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Effective diffusion coefficient in tilted disordered potentials: Optimal relative diffusivity
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In this work we study the transport properties of non-interacting overdamped particles, moving on tilted
disordered potentials, subjected to Gaussian white noise. We give exact formulas for the drift and diffusion
coefficients for the case of random potentials resulting from the interaction of a particle with a “random polymer”.
In our model the polymer is made up, by means of some stochastic process, of monomers that can be taken
from a finite or countable infinite set of possible monomer types. For the case of uncorrelated random polymers
we found that the diffusion coefficient exhibits a non-monotonous behavior as a function of the noise intensity.
Particularly interesting is the fact that the relative diffusivity becomes optimal at a finite temperature, a behavior
which is reminiscent of stochastic resonance. We explain this effect as an interplay between the deterministic and
noisy dynamics of the system. We also show that this behavior of the diffusion coefficient at a finite temperature
is more pronounced for the case of weakly disordered potentials. We test our findings by means of numerical
simulations of the corresponding Langevin dynamics of an ensemble of noninteracting overdamped particles
diffusing on uncorrelated random potentials.

DOI: 10.1103/PhysRevE.90.032105 PACS number(s): 05.40.−a, 05.60.−k, 05.10.Gg, 02.50.Cw

I. INTRODUCTION

It has been recognized that thermal diffusion of particles
in one-dimensional (1D) potentials plays an important role in
describing several physical systems, both at the mesoscale
and at the nanoscale [1–4]. Particularly, much effort has
been done to understand several phenomena occurring in
tilted periodic potentials, such as the giant enhancement of
diffusion [5–7] or the enhancement of transport coherence
[8–11]. These characteristics have become important because
of its potential applications for technological purposes, such as
particle separation [5–7], DNA electrophoresis [12], or novel
sequencing techniques [13,14]. Moreover, understanding the
physics of thermal diffusion would shed some light about
several biological process involving 1D diffusion such as
intracellular protein transport [3,4], diffusion of proteins along
DNA [15–19], or DNA translocation through a nanopore
[13–15].

The thermal diffusion of particles in 1D disordered poten-
tials has also been the subject of intense research. Its impor-
tance lies on the fact that this class of systems has a diversity of
behaviors which are not present in absence of disorder [20–22].
For example, one of the earliest attempts to understand the
thermal diffusion on one-dimensional disordered lattices is
due to Sinai [23]. The so-called Sinai’s model has attracted
much attention because it can be treated analytically [23–26]
and represents one of the most simple models exhibiting
several characteristics found in more complex systems such
as anomalous diffusion [27–30]. Another model that has also
been widely explored corresponds to a system of overdamped
particles moving on potentials with “Gaussian disorder”
[20,31–35]. It has been shown that this model exhibits normal
and anomalous diffusion as well as normal and anomalous
drift [31–33,36]. In particular, this system has been used to
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understand some transport properties of proteins moving on
DNA or the translocation of DNA thorough a nanopore [15]. A
third class of transport on random media models are those with
purely deterministic (overdamped or underdamped) dynamics
[37–42]. Despite their simplicity, these models are useful in
modeling several physical systems [38–42] allowing a better
understanding of the origin of the transport properties from
the very deterministic dynamics [42]. Moreover, these models
already exhibit normal and anomalous diffusion [37,41,42],
and it has been proved that the emergence of such behaviors
depends on the correlations of the random potentials or, in
general, on the validity of the central limit theorem of a certain
observable [42]. It is worth to point out that the deterministic
models do not match with the zero temperature limit of
those models with Gaussian disorder at finite temperature.
Indeed, to our knowledge, it has not been considered the
influence of Gaussian white noise in the transport properties of
deterministic models (e.g., those considered in Ref. [38] or in
Ref. [42]). In this work we found that in this class of systems
the presence of Gaussian white noise induces remarkably
different transport properties with respect to those found at
zero temperature. Examples of the latter are the non-monotonic
dependence of the diffusion coefficient on the temperature
over a wide range of tilt strengths and the enhancement of
the diffusion coefficient by decreasing the disorder. Moreover,
we are able to calculate exact expressions for the drift and
diffusion coefficients valid for arbitrary tilt strengths and
noise intensities. The latter allows us to understand the origin
of such properties as an interplay between the deterministic
and noisy dynamics, which we explore in detail in this
work.

The paper is organized as follows. In Sec. II we present the
working model and establish the notation used throughout
this work. In Sec. III B we give exact formulas for the
drift and diffusion coefficients of our model. We prove
that these quantities reduce to the corresponding transport
coefficients for deterministic systems in the zero temperature
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limit. We also show that the drift and diffusion coefficients
reported in this work are consistent with those given for
systems without disorder. In Sec. IV we test our formulas
for the particle current and the diffusion coefficient for the
case of uncorrelated potentials. In particular, we study the
phenomenon of enhancement of the diffusion coefficient by
weakening the disorder in the polymer. We compare the results
analytically obtained for such quantities and those obtained by
means of Langevin dynamics simulations. Finally in Sec. V we
give a brief discussion of our results and the main conclusions
of our work. Two appendices are included containing detailed
calculations.

II. MODEL

We will consider an ensemble of Brownian particles with
overdamped dynamics moving on a 1D disordered potential
V (x) subjected to an external force F . The equation of motion
of one of these particles is given by the stochastic differential
equation,

γ dXt = (f (Xt ) + F )dt + �0dWt, (1)

where Xt stands for the position of the particle and Wt

is a standard Wiener process. The constants �2
0, F and

γ are the noise intensity, the strength of the tilt and the
friction coefficient, respectively. According to the fluctuation-
dissipation theorem �2

0 = 2γβ−1, where β, as usual, stands
for the inverse temperature times the Boltzmann constant,
β = 1/kBT . The function f (x) represents minus the gradient
of the potential V (x) that the particle feels due to its interaction
with the substrate where the motion occurs.

The substrate (or the polymer) on which the particles are
moving will be assumed to be made up of “unit cells” of
constant length L. The unit cells represent the monomers
comprising the polymer. Let us call A the set of possible
monomer types, which can be assumed to be finite or countable
infinite. Let the polymer be represented by an infinite symbolic
sequence a := (. . . ,a−1,a0,a1, . . . ), where aj ∈ A stands for
the monomer type located on the j th cell, for all j ∈ Z. The set
of possible random polymers will be denoted byAZ according
to the conventional notation in symbolic dynamics [43]. As in
Ref. [42], we assume that the disordered potential V (x) is the
result of the interaction of a particle with the random polymer.

