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In this article we have studied Shannon entropic nonequilibrium temperature (NET) extensively for a system
which is coupled to a thermal bath that may be Markovian or non-Markovian in nature. Using the phase-space
distribution function, i.e., the solution of the generalized Fokker Planck equation, we have calculated the entropy
production, NET, and their bounds. Other thermodynamic properties like internal energy of the system, heat,
and work, etc. are also measured to study their relations with NET. The present study reveals that the heat
flux is proportional to the difference between the temperature of the thermal bath and the nonequilibrium
temperature of the system. It also reveals that heat capacity at nonequilibrium state is independent of both NET
and time. Furthermore, we have demonstrated the time variations of the above-mentioned and related quantities
to differentiate between the equilibration processes for the coupling of the system with the Markovian and the
non-Markovian thermal baths, respectively. It implies that in contrast to the Markovian case, a certain time is
required to develop maximum interaction between the system and the non-Markovian thermal bath (NMTB). It
also implies that longer relaxation time is needed for a NMTB compared to a Markovian one. Quasidynamical
behavior of the NMTB introduces an oscillation in the variation of properties with time. Finally, we have
demonstrated how the nonequilibrium state is affected by the memory time of the thermal bath.
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I. INTRODUCTION

The “H-theorem” of the Fokker-Planck equation [1] shows
that the information entropy (S) [2,3] is analogous to the
thermodynamic entropy, which implies that the entire theory
of statistical mechanics can be elegantly reformulated by
extremization of S, subject to the constraints imposed by
the a priori information concerning the system of interest.
The information entropy is thus the key state property of
a Brownian system to understand the relaxation behavior
of the same [4–9]. Hence the study of information entropy
and related quantities is always an intriguing issue in the
field of stochastic dynamics. In general, entropy measures the
information content of a probability distribution and thus gives
a criterion for decision: we have to choose the one which yields
the most information concerning location and value of the
global maximum sought from several possibilities. As a point
of digression we may also note that in Ref. [10] it was shown
that the Legendre-transformation structure of thermodynamics
can be replaced without any change if one replaces the entropy
S by Fisher’s information measure (FIM), which obeys the
important thermodynamic property of concavity. This method
seems to be able to treat equilibrium and nonequilibrium
situations in a manner entirely similar to the conventional
one. Moreover, there exist interesting relationships invented by
Kullback [11,12] that connect FIM and the relative Shannon
information measure. These have been shown to have some
bearing on the time evolution of arbitrary systems governed
by the quite general continuity equation [4,13,14]. Using the
definition of S in the Fokker-Planck equation one can easily
get the information entropy balance equation [5,6]. From
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this equation it is possible to identify thermodynamically
inspired quantities like entropy flux and production. Making
use of the time-dependent solution of the Fokker-Planck
equation in these quantities the relaxation mechanism may be
understood in detail. Recently, a method has been developed
in Ref. [5] based on the information entropy for the study
of the relaxation processes in the mesoscopic system. The
mesoscopic system has also been studied in recent papers
[15–21] in terms of Gibbs entropy. An important application
of information entropy in the context of Brownian motion is to
solve the Fokker-Planck equation using the maximum entropy
principle [22,23]. The von Newmann equation in quantum
mechanics was also solved using this principle [24–27]. Based
on information entropy a method for the global optimization
of stochastic function has been developed very recently [28].
It is a useful tool to study the relaxation process in a
stochastic system in detail. For example, heat conductivity in
a medium has recently been studied when its constituents are
stochastic [29].

In general, it is difficult to know the state properties of
a system (like a thermodynamic system and similar to it) at
a nonstationary state (NSS). Based on the dynamics of the
system one can solve this problem. For example, in principle
there is no problem to define the entropy of the system at NSS
knowing the probability distribution function of the system. It
implies that other properties can be defined at a nonstationary
state by suitable connection of them with the entropy. Very
recently, a nonequilibrium information entropic temperature
has been defined in Ref. [30] based on information entropy to
study the interaction of a system with its surroundings during
the journey towards the equilibrium state [31–36]. In Ref. [30]
it has been shown that the definition of the temperature
deserves the name thermodynamical temperature for any
distribution of a stochastic process. Using this definition,
nonequilibrium temperature (NET) of a quantum system
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coupled to the Markovian bosonic or fermionic thermal bath
was calculated in another recent paper [37]. The interaction
of a system with its surroundings as well as the NET should
depend on the characteristics of the thermal bath. Then there
would be the following pertinent question: how does the
nonequilibrium temperature of a Brownian system depend
on the characteristics of the non-Markovian thermal bath
(NMTB)?

