however, that the partial fraction decomposition
method can handle the case of multiple poles as well. The
expressions for K̃ν(z) and Kν(t), valid in the general case of
multiple poles, are reported in the Appendix.

In Eq. (19), I
(ν)
j and z

(ν)
j , with ν � 0, appear as the

amplitudes and the eigenfrequencies, respectively, of a normal
mode representation of Kν(t), and may be in general either
real or complex, with Re(z(ν)

j ) < 0 in order to have, as usual,

Kν(t) → 0 for t → ∞. (The case in which Re(z(ν)
j ) = 0 for a

given j is also possible, as it corresponds to an oscillating time
behavior where Kν(t) remains, however, a bounded function.)
In particular, for the correlation that we are interested in, we
have

b0(t) = (B,A(t))/(B,B) =
∞∑

j=1

I
(0)
j exp

(
z

(0)
j t

)
. (20)

Equation (20), which we shall denote as the exponential
function (EF) solution of the dynamics of the many-body
system, is the statement of the theorem.
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Moreover, as it appears obvious from their respective
definitions, all four sets {�ν}, {�ν}, {I (0)

j }, and {z(0)
j } may

be expressed in terms of the set of the normalized moments
M (k) = (−i)k(dkb0(t)/dtk)t=0. In particular, from Eq. (20), it
follows that {I (0)

j } and {z(0)
j } satisfy a set of relations of the

form
∞∑

j=1

I
(0)
j

(
z

(0)
j

)k = ikM (k), (21)

for k = 0,1,2, . . .. Equation (19) shows that an EF solution
holds as well for any of the memory functions Kν(t) related,
in the MZ approach, to the correlation function b0(t), and the
above considerations also apply to each of them.

The expansion (20) in an infinite sum of exponential
functions is a fully general expression for the time behavior
of the quantum-mechanical normalized correlation function
b0(t), which is an alternative to the usual Maclaurin power
expansion,

b0(t) =
∞∑

n=0

inM (n)

n!
tn. (22)

Both series (20) and (22) are exact and have the same
convergence properties when all of the moments M (k) do exist
and are finite, as it is usually assumed for any well-behaved
physical correlation b0(t). Indeed, by Taylor expanding the
exponentials in (20) and using (21), Eq. (22) is immediately
obtained.

In some sense, however, the series (20) and (22) are com-
plementary to each other when approximated by truncating
summation after a few terms. The form (22) is useful in
describing the behavior at short times, while Eq. (20) can
be useful at longer times. In fact, approximations of Eq. (22)
mean to retain few power terms, while to approximate Eq. (20)
means to retain few exponentially decaying functions, which is
the same as truncating the continued fraction given by Eq. (14)
at a conveniently low level. Obviously, both approximations
violate, at some level, the physical request that all frequency
moments of (B,A(t)) must be determined and finite, limiting
the number of relations (21) that can be used in practice in the
analysis of either experimental or calculated correlations and
spectra. This violation is also reflected in the fact that if the
continued fraction expression of b̃0(z) is truncated by setting
K̃ν(z) to a constant value, then Eq. (12b) implies that b̃ν(z)
and b̃ν−1(z) are linearly dependent, which is inconsistent and
leads Lee to exclude a single-exponential behavior for b0(t) as
shown in Refs. [6,13].

In a many-body system, the inner product used in the
definition of a general two-variable correlation function is
usually given by (B,A(t)) = Tr[BA†(t)ρ] where ρ is the
statistical density operator given by ρ = I in pure states,
and by either ρ = exp(−βH ) or ρ = exp[−β(H − μN )]
at thermodynamic equilibrium in the canonical and grand-
canonical ensemble, respectively. Here, β = 1/(kBT ), where
kB is the Boltzmann constant, T is the temperature, μ

is the chemical potential, I is the identity operator, and
N is the particle number operator. When the results of
linear response theory, such as either response or relaxation
functions, are relevant for the discussion, the inner product can

also be represented by the Kubo transform [14] (B,A(t)) =∫ β

0 dλTr[B exp(−λ�)A†(t) exp(λ�)ρ] with � = H and � =
H − μN in the canonical and grand-canonical ensemble,
respectively.