Let x ∈ R be the particle position along the substrate
a ∈ AZ. It is clear that the potential is a function of both,
the position and the substrate, i.e., V (x) = ψ(x,a). If x = 0
we assume that the particle is located at the beginning of the
zeroth monomer a0. Let us write x as x = y + nL, where y is
the relative position of the particle on the nth cell. Then, the
random potential V (x) can be seen as a function ψ depending
on the relative position y, the nth monomer kind an, and
possibly on the closest monomers to an, i.e., an−1 and an+1

(or even, depending on all the monomers in the chain if the
interactions are large enough). See Fig. 1 for an schematic
representation of this situation. Let σ : AZ → AZ represents
the shift mapping on AZ, i.e., b = σ (a), then bi = ai+1 for all
i ∈ Z. Following the notation of Ref. [42], we have that the
potential at the nth cell can be written as

V (x) = ψ[y,σ n(a)].

random polymer

an−1 anan−2 an+1 an+2... ...

(n−1)L (n+1)LnL
y

FIG. 1. Schematic representation of the particle-polymer inter-
action. When located at x = nL + y the particle feels a potential
V (x) = ψ[y,σ n(a)] that depends on the monomer type an, the relative
position y on the unitary cell, and on the neighbor monomer an−1 and
an+1. The dependence of the interaction on the nth monomer and its
neighbors is represented by the dependence of ψ on the nth shift of
the sequence, σn(a).

Notice that the above property for the potential ψ can be
generalized as follows: the displacement of the particle by an
integer number of cells, say for example nL, is equivalent to
shifting backward the polymer the same number of cells. The
latter is an action achieved by the shift mapping σn(a) [42]
over the symbolic sequence a. This property can therefore be
written down as

ψ(x + nL,a) = ψ[x,σ n(a)], (2)

for every x ∈ R.
In our work, we will assume that the substrate is generated

by some stochastic process. In other words, we assume that the
substrate a is drawn at random by some stationary measure μ

onAZ. As in Ref. [42] we will also assume that such a measure
μ is an ergodic and shift-invariant (i.e., translationally invariant
or, equivalently, σ -invariant) probability measure.

III. THE PARTICLE CURRENT AND THE EFFECTIVE
DIFFUSION COEFFICIENT

Reimann et al. in Ref. [5] have shown that the effective
diffusion coefficient can be written in a closed form if the
first and second moments of the first passage time (FPT) are
known exactly. An analogous statement has been proved for
deterministic overdamped particles diffusing over disordered
potentials [42]. For the latter case, the diffusion coefficient can
be written explicitly in terms of the first and second moments
of the “crossing times” and the corresponding pair correlation
function. Here we will combine the ideas developed in Refs. [5]
and [42] to give exact expressions for the particle flux and the
diffusion coefficient for an ensemble of particles in disordered
potentials.

Since there are two underlying random process in our sys-
tem (the Gaussian white noise and the disordered potentials),
its is necessary to introduce two kinds of averages. First let
us consider a realization of the polymer a ∈ AZ, which fixes
the potential felt by a given particle. If we put an ensemble
of non-interacting Brownian particles over such a polymer we
will denote the average over this ensemble of particles as 〈·〉n.
This average will be referred to as the average with respect to
the noise. Once a certain observable has been averaged with
respect to the noise, it still depends on the specific realization
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of the polymer a. Thus we need to perform a second average
which should be carried out over an ensemble of different
realizations of the random polymer. This average is performed
by using the stationary measure μ defining the process by
means of which we build up the polymer. This average will
be referred to as the average over the polymer ensemble and
will be denoted by 〈·〉p. If we perform both averages we will
use the notation 〈〈·〉〉. Additionally, we will use the notation
Varn(O) := 〈O2〉n − 〈O〉2

n and Varp(O) := 〈O2〉p − 〈O〉2
p to

denote the variance of the observable O with respect to the
noise and the polymer ensemble, respectively. Along this line,
Var(O) will denote the variance of the observable O with
respect to both, the noise and the polymer ensemble, i.e.,
Var(O) := 〈〈O2〉〉 − 〈〈O〉〉2.

A. The particle current

Let us consider a realization of the polymer a ∈ AZ. As
we stated above, such a polymer induces a random potential
V (x) that can be written as a function of the nth shift of
the polymer σn(a) and the relative position y ∈ [0,L], i.e.,
V (x) = ψ[y,σ n(a)], where x = y mod [L]. Let a,b ∈ R be
such that a < b and let τ (a → b) denote the FPT of a Brownian
particle from a to b. Then, to evaluate the particle current we
need to calculate the mean FPT. It has long been known that
the moments of the FPT satisfy a recurrence relation [44],

〈τn(a → b)〉n = nγβ

∫ b

a

dx

∫ x

−∞
dy 〈τn−1(y → b)〉n

× exp(β[V (x) − V (y) − (x − y)F ]), (3)

for n ∈ N, with 〈τ 0(y → b)〉n := 1. Since the elementary cell
has a fixed length L, we are interested in evaluating the mean
first passage time from nL to (n + 1)L (the nth unit cell). This
quantity will be further used to evaluate the particle current.
Let T1 := 〈τ (nL → (n + 1)L)〉n be defined as the first passage
time through the nth unit cell. It is clear that T1 depends on
the monomer closest to the particle and its neighbors, i.e.,
T1 = T1 [σn(a)]. If we calculate T1(a) for arbitrary a ∈ AZ we
can obtain T1 [σn(a)] simply by shifting n times the symbolic
sequence a. This makes it clear that it is enough to calculate
the mean FPT through the first unit cell, T1(a). In Appendix A
we show that T1(a) can be written as

T1(a) = γβ

∞∑
m=1

e−mβFLq+(a)q−[σ−m(a)]

+ γβ

∫ L

0
Q−(x,a)B+(x,a)dx. (4)

Here, the functions q+,q− : AZ → R are defined as

q±(a) =
∫ L

0
dx exp(±β[ψ(x,a) − xF ]). (5)

We also define the functions B± : R × AZ → R and Q± :
R × AZ → R as

Q±(x,a) =
∫ x

0
dy exp(±β[ψ(y,a) − yF ]), (6)

B±(x,a) = exp(±β[ψ(x,a) − xF ]). (7)

Once we have obtained an expression for the FPT averaged
with respect to the noise we need average over the polymer
ensemble. This gives

〈T1(a)〉p = γβ

∞∑
m=1

e−mβFLAq(m)

+ γβ

〈∫ L

0
Q−(x,a)B+(x,a)dx

〉
p

, (8)

where

Aq(m) := 〈q+(a)q−[σ−m(a)]〉p.

Now let us consider a special case to obtain a more simple
expression for 〈T1(a)〉p. Let the particle be located at the nth
cell and assume that the particle-polymer interaction is such
that the random potential at x = y + nL depends only on the
nth monomer an. This is equivalent to say that

V (x) = ψ[x,σ n(a)] = ψ(x,an). (9)

Let us assume additionally that the polymer is built up at
random by means of the Bernoulli measure. This imply that
the monomers in the chain are concatenated at random to
comprise the polymer without any dependence on the identity
of their neighbors. Thus, any random polymer obtained in this
way has no correlations at two different monomer sites. To
define the Bernoulli measure it is only necessary to specify the
one-monomer probabilities {p(a) : a ∈ A}. Here p(a) gives
the probability to find the monomer a ∈ A along the polymer.
With these hypotheses we have that

Aq(m) = 〈q+(a)〉p〈q−(a)〉p.