The importance of studying non-Markovian dynamics was
addressed around the early eighties of the past century.
The experimental studies during the above-mentioned period
[38–42] imply that the Markovian dynamics cannot accurately
account for the effect of viscosity on the barrier crossing
phenomenon in the solution phase. The theory developed
based on the non-Markovian dynamics [42–46] shows a fair
agreement between theoretical and experimental results. Thus
the study of non-Markovian dynamics becomes a worthy
issue [47–56] in the field of Brownian motion. Keeping that
in mind one may become interested in exploring the answer
of the above question and related topics. We have studied
the dynamics of a Brownian particle (which is coupled to
a NMTB) in three dimensions based on the Fokker-Planck
description of the stochastic processes. Information entropy
and its upper bound have been calculated in terms of
nonequilibrium temperature. Using Schwartz inequality we
have shown that at a nonstationary state the NET may have
both lower and upper bounds. At the same time we have
calculated thermodynamic quantities like internal energy, heat,
and work. It is observed that the heat flux is proportional to
the difference between the temperature of the thermal bath
and the nonequilibrium temperature of the system. It is quite
similar to Newton’s law of cooling. Our other prediction is
that heat capacity at a nonstationary state is independent of
both NET and time. From the present study we realize that
a certain time is required to develop maximum interaction
between the system and the non-Markovian thermal bath
(NMTB) and the relaxation time required for this case is
relatively higher compared to the Markovian case. Quasi-
dynamical behavior of the NMTB introduces an oscillation
in the variation of properties with time. Finally, to study
the effect of memory time on the nonequilibrium state we
have demonstrated the variation of the above-mentioned and
related quantities with the noise correlation time. It is observed
that some quantities like time derivative of NET, energy,
heat, and work show optimum behavior with noise correlation
time.

The outlay of the paper is as follows. In Sec. II, we
have calculated the nonequilibrium temperature in terms of
time, characteristics of both systems, and thermal reservoir.
Then we have connected it with the entropy production
and the upper bound of the same. In this section we have
also derived relations between NET and thermodynamic
properties like internal energy, heat, and work, respectively.
In the next section (Sec. III), we have presented two ap-
plications of the general theory of Sec. II. Section IV is
devoted to a comparative study based on the relaxation
behavior of the system for coupling with Markovian and non-
Markovian thermal baths, respectively. The paper is concluded
in Sec. V.

II. CALCULATION OF NONEQUILIBRIUM
TEMPERATURE AND ITS BOUNDS FOR

NON-MARKOVIAN STOCHASTIC DYNAMICS

A. Generalized Langevin equation: Evaluation of
response function

We start with the following generalized Langevin equation
of motion for a free Brownian particle having mass m:

m
du(t)

dt
= −m

∫ t

0
γ (t − τ )u(τ )dτ + f (t), (1)

where f (t) is the Gaussian colored thermal noise. The
above integral is a frictional memory kernel. Time-dependent
damping, γ (t), in the kernel is related to the fluctuating force
by the following standard fluctuation dissipation relation:

〈 f (t) · f0〉 = 3kBT mγ (t). (2)

The above relation implies that the momentum distribution
function of free Brownian particle relaxes to the Maxwellian
form.

Using Laplace transformation, we have solved Eq. (1). The
time-dependent velocity, u(t), of the particle (having initial
velocity, u0) is given by

u(t) = u0χ (t) + 1

m

∫ t

0
χ (t − τ ) f (τ )dτ,

χ (t) = L−1[χ̃(z)]

= L−1

[
1

z + γ̃ (z)

]
. (3)

Here L−1 denotes Laplace inversion and γ̃ (z) is the Laplace
transform of γ (t):

γ̃ (z) =
∫ t

0
e−zt γ (t)dt. (4)

χ (t) in Eq. (3) is known as the response function or the
susceptibility. However, it can be verified from Eq. (3) and
its time derivative and also Eq. (1) that

χ (t = 0) = 1, χ̇(t = 0) = 0. (5)

Now from Eq. (3) it can be shown that the response function
is related to the velocity autocorrelation function as

χ (t) = m

3kBT
〈u(t) · u0〉. (6)

Using the above relations we shall present the Fokker-Planck
description corresponding to Eq. (1) in the next subsection.

B. Generalized Fokker-Planck equation and its solution

To calculate properties like nonequilibrium temperature for
a non-Markovian stochastic process, first we need to know
the relevant distribution function, the solution of the Fokker-
Planck equation (FPE). Following Ref. [57] one can write
the generalized Fokker-Planck equation which is equivalent to
Eq. (1). Here the Langevin equation [Eq. (1)] is a linear one
with Gaussian noise and it implies that using variance of the
velocity vector the velocity distribution function can be written
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as

P (u,u0; t) =
[

3

2πA(t)

] 3
2

exp

[
−3

2
[g(t) · g(t)] A−1(t)

]
,

(7)

where g(t) is the fluctuation in velocity and is given by

g(t) = u − χ (t)u0

= 1

m

∫ t

0
χ (t − τ ) f (τ )dτ. (8)

A(t) in Eq. (7) is the variance of the velocity and it can be
written in compact notation as

A(t) = 〈g(t) · g(t)〉. (9)

The above form of the distribution function P (u,u0; t)
ensures that initially it is a Dirac δ function like quantity
and with time it spreads to the equilibrium Maxwellian form.
However, after some variable transformation and back trans-
formation technique [57], the following differential equation
can be generated whose solution satisfies the above-mentioned
velocity distribution function:

∂P

∂t
(u,u0; t) = −

[
χ̇ (t)

χ (t)

]
∇ · [uP (u,u0; t)]

+ 1

6
∇2P (u,u0; t)

[
χ2(t)

d

dt
[χ−2(t)A(t)]

]
.