III. CONCLUSIONS

The main result of this work can also be cast in the form of
a theorem, as follows:

(1) Any correlation function c(t) = (B,A(t)) of a many-
body system, either classical or quantum mechanical in first
and in second quantization, at thermodynamic equilibrium,
under the following hypotheses:

(i) the system is Hamiltonian;
(ii) an L2 Hilbert space S of the system is defined;
(iii) the operators A and B are linear and correspond to

dynamical variables of the system;
(iv) the Laplace transform C̃(z) has single poles;

can be expanded in a series of time dependent exponential
functions, with a characteristic set of complex frequencies
which can be identified as the eigenfrequencies of the
correlation and are functions of the moments of the related
spectrum.

(2) At thermodynamic equilibrium, the eigenfrequencies
depend on the state variables, for example density and
temperature.

(3) The Laplace transform of the correlation turns out to be
expressed by a corresponding series of complex functions of
the form

C̃(z) =
∞∑

j=1

I
(0)
j

z − z
(0)
j

. (23)

(4) Depending on the appropriate definition of the inner
product in S, the correlation function can represent a property
of either a classical or a quantum-mechanical system, in
particular a correlation function, a response function, and
a relaxation function in the linear response theory, or a
Green function. The last one can be particularly useful in
describing correlations and spectra of spins in magnetic
systems and bosonic and fermionic systems in condensed
matter. An example of an application to the relaxation function
in a quantum system, namely, for the spectrum of velocity
autocorrelation function in liquid hydrogen, was given in
Ref. [9].

(5) The correlation functions can refer to statistical systems
described either in pure quantum states or in the canonical or
in the grand-canonical ensemble.

(6) The EF series expansion (20) of b0(t) provides a
representation of its time behavior equivalent to, and as
general as, the Maclaurin series (22). In the comparison with
spectroscopic results, obtained either in time or frequency
domain, the expansion is necessarily approximated with a
finite number of terms and the cutoff directly reflects the
restriction to a finite number of dimensions for the Hilbert
space S in which we assume the dynamics can be actually
represented. This approach can be particularly useful, in
general, in long-time approximations of correlation functions
as well as in low-frequency approximations of the related
spectra.
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(7) Our result shows that for describing the behavior of
either the correlation function or its spectrum, there is no
need to refer directly to the concepts of fluctuating forces
and memory functions, or to the continued fraction approach
that has been used so much in the past following Mori and
Zwanzig. On the other hand, Eq. (19) shows that not only the
correlation b0(t) but also a memory function of any order is
expressed by an EF expansion. Then, proper approximations
to the dynamic behavior can also be obtained by truncating
the EF series representing a certain Kν(t). It is important,
however, to realize that such approximations correspond to
projections of S onto finite-dimension subspaces that are,
in general, different from those obtained by truncation of
the series (20). In Ref. [9], we showed examples of both
types, where the truncation of the exponential series is applied
to either the correlation function itself or the second-order
memory function. In properly approximated forms, the EF
expansion has also been explicitly applied to the description
of the dynamics of a variety of systems [15–22]. Moreover, an
EF-based expression is assumed implicitly, though sometimes
inadvertently, in all cases where an MZ continued fraction is
truncated at some level in such a way as to give b̃0(z) the form
of Eq. (16).

(8) As a consequence of the above theorem, the time
dependence of a correlation function in Hamiltonian many-
body systems is always rigorously given in the EF form
also at long times. Power-law asymptotic behaviors are often
used to describe long-time tails [23–26]. However, in some
cases, the appearance of such time dependences is either
not well assessed or limited to restricted time ranges and

selected thermodynamic states [27,28]. In any case, from a
general theoretical point of view, since the EF form is an
exact representation, asymptotic power-law behaviors should
be considered no more than effective approximate models
for microscopic Hamiltonian dynamics correlations. It is,
however, clear that asymptotic behavior can in practice be
well represented by both EF and power laws, depending on the
precision of the data under examination. On the other hand,
there are non-Hamiltonian systems in which an EF behavior
could not be adequate [29,30].

APPENDIX

When the j th pole z
(ν)
j is of order nj , the partial fraction

decomposition of Eq. (17) is written as

K̃ν(z) =
∞∑

j=1

nj∑
μ=1

I
(ν)
jμ(

z − z
(ν)
j

)μ ,

where the coefficients are given by

I
(ν)
jμ = 1

(nj − μ)!
lim

z→z
(ν)
j

dnj −μ

dznj −μ

[(
z − z

(ν)
j

)nj
K̃ν(z)

]
.

In the time domain, Eq. (19) is replaced, in the general case,
by

Kν(t) =
∞∑

j=1

nj∑
μ=1

I
(ν)
jμ exp

(
z

(ν)
j t

) tμ−1

(μ − 1)!
.
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