Notice that the last expression no longer depends on m since
the Bernoulli measure is shift invariant. This allows us write
the polymer average of the mean FPT as

〈T1(a)〉p = γβ
e−βFL

1 − e−βFL
〈q+(a)〉p〈q−(a)〉p

+ γβ

〈∫ L

0
Q−(x,a)B+(x,a)dx

〉
p

. (10)

Following the arguments given in Refs. [5,6,42], we have
that the particle flux is given by

Jeff = L

〈T1〉p
. (11)

In the following subsection we will derive with more details
this expression as well as the expression for the diffusion
coefficient.

B. The effective diffusion coefficient

The random variable τ (0 → L) gives the time that the
particle spends crossing from the left to the right throughout
the first monomer a0. If the potential is fixed, following the
arguments in Refs. [5,6], it is clear that the first passage time
from 0 to nL can be written as the sum

τ (0 → nL) =
n−1∑
m=0

τ (mL → (m + 1)L). (12)
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The last statement is true since we can neglect the “backward
transitions” because they are suppressed by an exponential
factor exp(−mβFL) [5]. Next notice that τ (0 → nL) can
be considered as a sum of random variables which are
not necessarily independent. According to the central limit
theorem [45–47] we have that a sum of random variables
(appropriately normalized) converge to a normal distribution
as n → ∞ if the correlations decay fast enough. In this way, a
sufficient condition for τ (0 → nL) to have an asymptotically
normal distribution is that, the FPT τ (nL → (n + 1)L) has
pair-correlations,

Cτ (�) := 〈〈τ (0 → L)τ (�L → (� + 1)L)〉〉 − 〈〈τ (0 → L)〉〉2,

decaying faster than �−1.
The correlation of the FPT at two distant unit cells, say for

example the mth and lth cells, arises only by the correlations
between the monomers am and al . This is because the noise
generates no correlations between FPT’s at distant sites even in
the case of periodic potentials (i.e., fully correlated potentials)
[5]. From these arguments it follows that the average (with
respect to the noise) 〈τ (0 → L)τ (�L → (� + 1)L)〉n can be
factorized as the product of the averages T1(a)T1[σ �(a)]. This
allows us write the correlation function C(�) as

Cτ (�) = 〈T1(a)T1[σ �(a)]〉p − 〈T1(a)〉2
p. (13)

In Ref. [42] it is shown that the FPT τ (0 → nL), which is
written as an ergodic sum in Eq. (12), has an asymptotic normal
distribution, then the random variable Nt defined implicitly by
the equation

Nt−1∑
m=0

τ (mL → (m + 1)L) = t

has an asymptotic normal distribution with mean

〈Nt 〉 = t

〈T1〉p
, (14)

and variance

Var(Nt ) = �2
τ t

〈T1〉3
p

. (15)

Here the constant �2
τ is defined as

�2
τ := 〈〈τ 2(0 → L)〉〉 − 〈〈τ (0 → L)〉〉2 + 2

∞∑
m=1

Cτ (m).

If we identify the process Xt [which is governed by Eq. (1)]
with the process Nt by means of the relation Xt = LNt , then
the particle current, according to Eq. (14), is given by

Jeff := lim
t→∞

〈〈Xt 〉〉
t

= L

〈T1〉p
,

and that the diffusion coefficient, according to Eq. (15), is
given by

Deff := lim
t→∞

Var(Xt )

2t
= L2�2

τ

2〈T1〉3
p

. (16)

Let use rewrite the diffusion coefficient in a more
convenient (and physically meaningful) form. First notice

that

�2
τ = 〈〈τ 2(0 → L)〉〉 − 〈T1〉2

p + 〈
T 2

1

〉
p − 〈

T 2
1

〉
p

+ 2
∞∑

m=1

Cτ (m)

= 〈〈τ 2(0 → L)〉n − 〈τ (0 → L)〉2
n

〉
p + 〈

T 2
1

〉
p − 〈T1〉2

p

+ 2
∞∑

m=1

Cτ (m), (17)

or equivalently,

�2
τ = 〈Varn[τ (0 → L)]〉p + Varp(T1) + 2

∞∑
m=1

Cτ (m), (18)

where Varn[τ (0 → L)] := 〈τ 2(0 → L)〉n − 〈τ (0 → L)〉2
n and

Varp(T1) := 〈T 2
1 〉p − 〈T1〉2

p. This expression for �2
τ states that

the total variance of the FPT is the sum of three contributions:
i) the average over the polymer ensemble of the variance of
the FPT, i.e., 〈Varn[τ (0 → L)]〉p, ii) the variance with respect
to the polymer ensemble of the mean FPT, i.e., Varp(T1), and
iii) the sum of the correlations of the mean FPT. Equation (18)
implies that the diffusion coefficient can be decomposed into
two parts,

Deff = Dnoisy + Ddet, (19)

where Dnoisy and Ddet will be referred to as the noisy and
deterministic parts of Deff , respectively. These quantities are
defined as follows:

Dnoisy = L2〈Varn(τ (0 → L))〉p

2〈T1〉3
p

, (20)

Ddet = L2Varp(T1) + 2L2 ∑∞
m=1 Cτ (m)

2〈T1〉3
p

. (21)

In Appendix A we show that the mean passage time T1 reduces
to the corresponding “crossing time” in the zero temperature
limit. This implies that Ddet tends to the deterministic diffusion
coefficient according to Ref. [42]. In the same limit (zero
temperature) the contribution Dnoisy goes to zero since the
variance with respect to the noise of the FPT, Varn[τ (0 → L)],
goes to zero as the temperature vanishes. This means that Deff

tends to the deterministic diffusion coefficient in the limit of
zero temperature.

On the other hand, when there the polymer is not disordered
(for example, the case in which the polymer consist of one
and only one monomer type) the variance of the mean FPT,
Varp(T1), is zero. This is because the mean FPT, T1(a), is no
longer a random variable but a constant (a consequence of
the fact that the polymer a is not random). Thus Ddet = 0
in this case. Moreover, it is clear that 〈Varn[τ (0 → L)]〉p =
Varn[τ (0 → L)] and that 〈T1〉p = T1 because the first and the
second moments of the FPT are no longer random variables as
well. Therefore it is not necessary to average over a “polymer
ensemble”. This implies that Dnoisy reduces to the diffusion
coefficient for periodic potentials given by Reimann et al. in
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Ref. [5] in the “zero disorder” limit,

Deff → L2Varn(τ (0 → L))
2〈τ (0 → L)〉3

n

.

All this shows that our formula for the diffusion coefficient,
given by Eq. (16), is consistent with the previous findings
reported in Refs. [42] and [5].