(10)

Using Eqs. (2), (3), and (9), one can simplify the above
equation. Based on these equations A(t) and its time derivative
can be written in terms of χ (t) as

A(t) =
(

3kBT

m

)
[1 − χ2(t)],

Ȧ(t) = −
(

6kBT

m

)
χ̇(t)χ (t). (11)

Equation (5) suggests that, at long time, A(∞) = 3kBT
m

.
Thus the velocity distribution function [Eq. (7)] reduces to the
Maxwellian form at equilibrium. It is an important check of
our calculation. Now incorporating Eq. (11) into Eq. (10), we
get the following generalized FPE:

∂P

∂t
(u,u0; t) = β∇ · [uP (u,u0; t)]

+ kBT

m
β(t)∇2P (u,u0; t), (12)

where

β(t) =
∣∣∣∣− χ̇ (t)

χ (t)

∣∣∣∣ . (13)

Using the above generalized Fokker-Planck equation we
calculate nonequilibrium temperature and related quantities
in the next subsection.

C. Calculation of nonequilibrium temperature and its bounds

The distribution function [Eq. (7)] gives the measure of
Shannon information. For the present problem it is given by

S = −kB

∫
P (u,u0; t) ln P (u,u0; t)du. (14)

We now calculate the Shannon entropy based nonequilibrium
temperature (θ ) of the system following Refs. [30,37]. In
Ref. [30], the authors used the relationship dS = dQrev/T as a
mean for defining temperature. Here S is the Shannon or Gibbs
entropy of a distribution. The entropic or thermodynamic
temperature for any system (irrespective of whether it is in
equilibrium or not) has been defined by developing a statistical
notion of “infinitesimal heating” of the system as a particular
form of perturbation of the microstate of the same in such a
way that it increases the Shannon entropy by an amount δS

and the energy associated with the distribution by an amount
δQ. The final form of the definition has been obtained in
Ref. [30] calculating the ratio of the change in energy to that
in the Shannon entropy, and by using the de Bruijn identity of
information theory [58]. Thus the notion of thermodynamical
temperature can be extended to nonequilibrium distributions
in a relatively straightforward way as the ratio between
the average curvature of the Hamiltonian and kB times
of the trace of the Fisher information matrix associated with
the probability distribution. It can be mathematically repre-
sented for the present system as

1

θ
= kB

3m

∫ +∞

−∞

1

P
(∇P · ∇P ) du. (15)

3m in the above equation corresponds to the average curvature
of the Hamiltonian. Thus, for the free Brownian particle, the
entropic temperature is inversely proportional to the trace
of the Fisher information matrix which is a measure of
the broadening of the probability distribution function. If the
distribution function becomes wider then the trace of the Fisher
information matrix (TFIM) decreases and the temperature
increases. This is consistent with our expectation. In other
words, the connection between the temperature and the TFIM
matches with our imagination.

Now using the distribution function [Eq. (7)] in Eq. (15) we
get the explicit expression of θ in terms of χ (t) as

θ = T [1 − χ2(t)]. (16)

Using Eq. (5) in the above equation one can immediately check
that, at equilibrium, θ = T . This is consistent with our natural
demand. The above equation and Eq. (9) give some impression
about the nonequilibrium temperature. These equations imply
that the nonequilibrium temperature is proportional to the
width of the distribution function. In other words, the NET
is proportional to the variance of the velocity. Thus it carries
the signature of randomness in the system at nonequilibrium
state. Then it is expected that the properties of the system at
nonequilibrium state can be understood in terms of nonequi-
librium temperature. Keeping this in mind, to proceed further
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we rearrange the Fokker-Planck Eq. (12) as

∂P

∂t
(u,u0; t) = −∇ · j ,

j = −β(t)uP − β(t)
kBT

m
∇P. (17)

Using the above equation, the time evolution of information
entropy can be written in terms of j after performing a partial
integration and setting the appropriate boundary condition [37]
as

Ṡ = −kB

∫
du

1

P
j · ∇P. (18)

Applying Schwartz inequality | ∫ dq AB|2 �∫
dq|A|2 ∫

dq|B|2 to Eq. (18) with properly identified
A and B, an upper bound U for the rate of information
entropy change may be found as

Ṡ � U,

U = kB

[∫
du

j · j
P

] 1
2
[∫

du
1

P
(∇P ) · (∇P )

] 1
2

. (19)

It may be noted here that the second integral is same as the
trace of the Fisher information matrix. For a one-dimensional
system the integral becomes the Fisher information [59,60].
Thus the maximum rate of increase of S for an isolated
system is limited by the Fisher information level. Since the
information entropy is the average missing information, the
rate of change of entropy can be interpreted as the rate of
the average missing information transmission. So the upper
bound (19) is interesting in the sense that the amount of the
average missing information transmitted per unit time cannot
exceed this quantity. For the present system, using Eq. (7) and
Eq. (18), we get the explicit rate of information entropy change
and its upper bound as

Ṡ = 3kBβ(t)

[
χ2(t)

1 − χ2(t)

]
(20)

and

U = 3kBβ(t)

[[
χ2(t)

1 − χ2(t)

]2

+ mu2
0

3kBT

[
χ2(t)

1 − χ2(t)

]] 1
2

.

(21)

Using Eq. (16) in Eqs. (20) and (21) one can realize how
entropy production and its bound depend on the temperature
of the system at nonequilibrium state. In terms of NET the
above equations can be written as

Ṡ = 3kBβ(t)

(
T − θ

θ

)
(22)

and

U = 3kBβ(t)

[(
T − θ

θ

)2

+ mu2
0

3kBT

(
T − θ

θ

)] 1
2

. (23)

It is clear from the above two equations that, at equilibrium,
Ṡ = U = 0. This is consistent with our expectation as well as
Eq. (19). From the above two relations one can measure the

deviation of entropy production from its upper bound as


U = 3kBβ(t)

⎡
⎣[(

T − θ

θ

)2

+ mu2
0

3kBT

(
T − θ

θ

)] 1
2

− T − θ

θ

]
. (24)

Now using Eq. (22) in Eq. (19) one can easily show that there
is a lower bound of nonequilibrium temperature as

θ � Lθ,

Lθ = 3kBβ(t)T

3kBβ(t) + U
. (25)

Equation (23) suggests that, at long time, Lθ = T . It satisfies
the equality condition of Eq. (19). However, deviation of
nonequilibrium temperature from its lower bound can be
calculated from Eq. (16) and Eq. (25) as


Lθ = T [1 − χ2(t)] − 3kBβ(t)T

3kBβ(t) + U
. (26)

The existence of the bound and its importance are discussed
in Ref. [37]. We now explore another bound of the NET
from the inequality relation [Eq. (19)]. The second integral
in Eq. (19) is directly connected to the nonequilibrium
temperature, θ . It is clear from Eq. (19) that, as there exists an
upper bound of Ṡ, there must exist an upper bound (Uθ ) of θ

also. We may now derive that bound. Combining Eq. (16) and
Eq. (19) we get

U 2 = 3mkB

θ

∫
du

j · j
P

= 3kBβ2(t)

θ

[
3kBT χ4(t)

1 − χ2(t)
+ mu2

0χ
2(t)

]
. (27)

In Eq. (19), Ṡ � U implies Ṡ2 � U 2 as both Ṡ and U are real
and positive quantities. Thus, from Eq. (27),

Ṡ2 � 3kBβ2(t)

θ

[
3kBT χ4(t)

1 − χ2(t)
+ mu2

0χ
2(t)

]
. (28)

Rearranging the above equation, the upper bound of θ is given
by

θ � Uθ,

Uθ = 3kBβ2(t)

Ṡ2

[
3kBT χ4(t)

1 − χ2(t)
+ mu2

0χ
2(t)

]
. (29)

Near equilibrium, Ṡ is very close to its upper bound (U ) and
hence Eq. (29) reduces to

Uθ � 3kBβ2(t)

U 2

[
3kBT χ4(t)

1 − χ2(t)
+ mu2

0χ
2(t)

]
. (30)

From Eq. (21) and the above, for the near equilibrium situation
we get

Uθ �
3kBβ2(t)

[ 3kBT χ4(t)
1−χ2(t) + mu2

0χ
2(t)

]
9k2

Bβ2(t)
[[

χ2(t)
1−χ2(t)

]2 + mu2
0

3kBT

[
χ2(t)

1−χ2(t)

]]
= T [1 − χ2(t)]. (31)
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It is clear from Eq. (16) and the above equation that, for a near
equilibrium situation, the Shannon entropic temperature θ is
essentially the same to its upper bound Uθ , as the equality sign
in Eq. (29) holds for the equilibrium situation. However, using
Eq. (20) the expression for the upper bound of the NET at the
short-time limit can be written in simple form as

θ < Uθ,

Uθ = T [1 − χ2(t)] + mu2
0

3kB

[
χ (t) − 1

χ (t)

]2

. (32)

One can calculate the deviation of θ from its upper bound at
the short-time regime from Eq. (16) and Eq. (32) as


Uθ = mu2
0

3kB

[
χ (t) − 1

χ (t)

]2

. (33)

Before leaving this part we would like to mention that the
upper bound of the NET has the significance and importance
similar to that of Lθ . We now calculate another important
property of the system, the internal energy (ε), using the
following relation:

ε = m

2

∫ +∞

−∞
u2P du. (34)

Making use of Eq. (7) in the above equation we have

ε = 3

2
kBT [1 − χ2(t)] + mu2

0

2
χ2(t)

= θ

(
3

2
kB − mu2

0

2T

)
+ mu2

0

2
. (35)

Using Eq. (5) in the above equation one can easily show that the
equation satisfies the equilibrium result. The time derivative
of the energy can be obtained from the above Eq. (35) as

ε̇ = −χ̇ (t)χ (t)
[
3kBT − mu2

0

]
= β(t)

(
1 − θ

T

) [
3kBT − mu2

0

]
. (36)

We now connect thermodynamic quantities based on the
laws of thermodynamics. One can relate the rate of change of
heat (Q̇) with the rate of change of information entropy as

dS = dQ

θ
,

or dṠ = dQ̇

θ
, (37)

that finally gives

Q̇ = θṠ. (38)

Now making use of Eqs. (20) and (16) in the above equation
we have

Q̇ = 3kBTβ(t)χ2(t)

= 3kBTβ(t) (T − θ ) . (39)

This is an interesting result. It shows that heat flux is
proportional to temperature difference between the thermal
bath and the system. This is quite similar to Newton’s law
of cooling. But from the perspective of system-thermal bath
interaction one can comment that the above relation is a law

of heating. An integrated form of the above equation can be
read as

Q = 3
2kBT [1 − χ2(t)]

= 3
2kBθ. (40)

Now one can define the heat capacity at nonequilibrium state
as

dQ

dθ
= 3

2
kB. (41)