C. The diffusion coefficient for uncorrelated potentials

It is clear that the main difficulty we face when we try to
calculate the diffusion coefficient by means of the formula
(16) is the evaluation of the corresponding averages. For our
model we can give an explicit expression for Deff in the case
of uncorrelated polymers. Consider again the potential model
generated by the interaction of the particle with the closest
monomer to it. Thus, this potential model only depends on
one monomer, or equivalently, on one “coordinate” of a [see
Eq. (9)]. We assume that the polymer has a stationary measure
defined by the Bernoulli measure described in Sec. III B. First
notice that for the Bernoulli measure the correlation function
Cτ (�) vanish for all � ∈ N. In this way, for uncorrelated random

polymers we have that the effective diffusion coefficient
reduces to

Deff = L2[〈Varn[τ (0 → L)]〉p + Varp(T1)]

2〈T1〉3
p

. (22)

In Ref. [6], Reimann et al. gave an expression for the second
moment of the FPT. Particularly they gave an expression for
the variance of the FPT, Varn[τ (0 → L)], which turns out to be
general, i.e., for potentials which are not necessarily periodic.
According to Ref. [6], the variance of the FPT is given by

Varn[τ (0 → L)] := 〈τ 2(0 → L)〉n − 〈τ (0 → L)〉2
n

=
∫ L

0
dx

∫ x

−∞
duB+(x,a)B−(u,a)

× I2(u,a). (23)

In the last expression, the function I(u,a) is defined as

I(u,a) := γβ B+(u,a)
∫ u

−∞
dz B−(z,a).

In Appendix B we show that Varn[τ (0 → L)] can be written,
after some lengthly calculations, as

Varn[τ (0 → L)] = 2(γβ)2
∞∑

n=1

∞∑
m=1

∞∑
l=1

e−(n+m+l)βFLq+(a)q+[σ−n(a)]q−[σ−m−n(a)]q−[σ−n−l(a)]

+ 4(γβ)2
∞∑

n=1

∞∑
m=1

e−(n+m)βFLq+(a)q−[σ−n−m(a)]
∫ L

0
Q−[x,σ−n(a)]B+[x,σ−n(a)]dx

+ 2(γβ)2
∞∑

n=1

e−nβFLq+(a)
∫ L

0
(Q−[x,σ−n(a)])2B+[x,σ−n(a)]dx

+ 2(γβ)2
∞∑

m=1

∞∑
l=1

e−(m+l)βFLq−[σ−m(a)]q−[σ−l(a)]
∫ L

0
Q+(x,a)B+(x,a)dx

+ 4(γβ)2
∞∑

m=1

e−mβFLq−[σ−m(a)]
∫ L

0
B+(x,a)

∫ x

0
Q−(u,a)B+(u,a)dudx

+ 2(γβ)2
∫ L

0
B+(x,a)

∫ x

0
B+(u,a) [Q−(u,a)]2 dudx. (24)

Now, in order to evaluate the diffusion coefficient, we take the average of Varn[τ (0 → L)] over the polymer ensemble. In doing
so, it turns out that all the sums can be done exactly. We then obtain

〈Varn[τ (0 → L)]〉p = 2(γβ)2

{
e−3βFL

(1 − e−βFL)3
〈q+(a)〉2

p〈q−(a)〉2
p + (〈q2

−(a)〉p − 〈q−(a)〉2
p

) 〈q+(a)〉2
pe

−3βFL

(1 − e−2βFL)(1 − e−βFL)

+ 2
e−2βFL(

1 − e−βFL
)2 〈q+(a)〉p〈q−(a)〉p〈I0(a)〉p + e−βFL

1 − e−βFL
〈q+(a)〉p〈I1(a)〉p

+
[

e−2βFL

(1 − e−βFL)2
〈q−(a)〉2

p + (〈q2
−(a)〉p − 〈q−(a)〉2

p

) e−2βFL

1 − e−2βFL

]
〈I2(a)〉p

+ 2
e−βFL

1 − e−βFL
〈q−(a)〉p〈I3(a)〉p + 〈I4(a)〉p

}
, (25)
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where we have defined

I0(a) =
∫ L

0
Q−(x,a)B+(x,a)dx,

I1(a) =
∫ L

0
[Q−(x,a)]2 B+(x,a)dx,

I2(a) =
∫ L

0
Q+(x,a)B+(x,a)dx, (26)

I3(a) =
∫ L

0
B+(x,a)

∫ x

0
Q−(u,a)B+(u,a)dudx,

I4(a) =
∫ L

0
B+(x,a)

∫ x

0
B+(u,a) [Q−(u,a)]2 dudx.

On the other hand, the variance of the mean FPT can be written down straightforwardly from Eqs. (4) and (10). Explicitly we
obtain

Varp [T1(a)] = β2

[
e−2βFL

(1 − e−βFL)2
〈q−(a)〉2

p

(〈q2
+(a)〉p − 〈q+(a)〉2

p

) + β2 e−2βFL

1 − e−2βFL
〈q2

+(a)〉p
(〈q2

−(a)〉p − 〈q−(a)〉2
p

)

+ 2
e−2βFL

1 − e−2βFL
〈q+(a)〉p

(〈q−(a)I0(a)〉p − 〈q−(a)〉p〈I0(a)〉p
) + 〈

I 2
0 (a)

〉
p − 〈I0(a)〉2

p

]
. (27)

IV. OPTIMAL DIFFUSIVITY

In order to test our formula for the particle current as well
as for the diffusion coefficient we introduce a simple model
to calculate these quantities exactly. First we will assume
that the particle-polymer interaction is such that the resulting
potentials have the following characteristics: i) they rely on
only one monomer (the monomer where such a particle is
located) and ii) they are piece-wise linear. Let x = nL + y be
the particle position, with n ∈ Z and y ∈ [0,1], then we define

V (x) =
{
any if 0 � y < L/2

an(L − y) if L/2 � y < L.
(28)

This potential model is shown schematically in Fig. 2.
We observe that such potential is symmetric over every unit
cell, with a maximum located at y = 1/2. The height of the
potential assumed to be random taking values from a finite
set. Since the height of the potential is given by anL/2
we can assume that an represents the random variable, for
every n ∈ Z, which can take values from a set A := {fj :
1 � j � k}. We should stress here that the sequence a :=
(. . . ,a−1,a0,a1, . . . ) ∈ AZ represents the polymer (with an the
corresponding monomers for n ∈ Z). The values fj represent
the “slopes” that can be taken by the potential and, in some way,
stand for the possible monomer types from which the polymer
is built up. It is clear that the proposed potential depends only
on one monomer, i.e., V (x) = ψ(y,an) if x = y + nL. Since
we are considering the Bernoulli measure onAZ, we only need
to specify the probability that a given monomer an equals a
monomer type fj for 1 � j � k, i.e., P(an = fj ) =: p(fj ).
With these quantities we can state explicitly how to average
with respect to the polymer ensemble, if h : A → R, then we
have

〈h(a)〉p =
k∑

j=1

h(fj )p(fj ). (29)

Notice that this average does not depends on n, which reflects
the fact that the chosen measure is translationally invariant (or
shift-invariant).

With this potential model we have that all the integrals q+,
q−, and Ij (for 0 � j � 4) can be done exactly. This is because
all the integrands appearing in these quantities have the form

potential profile

1

V3

V2

(a)

(b)

a

L_
2

L
2

L

V  x(   )

a
−2

a
−1

a
0

a
1

a
2

... a3 ...
random polymer

0

V

FIG. 2. Schematic representation of the potential model. (a) The
potential profile on the zeroth unit cell. (b) A realization of the
random potential with a few unit cells. In this case every monomer
along the chain can be taken among three possible monomers (k = 3)
with heights V1 = f1L/2, V2 = f2L/2 and V3 = f3L/2. To perform
analytical calculations as well as numerical simulations we have taken
the values f1 = 0.8, f2 = 4.2, and f3 = 9.0 (see text).

032105-6



EFFECTIVE DIFFUSION COEFFICIENT IN TILTED . . . PHYSICAL REVIEW E 90, 032105 (2014)

ecx , with c a constant. Moreover, these integrals depend only
on one monomer and their polymer average can be obtained by
means of the formula (29). The involved integrals are obtained
by using symbolic calculations in Mathematica and then
numerically evaluated for the case of three monomer types.
The slopes are chosen to be f1 = 0.8, f2 = 4.2, and f3 = 9.0
with probabilities p1 := p(f1) = 0.35, p2 := p(f2) = 0.45,
and p3 := p(f3) = 0.2. The parameters L and γ are fixed to
one.

In order to plot the drift and diffusion coefficients as a
function of the temperature we will consider dimensionless
quantities as follows: first, let Fc be the critical tilt defined as

Fc := max
x

{|f (x)|}.
Next we define a dimensionless time t̃ = t/t0 with t0 :=
γL/Fc. The dimensionless particle current and the dimen-
sionless diffusion coefficient are thus defined as

J̃eff := Jeff

L/t0
= γ Jeff

Fc

,

and

D̃eff := Deff

L2/t0
= γDeff

LFc

,

respectively. Finally, we define the dimensionless temperature
T̃ and the dimensionless tilting force F̃ as

T̃ := β−1

FcL
= kBT

FcL
,

and

F̃ := F

Fc

,

respectively. Notice that the dimensionless critical tilt equals
one, i.e., F̃c = 1.

Throughout the rest of this section we will use these
dimensionless quantities (J̃eff , D̃eff , T̃ , and F̃ ) and we will drop
the “dimensionless” adjective to avoid unnecessary repetitions.
We will make the corresponding distinctions whenever it is
necessary.

In Fig. 3 we show the curve for the particle current
obtained analytically by means of Eqs. (10) and (11) for
three values of the strength of the tilt: F̃ = 0.777, F̃ =
0.999, and F̃ = 1.111. The same figure also displays the
particle current as a function of the temperature obtained by
simulating the Langevin equation (1) of 10000 particles and
using an ensemble of 50 different realizations of the random
polymer. The total simulation time for every particle was
t̃sim = 18000. Next we obtained the corresponding average
over the noise and the polymer ensemble, of the particle current
J̃eff . We notice a good agreement (within the accuracy of our
simulations) between the theoretically predicted curves and
those numerically obtained.

In Fig. 4 we show the curve for the diffusion coefficient
predicted by our formula compared with the corresponding
values obtained by means of the above described numerical
simulations. We observe again a good agreement (within
the accuracy of our simulations) between the theoretical and
numerical curves for the three cases displayed: below (F̃ =
0.777) above (F̃ = 1.111) and near (F̃ = 0.999) the critical

0 0.1 0.2 0.3 0.4 0.5
T

0

0.2

0.4

0.6

0.8

1

Jeff F = 0.777 (exact)
F = 0.777 (simulations)
F = 0.999 (exact)
F = 0.999  (simulations)
F = 1.111 (exact)
F = 1.111 (simulations)

~

~ ~
~
~
~
~
~

FIG. 3. Dimensionless particle flux as a function of the temper-
ature. In this figure we compare the exact particle current and the
corresponding obtained by means of simulations of the Langevin
equation (1). We display the particle current for a strength of the tilt
below the critical tilt: F = 0.777 (solid line and open circles), near
the critical tilt: F = 0.999 (dashed line and filled circles) and above
the critical tilt: F = 1.111 (dot-dashed line and stars).

tilt. It is important to stress that the diffusion coefficient has a
non-trivial behavior with respect to the noise intensity. First,
the diffusion coefficient increases with the noise intensity at
low temperatures. Next, it reaches a local maximum at a finite
temperature and then decreases as the temperature increases.
Finally, the diffusivity become minimal and starts increasing
again with the temperature. This drop in the diffusivity is, in
some way, a counterintuitive phenomenon, since the dispersion
of the particles is reduced while we are increasing the noise
intensity. In other words, as we increase the noise strength,
the particles become more “localized”, and consequently, the

0 0.1 0.2 0.3 0.4 0.5
T

0

0.2

0.4

0.6

0.8

1

Deff

F = 0.777 (simulation)
F = 0.777 (exact)
F = 0.999 (simulation)
F = 0.999 (exact)
F = 1.111 (simulation)
F = 1.111 (exact)~

~

~
~
~
~
~
~

FIG. 4. Dimensionless diffusion coefficient as a function of
the temperature. In this figure we compare the exact diffusion
coefficient as a function of the temperature and the corresponding
diffusion coefficient obtained by means of numerical simulations
of the Langevin equation (1). We display D̃eff for F̃ = 0.777
(solid line and open circles), F̃ = 0.999 (dashed line filled circles),
and F̃ = 1.111 (dot-dashed line and stars). We appreciate that the
diffusion coefficient obtained numerically fits satisfactorily (within
the accuracy of our simulations) the exact diffusion coefficient for the
three cases presented, below (F̃ = 0.777), above (F̃ = 1.111), and
near critical tilt (F̃ = 0.999).
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FIG. 5. Dimensionless diffusion coefficient as a function of the
temperature for strengths of the tilt (a) below the critical tilt one and
(b) above the critical tilt. We observe that below and above the critical
tilt the diffusion coefficient exhibits a local maximum as a function
of the temperature. Below the critical tilt F̃c = 1 we observe that the
diffusion peak is more pronounced as the tilt strength increases. Once
the critical tilt is reached we have the maximal diffusion peak as a
function of the temperature. We also notice that, above the critical
tilt, the larger tilt strength the lower diffusion peak. Indeed, above
some tilt strength the diffusion peak as a function of the temperature
disappears.

transport more coherent. In Fig. 5 we show the behavior of the
diffusion coefficient as a function of the temperature (by using
our exact formula) for several values of the tilting force. We can
appreciate that the non-monotonous behavior of the diffusivity
is a phenomenon which seems to be typical (rather than un-
common) since it occurs for a wide range of the strength of tilt.