Thus the heat capacity of the system is independent of
both temperature and time. We now invoke the first law of
thermodynamics. Based on this one can write the following
relation among heat, work (W ), and internal energy as

Ẇ = ε̇ − Q̇. (42)

An immediate check of the above calculation is that at equi-
librium ε̇ = Q̇ = Ẇ = 0 as χ (t) = 0 then. This is consistent
with our natural demand. Using Eqs. (36) and (39) in the above
equation one can write that

Ẇ = −mu2
0β(t)χ2(t)

= −mu2
0β(t)

(
1 − θ

T

)
. (43)

An integrated form of the above equation can be written in
terms of nonequilibrium temperature as

W = mu2
0

2
χ2(t)

= mu2
0

2

(
1 − θ

T

)
. (44)

It is apparent in the above equation that total work done on the
particle is maximum at initial time through the introduction
of velocity, u0. The above equation also suggests that W

decreases with time as a function of the square of the response
function. This decrease is a signature of frictional loss. It is
justified as the total work is proportional to the square of the
response function. However, in Sec. III, we utilize the general
calculations performed in the present section for calculating
the properties of some specific stochastic systems.

III. APPLICATION

A. Markovian dynamics

We consider the first application to the Markovian stochas-
tic process. For this case γ (t) takes the following form:

γ (t − t ′) = 2γ0δ(t − t ′). (45)

The response function χ (t) for such a system happens to be

χ (t) = L−1

[
1

z + γ0

]
= e−γ0t . (46)

It is clear from Eq. (46) that at t = 0, χ (t = ∞) = 0 and
it vanishes at equilibrium. The above equation suggests that
β(t) = γ0 for the Markovian dynamics and the FPE Eq. (12)
reduces to the standard form. Using the above equation in the
previous section one can calculate all the quantities for the
Markovian stochastic dynamics.
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B. Non-Markovian dynamics

To capture essential features of the non-Markovian
dynamics, we consider an exponentially decaying frictional
memory kernel [45,51–56,61–65] which is generally used in
the field of non-Markovian dynamics. Then γ (t − t ′) in the
present model can be represented as

γ (t − t ′) = γ0

τ
exp

(−|t − t ′|
τ

)
, (47)

where τ is the memory time of the non-Markovian dynamics.
We shall now discuss the feasibility of finite memory time. The
Brownian particle is coupled to the bath modes of vibration and
their collective effect on the particle is the Langevin equation
of motion. The Fourier transform of the two-time correlation
function of the random force depends upon the frequency
distribution of the bath modes [1]. It is obvious that if the
medium is incompressible like water, the frequency distribu-
tion must have a cutoff and the corresponding noise process is
then called colored noise. For such a system, the dissipation in
the Langevin equation should be present as a memory kernel
[Eq. (3)] and the memory time should depend on the collective
dynamics of the constituents of the medium. Therefore, for
water as a thermal bath the memory time should be of same
order of magnitude as that of the vibration time for the water
system, τw

v = 2π
√

mw/Kw
r (mw being the mass of the water

molecule and Kw
r being the spring constant of the spring which

connects two water molecules by hydrogen bonds).
We now consider the spectral density [ρ(ω)] of the noise

corresponding to the above form of time-dependent friction.
According to the WienerKhintchine theorem [1] it is the
Fourier transformation of the two-time correlation function
shown in Eq. (2) and is given by

ρ(ω) = 6kBT η0

(1 + τ 2ω2)
. (48)

Dependence of the above distribution function on the mem-
ory time of the thermal bath is demonstrated in Fig. 1. It shows
that bath modes of higher frequency become less probable
as the noise correlation time grows. Using this observation
one can describe the behavior of the response function. The

FIG. 1. (Color online) Plot of the spectral density [ρ(ω)] vs
frequency (ω) of the bath mode for the parameter set m = 1, 3kBT =
0.1, and γ0 = 0.5. (Units are arbitrary.)

response function corresponding to the exponentially decaying
memory kernel (47) is given by

χ (t) = e−at

(
cos bt + a

b
sin bt

)
,

a = 1

2τ
, (49)

b =
(

γ0

τ
− 1

4τ 2

) 1
2

.

The above equation [Eq. (49)] implies that at t = 0,
χ (t = ∞) = 0 and it vanishes at long time. Using this response
function one can easily show that

β(t) =
∣∣∣∣∣ b

(
1 + a2

b2

)
sin bt(

cos bt + a
b

sin bt
)
∣∣∣∣∣ . (50)

In the next section, we shall compare the effects of Markovian
and non-Markovian baths on the Brownian system based on the
results of the present and the previous sections. Before leaving
this section we include a discussion here on the response
function (RF) which is the key quantity to understand all the
results. There is an important difference between Markovian
and non-Markovian baths. The response function depends
on the damping strength in the former case and it decays
exponentially with time. But for the latter case the RF depends
on both noise correlation time and damping strength and during
the relaxation process χ (t) decreases as a damped oscillation.
The effect of noise correlation time on the RF and the oscil-
lation behavior can be interpreted in the following way. For
the Markovian case (τ = 0), bath modes of all frequency are
equally probable [1]. But in the case of non-Markovian thermal
bath, with increase in noise correlation time the frequency
distribution of the bath modes becomes narrower (as shown in
Fig. 1) with the elimination of higher frequencies. As a result,
the equilibration time increases as the thermal bath deviates
more from the Markovian nature. We now consider damped
oscillating behavior of the response function for the non-
Markovian bath. The above explanation based on frequency
distribution suggests that the thermal bath would have a signa-
ture as an oscillating dynamical system and it would be promi-
nent as the noise correlation time grows. Using this discussion
we shall explain the analytical results in the next section.