The non-monotonous behavior of D̃eff is a phenomenon that
has been found in a different class of systems. Previous studies
reported that diffusivity exhibits this counterintuitive behavior
in tilted periodic potentials [8–11]. However, the occurrence
of this phenomenon in periodic potentials is not typical at all.
For example, in Ref. [8,9] the non-monotonous behavior was
found only for potentials with a special profile. Later on, it was
shown that this behavior is also found in piece-wise periodic
potentials. Moreover, to observe such a phenomenon it was
required that the potential be strongly asymmetric [11] and it

occurred in a narrow window of the parameter space. Another
way to obtain the non-monotonous behavior of the diffusivity
in periodic potentials is by considering an inhomogeneous
friction coefficient [10]. In contrast, for tilted disordered
potentials this behavior seems to be typical rather than unusual,
as can be appreciated in Fig. 5. In our model, the potential
profile is piece-wise constant and symmetric over every unit
cell. Moreover, it has a homogeneous friction coefficient, yet
the diffusion coefficient exhibits the non-monotonicity as a
function of the temperature. Moreover, this behavior is more
pronounced near the critical tilt and is persistent for a wide
range of the tilt strengths.

We interpret the rise and fall observed in the diffusivity as
a competition between the deterministic and noisy dynamics.
In Fig. 6 we plot the noisy and deterministic contributions
to the diffusion coefficient as a function of the temperature.
Above the critical tilt we observe that the deterministic part is
a monotonically decreasing function of the temperature while
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FIG. 6. (Color online) Deterministic and noisy parts of the dif-
fusion coefficient for tilting forces (a) above the critical tilt and (b)
below the critical tilt. We observe that the mechanisms leading to the
non-monotonous behavior of the diffusion coefficient as a function
of the temperature are different in every case. Above the critical tilt,
both contributions to the diffusion coefficient are monotonous. In
this case the deterministic part is decreasing (black lines) while the
noisy part is increasing (red lines). These behaviors “compete” each
other, which results in a maximum value for D̃eff = D̃det + D̃noisy at
a finite temperature. In contrast, below the critical tilt we observe
that both, the deterministic and noisy contributions are already
non-monotonous, a behavior which can be explained as an interplay
between the escape time and a relaxation time of the system.
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the noisy part is an increasing one. The non-monotonicity
of D̃eff clearly arises from the interplay between these two
behaviors. Observe that at zero temperature D̃det is finite while
D̃noise vanishes. As the temperature increases, D̃noise starts
increasing rapidly, because there are no potential barriers in
the tilted potentials. On the other hand, D̃det slowly decreases
becoming zero in the limit of infinite temperature. The
latter occurs due to the fact that the noise “weakens” the
interactions of the particle with the polymer. Consequently,
the particles become unable to recognize the monomer type
if the temperature is large enough. This implies that when
the noise dominates over the deterministic dynamics the mean
FPT, T1(a), becomes approximately the same on every unit
cell. This means that the time to cross a unitary cell no longer
depends on which kind of monomer the particle sees. Therefore
we expect to have that the variance (with respect to the polymer
ensemble) of T1 be nearly zero, implying that D̃det decreases
as the noise increases.

For tilts below the critical one we can appreciate that the
non-monotonicity is already present for both, the deterministic
and noisy parts of D̃eff . It is clear that in this case the diffusion
coefficient is zero at zero temperature since below the critical
tilt the particles cannot diffuse in absence of temperature
[38,42]. Consider the case in which the strength of the tilt is
slightly below the critical tilt. Thus the particle feels a potential
having a set of potential wells randomly located along the
polymer. If the noise is small, the escape time is high. Due to the
tilt strength, the time that the particle takes to reach a potential
well once it has escaped from another is very small. Let us call
such a time the “relaxation time”. Since the relaxation time
is small and the escape time large, we have an enhancement
in the diffusivity at small temperatures. This is a consequence
of the fact that some particles get stuck long times in the
potential wells, while those that escaped from the wells rapidly
move away from the particles that remain “localized”. If the
noise intensity is further increased the escape time increases
and becomes comparable to the relaxation time. This behavior
slows down the diffusivity at intermediate temperatures. If the
temperature is increased again a minimum in the diffusivity is
obtained and after that it increases with the temperature. The
latter is occurs because the noise fluctuations dominated over
the deterministic dynamics. These behaviors clearly result in
the non-monotonicity of the effective diffusion coefficient for
strengths of the tilt below the critical one.

The above explained competition between the escape time
and the relaxation time becomes more pronounced at the
critical tilt. Moreover, this behavior is further enhanced if we
decrease the “intensity” of the disorder. Consider for example
a polymer consisting of one monomer kind. Assume that
the potential felt by the particle is below the critical tilt and
that we “slightly” perturb the polymer by randomly replacing
some monomers. We also assume that some of these replaced
monomers induced a potential at the critical tilt. This scenario
is realized if in our model we chose a set of probabilities
such that p1 and p3 are small and p2 nearly one. With such
a choice, we have that the potential is “nearly” periodic since
the monomer f2 occurs along the chain with the highest
probability. The occurrence of the other two monomers is
therefore considered as a “weak disorder” introduced in the
polymer. We found that in this case the diffusion coefficient is
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FIG. 7. Effective diffusion coefficient for weakly disordered
potentials near the critical tilt. To built up the random potentials
we used the set of probabilities (i) p(f1) = p(f3) = 0.010 and
p(f2) = 0.980, (ii) p(f1) = p(f3) = 0.005 and p(f2) = 0.990, and
(iii) p(f1) = p(f3) = 0 and p(f2) = 1. We used the slopes f1 = 0.8,
f2 = 4.2, f3 = 9.0. (a) The diffusion coefficient for the set of
probabilities (i) corresponds to the solid line (analytically calculated)
and the filled circles (numerically simulated). Analogously, for the for
the set of probabilities (ii) the diffusion coefficient corresponds to the
dashed line (analytically calculated) and the open circles (numerically
simulated). Within the accuracy of our numerical experiments, we
observe good agreement between the simulations and the exact
curves. Notice that the maximum of the diffusion coefficient at
intermediate temperatures is enhanced for these class of random
potentials with weak disorder. (b) To better appreciate the diffusion
coefficient for the set of of probabilities (iii), corresponding to a
perfectly ordered polymer, we displayed the curves in a log-linear
graph. (c) For large noise intensities the inset shows that after the
pronounced enhancement, the diffusion coefficient increases linearly
with the temperature.

enhanced with respect to both, a more disordered potential and
a perfectly ordered one. In Fig. 7 we plot D̃eff as a function of
the temperature for three set of probabilities: (i) p1 = 0.010,
p2 = 0.980, and p3 = 0.010, (ii) p1 = 0.005, p2 = 0.990,
and p3 = 0.005, and (iii) p(f1) = p(f3) = 0 and p(f2) = 1.
We can appreciate how the diffusivity is enhanced as the
disorder level is reduced. We also observe that the lowest
diffusivity curve corresponds to the case of “zero disorder”.
Moreover, from Fig. 7 we can see that the diffusion coefficient
is enhanced up to four orders of magnitude with respect to the
“bare” diffusivity, i.e., D̃eff/T̃ ≈ 6 × 104.

V. DISCUSSION AND CONCLUSIONS

We gave exact formulas for the particle current and
the diffusion coefficient in tilted disordered potentials. We
tested these formulas by means of numerical simulations of
the Langevin dynamics of an ensemble of non-interacting
overdamped particles sliding over uncorrelated disordered
potentials. Within the accuracy of our simulations, we found
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good agreement between the theoretically predicted values
for these coefficients and those numerically obtained. We also
found that the diffusion coefficient behaves non-monotonically
with the noise intensity. Indeed, we observed that the diffusion
coefficient exhibits a local maximum as a function of the
temperature, a behavior which is similar to the stochastic
resonance. We explained the occurrence of this phenomenon
as a competition between the deterministic and the noisy dy-
namics of the system. Specifically we stated that the diffusion
coefficient can be written as the sum of two contributions: i)
the first one comes mainly from the noisy dynamics, denoted
by Dnoisy, and which in the limit of “zero disorder” reduces to
the usual diffusion coefficient in periodic potentials, and ii)
a second one which comes from the deterministic dynamics
of the particles on the disordered potentials, which we called
Ddet. We showed that the “deterministic” contribution reduces
to the diffusion coefficient for disordered potentials for the
deterministic case (given in Ref. [42]) in the zero temperature
limit. Moreover, we also found that the non-monotonicity
of the diffusion coefficient becomes more pronounced (and
enhanced) when the disorder decreases. This enhancement is
in some way analogous to the one reported by Reimann et al.
[34], with the difference that the diffusion peak we reported is
a function of the temperature instead a function of the strength
of tilt.
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APPENDIX A: MEAN FIRST PASSAGE TIME

In order to calculate the mean fist passage time T1(a) :=
〈τ (0 → L)〉n, let us first consider the integral,

I(u,a) := γβ B+(u,a)
∫ u

−∞
dz B−(z,a). (A1)

Remember that B+ and B− are defined as

B±(x,a) = exp (±β [V (x) − xF )] .

First let us notice that using the property (2) we obtain

B±(x − nL,a) = exp(±β[ψ(x − nL,a) − (x − nL)F ])

= exp[±β(ψ[x,σ−n(a)] − xF )]e±nβFL

or, equivalently,

B±(x − nL,a) = B±[x,σ−n(a)]e±nβFL, (A2)

which is a property that will be used to develop further
calculations.

Now, let us assume that the argument u in I(u,a) is such
that u = x − nL for x ∈ [0,1]. This means that the particle is
located at the −nth unit cell. Since I is defined through an
integration from −∞ to u, we can decompose it as a sum of
integrals on unit cells. This sum runs from the −∞th to the
−nth cell, i.e.,

I(x − nL,a) = γβB+(x − nL,a)

( −n−1∑
m=−∞

∫ (m+1)L

mL

B−(y,a)dy +
∫ −nL+x

−nL

B−(y,a)dy

)

= γβB+[x,σ−n(a)]enβFL

( ∞∑
m=n+1

∫ L

0
B−(y + mL,a)dy +

∫ x

0
B−(y − nL,a)dy

)

= γβB+[x,σ−n(a)]enβFL

( ∞∑
m=n+1

∫ L

0
B−[y,σ−m(a)]e−mβFLdy +

∫ x

0
B−[y,σ−n(a)]e−nβFLdy

)
, (A3)

or, equivalently,

I(x − nL,a) = γβ

∞∑
m=n+1

e(n−m)βFLB+[x,σ−n(a)]q−[σ−m(a)] + γβB+[x,σ−n(a)]Q−[x,σ−n(a)], (A4)

where we used the definitions of q±, and Q± defined in Eqs. (5) and (6), respectively. Since the first passage time from x = 0 to
x = L is the integral of I(x − nL,a) with n = 0, it is easy to see that

T1(a) = γβ

∞∑
m=1

e−mβFLq+(a)q−[σ−m(a)] + γβ

∫ L

0
B+(x,a)Q−(x,a)dx, (A5)

which is the result given in Eq. (4).

Next, we will show that T1(a) reduces to the “crossing
time” given in Ref. [42] in the limit β → ∞. First notice
that the tilted potential V (x) − xF is always a decreasing
function of x if we assume that F is above the critical
tilt Fc := minx{−V ′(x)}. This means that the minimum of

such a tilted potential on a given interval always occurs at
the upper limit and the maximum at the lower limit of the
interval. These observations allow us to write down asymptotic
expressions for the integrals involved in T1 in the limit β → ∞
by means of the steepest descent method. Explicitly we
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obtain

Q−(x,a) =
∫ x

0
exp (−β[V (y) − yF ]) dy,

≈
∫ x

0
e−β[V (x)−xF ]−β[V ′(x)−F ](y−x)dy,

= B−(x,a)
1 − exp[−βφ(x,a)x]

βφ(x,a)
. (A6)

Here we introduced the function φ(x,a) = −V ′(x) + F as
minus the gradient of the tilted potential. The function φ(x,a) is
the total force that feels the particle at x due to its interaction
with the polymer a. Notice that φ(x,a) is always positive if
F is above the critical tilt. With this result we can observe
that∫ L

0
Q−(x,a)B+(x,a)dx ≈

∫ L

0

1 − exp[−βφ(x,a)x]

βφ(x,a)
dx,

and in particular we have that

lim
β→∞

γβ

∫ L

0
Q−(x,a)B+(x,a)dx = γ

∫ L

0

1

φ(x,a)
dx, (A7)

Notice that the last integral coincides with the crossing time
τc : AZ → R defined in Ref. [42],

τc(a) := γ

∫ L

0

1

φ(x,a)
dx.

On the other hand, we have from Eq. (A6) that

q−(a) :=
∫ L

0
exp (−β[V (y) − yF ]) dy = Q−(L,a)

≈ B−(L,a)
1 − exp[−βφ(L,a)L]

βφ(L,a)
. (A8)

and similar calculations lead us to

q+(a) :=
∫ L

0
exp (β[V (y) − yF ]) dy

≈ B+(0,a)
1 − exp[−βφ(0,a)L]

βφ(0,a)
. (A9)

Now we use the properties (2) and (A2) to obtain an
asymptotic expression for q−[σ−1(a)] from Eq. (A8). This

gives

q−[σ−m(a)] ≈ B−[L,σ−m(a)]
1 − e−βφ[L,σ−m(a)] L

βφ[L,σ−m(a)]

= B−(−mL + L,a)emβFL

× 1 − exp[−βφ(−mL + L,a)L]

βφ(−mL + L,a)
. (A10)

Thus, Eq. (A9) together with Eq. (A10) give

q+(a)q−[σ−m(a)] ≈ B+(0,a)B−(−mL + L,a)

× emβFL 1 − exp[−βφ(0,a)L]

βφ(0,a)

× 1 − exp[−βφ(−mL + L,a)L]

βφ(−mL + L,a)
.

(A11)

Using the fact that

B−(−mL + L,a) = exp [−βψ(L − mL,a)] e−(m−1)βFL,

and that

B+(0,a) = exp [βψ(0,a)] ,

we obtain

e−mβFLq+(a)q−[σ−m(a)] = e−β[ψ(L−mL,a)−ψ(0,a)]

× e−(m−1)βFL

β2φ(0,a)φ(−mL + L,a)
.