IV. COMPARATIVE STUDY ON THE EFFECTS OF
MARKOVIAN AND NON-MARKOVIAN THERMAL BATHS
ON THE NONEQUILIBRIUM ENTROPIC TEMPERATURE

AND ITS LOWER AND UPPER BOUNDS

The time dependence of the entropy production (EP),
its upper bound (UB), and the deviation of EP from UB
are explored by calculating those quantities as functions
of time and plotting the same in Fig. 2. It is clear from
Fig. 2 that EP and UB decrease monotonically with time to
their equilibrium values for a Markovian thermal bath. Such
decrease in the case of quantum stochastic processes has been
explained in Ref. [37]. Here we give a brief explanation for
our present system following the same line of argument. The
effect of noise in expanding the phase-space volume against
damping is more prominent initially (when phase-space
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FIG. 2. (Color online) Variation of (a) entropy production (Ṡ), (b)
its upper bound (U ), and (c) the deviation of entropy production from
its upper bound (
U ) as a function of time for the parameter set m =
1, kB = 1, u2

0 = 0.03, γ0 = 0.5, and T = 1.0. (Units are arbitrary.)

volume is small) compared to later times. At equilibrium,
the phase-space volume becomes maximum. Hence EP and
UB, which are directly associated with phase-space expansion
rate, are maximum initially and, with progression of time,
they monotonically decrease to their equilibrium value (zero).
Such an explanation is consistent with Eqs. (20), (21), and (46).
We now consider the case of non-Markovian thermal bath. In
this case both entropy production and its upper bound decay
nonmonotonically just like a damped oscillation. This is a
reflection of coupling of the Brownian particle with the non-
Markovian thermal bath which behaves as a quasidynamical
system. Now we should consider the memory effect of the
thermal bath on the relaxation time. Figure 2 shows that, with
increase in τ , the time required to attain equilibrium becomes

FIG. 3. (Color online) Variation of (a) entropy production (Ṡ),
(b) its upper bound (U ), and (c) the deviation of entropy production
from its upper bound (
U ) as a function of relaxation time (τ ) for
the parameter set m = 1, kB = 1, u2

0 = 0.03, t = 2.0, and T = 1.0.
(Units are arbitrary.)

longer. This is due to the gradual elimination of the bath modes
of higher frequencies with increase in noise correlation time
that we have mentioned earlier, while explaining the behavior
of the response function. We now consider the remaining part
of Fig. 2. It shows that the deviation of the upper bound
from the entropy production decreases monotonically for the
Markovian thermal bath. From the above discussion we realize
that at the early stage of the dynamics the entropy production
is very high. The fluctuations in entropy production would
be maximum during this time. Thus monotonic decrease of
entropy production with time suggests a regular decay of
the deviation for the Markovian bath. But there are multiple
maxima in the variation of the deviation as a function of time
for NMTB. The optimum values before equilibrium state are
the signature of oscillating behavior of the response function.
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FIG. 4. (Color online) Variation of (a) NET (θ ), (b) rate of change (θ̇ ) of NET, (c) the lower bound (Lθ ) of NET, (d) the deviation of NET
from its lower bound, (e) the upper bound (Uθ ) of NET, and (f) the deviation of NET from its upper bound (
Uθ ) as function of time (t) for
the parameter set m = 1, kB = 1, u2

0 = 0.03, γ0 = 0.5, and T = 1.0. (Units are arbitrary.)

In the next step, we have investigated how the nonequilib-
rium state of the system is affected by noise correlation time
and damping strength. We have calculated entropy production,
upper bound of entropy production, and their difference as
a function of noise correlation time for different damping
strength and plotted in Fig. 3. It depicts that EP and UB
increase rapidly at the regime of small correlation and, for
an appreciably large value of τ , these quantities slowly rise.
One can explain this observation in the following manner.
With increase in noise correlation time the system moves away
from the equilibrium state where entropy production and its
upper bound are higher. Here one should consider another
effect of noise correlation time. Strength of fluctuating force
reduces with increase in noise correlation time as a result
of the elimination of bath modes of higher frequencies. This
is implied through the decrease in noise variance [Eq. (2)]
as a function of memory time of the bath. It suggests that
entropy production and its bound are reduced with increase
in noise correlation time. Interplay of these two aspects is the
cause of the change of the rate of increase of EP and UB as
the noise correlation time grows. One can account for the
decrease in the deviation of the bound from the entropy produc-
tion as a function of noise correlation time (as demonstrated
in Fig. 3) considering that reduction in the strength of the

fluctuating force. Another feature of Fig. 3 is that, for a given
time and τ , both EP and UB get lowered as the damping
strength grows since the system gets closer to the equilibrium
state then.

In Fig. 4, we have demonstrated the time dependence of
nonequilibrium temperature and related quantities. It shows
that at an early stage of the dynamics NET rapidly increases
as a consequence of the enhancement of the phase-space
volume with time. As the time grows, the system attains a
larger phase-space volume and accordingly the temperature
changes slowly towards the equilibrium value. As discussed
earlier, the expected oscillating behavior of the NET for the
non-Markovian case appears in Fig. 4.

According to Fig. 4(b) an interesting point is to be noted
here. The rate of increase of nonequilibrium temperature
during the relaxation process decreases regularly for the
coupling of the system with the Markovian thermal bath.
But there are multiple maxima in the variation of the rate
as a function of time for the case of non-Markovian thermal
bath. The first maximum is an interesting one. It implies that
an appreciable amount of time is required for the system
reservoir interaction to start significantly. During this period
θ̇ increases until the maximum extent of interaction occurs.
After that it decreases as a result of the relaxation process.
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FIG. 5. (Color online) Variation of (a) NET (θ ), (b) rate of change (θ̇ ) of NET, (c) the lower bound (Lθ ) of NET, (d) the deviation of NET
from its lower bound, (e) the upper bound (Uθ ) of NET, and (f) the deviation of NET from its upper bound (
Uθ ) as a function of relaxation
time (τ ) for the parameter set m = 1, kB = 1, u2

0 = 0.03, and t = 2.0 [for (a), (b), (c), and (d)] or t = 1.0 [for (c), (d)], and T = 1.0. (Units
are arbitrary.)

The other optimum values of the rate are the signature of
the dynamical behavior of the non-Markovian bath. We now
consider the time dependence of lower and upper bounds of
the nonequilibrium temperature. It is apparent in Fig. 4 that the
bounds as the functions of time behave quite similarly to the
NET as we expect. We have plotted the subfigure [Fig. 4(e)]
for the upper bound by smooth joining of results of short- and
long-time limits. However, the deviation of lower bound from
θ varies nonmonotonically with time as shown in Fig. 4(d).
For the Markovian bath there is only one optimum value. It
implies that, during the rapid growth of phase-space volume,
fluctuations of the temperature enhance until the phase-space
volume is appreciably large. As the system approaches the
equilibrium state with large phase-space volume, the fluctu-
ations gradually diminish. Thus the deviation passes through
a maximum. The expected additional optimum values of the
deviation appear for a non-Markovian thermal bath due to the
oscillating behavior of both NET and its lower bound. We
now consider the deviation of the upper bound from the NET.
Because of the entropy production term in the denominator
of Eq. (29), Uθ has a diverging nature. Near equilibrium, the
upper bound should converge to the equilibrium value of NET,
i.e., T , as the fluctuation of temperature near the equilibrium
state is negligibly small. Therefore, we cannot calculate its

exact value near equilibrium by the present method. Keeping
that in mind, we have presented the behavior of the deviation at
early time in Fig. 4(f). It and Fig. 4(d) imply that the nature of
fluctuations of the NET is such that the deviation of the upper
bound from the NET is significant if the system is a little bit
aged. Another observation is that at a given time the deviation
is smaller as the non-Markovian character of the bath grows.
This is a result of lowering of the strength of fluctuating force
with increase in noise correlation time.

We now explore how the NET and the related quantities
depend on the noise correlation time. Variation of these quan-
tities with noise correlation at a given time is demonstrated in
Fig. 5. Monotonic decay of nonequilibrium temperature and
its bounds as shown in Figs. 5(a), 5(c), and 5(e) is a measure of
the deviation of the nonequilibrium state from the equilibrium
situation (ES). With increase in noise correlation the system
moves away from the equilibrium state as the relaxation
time grows. As a signature of that the nonequilibrium temper-
ature and its bounds decrease regularly with increase in noise
correlation time. These quantities become larger at a given time
as the damping strength grows because the system becomes
closer to the equilibrium state then. We now consider the
variation of the time derivative of nonequilibrium temperature
as a function of noise correlation time. Figure 5 shows that θ̇

032103-9



SOMRITA RAY AND BIDHAN CHANDRA BAG PHYSICAL REVIEW E 90, 032103 (2014)

FIG. 6. (Color online) Variation of (a) energy (ε) of the system, (b) heat absorbed (Q), (c) work done (W ) by the system, (d) rate of change
of energy (ε̇), (e) rate of change of heat absorption (Q̇), and (f) rate of change in work done (Ẇ ) as a function of time (t) for the parameter set
m = 1, kB = 1, u2

0 = 0.03, and γ0 = 0.5. (Units are arbitrary.)

passes through a maximum with increase in noise correlation
time. At small τ , the system is near the equilibrium state and so
θ̇ of the nonequilibrium state (NES) is small. It enhances with
further increase in τ due to more deviation of the NES from the
ES. This happens up to a critical value of the noise correlation
time. After that the strength of the fluctuating force becomes so
small that the time derivative of nonequilibrium temperature
decreases with increase of τ . Both critical noise correlation
time and optimum value of the derivative increase as the
damping strength grows. This is a result of enhancement of the
strength of the fluctuating force by the strong coupling between
system and thermal bath. Based on the above explanation one
can account for nonmonotonic and regular variation of the
deviation of the NET from its bound as shown in Figs. 5(d)
and 5(f).