In this expression we can observe that the term m = 1 goes
to zero as β−2 in the limit β → ∞. The terms with m > 1
decay exponentially with β as e−(m−1)βFL. This means that
the sum appearing in the expression for T1(a) [see Eq. (A5)]
vanishes in the limit of zero temperature. We have proved that
the second term in T1(a) is finite [see Eq. (A7)] and therefore,

lim
β→∞

T1(a) = τc(a).

This proves that the first passage time averaged with respect
to the noise reduces to the crossing time (the “deterministic
passage time”) in the limit of zero temperature.

APPENDIX B: VARIANCE OF THE FIRST PASSAGE TIME

In this Appendix we will obtain the expression (25) for the
variance of the FPT from the general form given by Reimann
et al. [5,6],

Varn[τ (0 → L)] = 2
∫ L

0
dx

∫ x

−∞
duB+(x,a)B−(u,a)I2(u,a). (B1)

First let us transform the integral
∫ x

−∞ du . . . as a series of integrals over unit cells as follows:

Varn[τ (0 → L)] = 2
∫ L

0
dx

−1∑
n=−∞

∫ (n+1)L

nL

duB+(x,a)B−(u,a)I2(u,a) + 2
∫ L

0
dx

∫ x

0
duB+(x,a)B−(u,a)I2(u,a).

or, equivalently

Varn[τ (0 → L)] = 2
∞∑

n=1

∫ L

0
dx

∫ L

0
duB+(x,a)B−(u − nL,a)I2(u − nL,a) + 2

∫ L

0
dx

∫ x

0
duB+(x,a)B−(u,a)I2(u,a).
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Now we substitute the expression for I(u,a) given by Eq. (A4) obtained in Appendix A. We obtain

Varn[τ (0 → L)] = 2
∞∑

n=1

∫ L

0
dx

∫ L

0
duB+(x,a)B−(u − nL,a)

×
[
γβ

∞∑
m=n+1

e(n−m)βFLB+[u,σ−n(a)]q−[σ−m(a)] + γβB+[u,σ−n(a)]Q−[u,σ−n(a)]

]2

+ 2
∫ L

0
dx

∫ x

0
duB+(x,a)B−(u,a)

[
γβ

∞∑
m=1

e−mβFLB+(u,a)q−[σ−m(a)] + γβB+(u,a)Q−(u,a)

]2

.

Expanding the squared terms, the above expression results in

Varn[τ (0 → L)] = 2γ 2β2
∞∑

n=1

∫ L

0
dx

∫ L

0
duB+(x,a)B−[u,σ−n(a)]e−nβFL

×
[ ∞∑

m=n+1

∞∑
l=n+1

e(2n−m−l)βFLB+[u,σ−n(a)]q−[σ−m(a)]B+[u,σ−n(a)]q−[σ−l(a)]

+ 2
∞∑

m=n+1

e(n−m)βFLB+[u,σ−n(a)]q−[σ−m(a)]B+[u,σ−n(a)]Q−[u,σ−n(a)] + B2
+[u,σ−n(a)]Q2

−[u,σ−n(a)]

]

+ 2γ 2β2
∫ L

0
dx

∫ x

0
duB+(x,a)B−(u,a)

[ ∞∑
m=1

∞∑
l=1

e−(m+l)βFLB+(u,a)q−[σ−m(a)]B+(u,a)q−[σ−l(a)]

+ 2
∞∑

m=1

e−mβFLB+(u,a)q−[σ−m(a)]B+(u,a)Q−(u,a) + B2
+(u,a)Q2

−(u,a)

]
,

and, rearranging terms, we have

Varn[τ (0 → L)] = 2γ 2β2
∞∑

n=1

∞∑
m=n+1

∞∑
l=n+1

e(n−m−l)βFL

∫ L

0
dx

∫ L

0
duB+(x,a)q−[σ−m(a)]B+[u,σ−n(a)]q−[σ−l(a)]

+ 4γ 2β2
∞∑

n=1

∞∑
m=n+1

e−mβFL

∫ L

0
dx

∫ L

0
duB+(x,a)q−[σ−m(a)]B+[u,σ−n(a)]Q−[u,σ−n(a)]

+ 2γ 2β2
∞∑

n=1

e−nβFL

∫ L

0
dx

∫ L

0
duB+(x,a)B+[u,σ−n(a)]Q2

−[u,σ−n(a)]

+ 2γ 2β2
∞∑

m=1

∞∑
l=1

e−(m+l)βFL

∫ L

0
dx

∫ x

0
duB+(x,a)q−[σ−m(a)]B+(u,a)q−[σ−l(a)]

+ 4γ 2β2
∞∑

m=1

e−mβFL

∫ L

0
dx

∫ x

0
duB+(x,a)q−[σ−m(a)]B+(u,a)Q−(u,a)

+ 2γ 2β2
∫ L

0
dx

∫ x

0
duB+(x,a)B+(u,a)Q2

−(u,a).

Now, if we make the lower bound of summation over the indices m and l equal one we obtain

Varn[τ (0 → L)] = 2γ 2β2
∞∑

n=1

∞∑
m=1

∞∑
l=1

e(−n−m−l)βFLq−[σ−m−n(a)]q−[σ−l−n(a)]
∫ L

0
dx B+(x,a)

∫ L

0
duB+[u,σ−n(a)]

+ 4γ 2β2
∞∑

n=1

∞∑
m=1

e−(m+n)βFLq−[σ−m−n(a)]
∫ L

0
dx B+(x,a)

∫ L

0
duB+[u,σ−n(a)]Q−[u,σ−n(a)]

+ 2γ 2β2
∞∑

n=1

e−nβFL

∫ L

0
dx B+(x,a)

∫ L

0
duB+[u,σ−n(a)]Q2

−[u,σ−n(a)]
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+ 2γ 2β2
∞∑

m=1

∞∑
l=1

e−(m+l)βFLq−[σ−m(a)]q−[σ−l(a)]
∫ L

0
dx

∫ x

0
duB+(x,a)B+(u,a)

+ 4γ 2β2
∞∑

m=1

e−mβFLq−[σ−m(a)]
∫ L

0
dx

∫ x

0
duB+(x,a)B+(u,a)Q−(u,a)

+ 2γ 2β2
∫ L

0
dx

∫ x

0
duB+(x,a)B+(u,a)Q2

−(u,a).

In the last expression we can recognize the integrals
as the functions Ij (for 1 � j � 4) defined in Eq. (26).
For uncorrelated potentials, the average over the polymer
ensemble 〈Ij 〉p (for 1 � j � 4) no longer depend on the
summation indices. This is because the Bernoulli measure

is invariant under translations along the polymer. Then
we have that the summations become geometrical series
which can be done exactly. After this process we ar-
rive finally at the expression (25) for the variance of the
FPT.
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