In Fig. 6, we have presented the variation of the energy of
the system (ε), the heat absorbed (Q), the work done (W ), and
related quantities during the journey of the system towards
the equilibrium state. It shows that the trend for the change of
energy and the total heat flow to the system is quite similar
to the change of nonequilibrium temperature with time as we
expect. But the total work decreases with time monotonically
for the Markovian bath due to the frictional loss and it becomes
zero at equilibrium as a signature of the nullifying of average

velocity. The variation of W with time is a damped oscillation
for the non-Markovian thermal bath as shown in Fig. 6(e).
However, the rate of change of the above-mentioned quantities
with time shows optimum behavior for the non-Markovian
bath. One can explain this aspect using an earlier discussion in
the context of Fig. 4(b). We now demonstrate the variation of
energy, heat, and work and their time derivatives with memory
time of the thermal bath in Fig. 7. It is to be mentioned here
that one can explain this figure based on the similar argument
given while discussing Fig. 5.

V. CONCLUSION

In this article, we have studied the equilibration process in
detail for the non-Markovian thermal bath driven Brownian
motion in terms of information entropy and nonequilibrium
entropic temperature. We have calculated these and related
quantities based on the generalized Fokker-Planck description
corresponding to the generalized Langevin equations of mo-
tion. We have also calculated some thermodynamic quantities
like the internal energy change, heat, and work associated
with the process and their time derivatives. Our study may be
summarized through the following major points.
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FIG. 7. (Color online) Variation of (a) energy (ε) of the system, (b) heat absorbed (Q), and (c) work done (W ) by the system, (d) rate of
change of energy (ε̇), (e) rate of change of heat absorption (Q̇), and (f) rate of change in work done (Ẇ ) as a function of relaxation time (τ )
for the parameter set m = 1, kB = 1, u2

0 = 0.03, t = 2.0, and T = 1.0. (Units are arbitrary.)

(i) We have calculated properties of the system at a
nonstationary state in terms of the nonequilibrium temperature.

(ii) Near equilibrium, the rate of heat flow to the system
is proportional to the difference between temperature of
the thermal bath and the nonequilibrium temperature of the
system. This is quite similar to Newton’s law of cooling.
But from the perspective of system reservoir interaction one
can comment that the above-mentioned relation is a law of
heating.

(iii) We have defined heat capacity at a nonequilibrium
state. It is independent of both time and NET.

(iv) Entropy production, its upper bound, and their dif-
ference decrease monotonically during the relaxation process
when the system is coupled with the Markovian thermal bath.
But for the non-Markovian thermal bath the decay pattern is
quite similar to damped oscillation, which may be considered
as a signature of the quasidynamical behavior of the bath. The
relaxation time increases as the non-Markovian character of
the bath grows.

(v) The enhancement of the memory time or the strength
of fluctuating force results in the suppression of the increase
in entropy production and its bound. The rate of decrease of
the deviation of the entropy production from the upper bound
also gets suppressed with increase in memory time.

(vi) There exists a lower as well as an upper bound to the
Shannon entropic temperature. Nonequilibrium temperature
and its bounds increase regularly to the equilibrium value for
the case of the Markovian thermal bath (MTB). But in the case
of the non-Markovian thermal bath (NMTB), these quantities
grow with an oscillation. The rate of change of the temperature
gets suppressed monotonically with the progression of time
for MTB. Multiple maximum appear for the NMTB, out of
which the first maximum is an interesting one. It suggests
that a certain time is required for the strengthening of the
system-bath interaction for the NMTB. The time dependence
of the deviation of the nonequilibrium temperature from its
lower bounds is also interesting. It rises up to a critical time
and then decreases monotonically to the equilibrium value for
the Markovian thermal bath. But, in the other case, multiple
optimum values appear. The deviation of the NET from its
upper bound also increases at the early stage of dynamics.
Because of the limitation of the present method we could not
predict its long-time behavior. But intuitively one can say that
both the deviations as a function of time may behave similarly.

(vii) Nonequilibrium temperature and its bounds decrease
regularly with increase in noise correlation time. But there
is an optimum value in the variation of the time derivative
of NET as a function of memory time of the non-Markovian
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thermal bath. The optimum behavior also occurs in the change
of deviation (of the nonequilibrium temperature from its
lower bounds) with increase in noise correlation time at the
large damping limit.

(viii) The time variation of the internal energy and the total
heat flow to the system are quite similar to the variation of
the nonequilibrium temperature as a function of time. But the
same for the total work done on the system is completely
opposite. It may be noted here that their rate of change with
time again implies that an appreciable time is required to
develop maximum interaction between the system and the
non-Markovian thermal bath.

(ix) Finally, the variation of the internal energy and the total
heat flow to the system with noise correlation time is the same
as in the case of nonequilibrium temperature. But the change
of total work as a function of noise correlation time follows
the opposite pattern.

Keeping in mind the role of temperature on the natu-
ral phenomena, one may comment that the nonequilibrium
temperature would get strong attention in various fields of

basic science from the following perspectives: (a) its effect
on the natural phenomena at the nonstationary state and
(b) understanding of the path of the journey from a given
nonequilibrium state to an equilibrium state. The present study
has been completed under these guidelines. It corresponds
to the Brownian motion in the condensed phase which
covers a large area in the field of nonequilibrium statistical
mechanics. Thus the present calculation may find application
in different contexts and give support to the formation of a new
branch based on the newly born quantity [30], nonequilibrium
temperature. Following the present method, study of NET
of a Brownian particle in the presence of Lorentz force or
force derived from the potential energy may appear elsewhere.
One may also extend the present study for the quantum
non-Markovian thermal bath.
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