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Gibbs’ principle for the lattice-kinetic theory of fluid dynamics
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Gibbs’ seminal prescription for constructing optimal states by maximizing the entropy under pertinent
constraints is used to derive a lattice kinetic theory for the computation of high Reynolds number flows. The
notion of modifying the viscosity to stabilize subgrid simulations is challenged in this kinetic framework. A
lattice Boltzmann model for direct simulation of turbulent flows is presented without any need for tunable
parameters and turbulent viscosity. Simulations at very high Reynolds numbers demonstrate a major extension
of the operation range for fluid dynamics.
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The lattice Boltzmann (LB) method [1] is a modern and
highly successful kinetic-theory approach to computational
fluid dynamics and computational physics of complex flows
and fluids, with applications ranging from turbulence [2]
to flows at a micron scale [3] and multiphase flows [4],
to relativistic hydrodynamics [5], soft-glassy systems [6],
and beyond. The LB method numerically solves a fully
discrete kinetic equation for populations fi(x,t), designed to
reproduce the Navier-Stokes equations in the hydrodynamic
limit. Populations correspond to discrete velocities vi , i =
1, . . . ,b, which fit into a regular spatial lattice with the nodes x.
This enables a simple and highly efficient “stream-along-links-
and-equilibrate-at-nodes” realization of the LB algorithm.
Focusing on the classical case of the incompressible fluid
dynamics, a general form of the LB equation may be written,

fi(x + vi ,t + 1) = f ′
i ≡ (1 − β)fi(x,t) + βf mirr

i (x,t). (1)

Here the left-hand side is the propagation of the populations
along the lattice links, while the right-hand side is the so-called
postcollision state f ′.

The key is the mirror state, f mirr. Realization of hydrody-
namics was made possible, in the first place with the lattice
Bhatnagar-Gross-Krook (LBGK) model [7,8], in which one
takes

f mirr
i = 2f

eq
i − fi. (2)

Here f
eq
i is the equilibrium which is found as a maximizer of

the entropy,

S[f ] = −
b∑

i=1

fi ln

(
fi

Wi

)
, (3)

subject to fixed locally conserved fields, ρ = ∑b
i=1 fi (density)

and ρu = ∑b
i=1 vifi (momentum density), and where the

weights Wi are lattice-specific constants. With the proper
symmetry of the lattice, the LBGK equation, (1) and (2),
recovers the Navier-Stokes equation for the fluid velocity u,
with the kinematic viscosity ν,

ν = c2
s

(
1

2β
− 1

2

)
, (4)

where cs is the speed of sound [a lattice dependent O(1)
constant]. The form of the mirror state (2) is known as the
over-relaxation. Note that the LBGK model is unambiguous

since β ∈ [0,1] is fixed by the kinematic viscosity (4). The
most important limit is β → 1 (small kinematic viscosity) as
it is pertinent to achieving, if only in principle, high Reynolds
number regimes.

Almost immediately after its inception, the LBGK model
has taken lead in the lattice Boltzmann approach to the
simulation of complex hydrodynamic phenomena [1,9], and
remains the “working horse” of the LB methods to date. The
popularity of LBGK is primarily based on its simplicity and
exceptional computational efficiency. It is unfortunate, and was
soon realized, that LBGK shows severe deficiencies (disruptive
numerical instability) already at relatively low Reynolds
numbers. This precluded the LB method to make a sustainable
impact in the field of computational fluid dynamics. A new,
physically transparent LB model is critically needed to replace
the LBGK [1].

This long-due lattice kinetic model for high Reynolds
numbers is reported in this Rapid Communication. The key
physical principle in its construction dates back to Gibbs
[10] who described optimal (equilibrium) states as points of
entropy maximum under relevant constraints. In our case, the
optimal mirror states of LB are constructed by maximizing
the discrete entropy function (3) under the constraints of
over-relaxation of the hydrodynamic stresses. The resulting
LB model outperforms LBGK by orders of magnitude in terms
of attainable Reynolds numbers. On the practical side, the
analytical formula for the optimal mirror state derived herein
adds only a small computational overhead, thus retaining
the simplicity and efficiency of LB models. This model was
vigorously tested in a number of two- and three-dimensional
benchmark flow situations, including simulation of flow past
bluff bodies at very high Reynolds numbers. The main steps
of the derivation are given below for any admissible lattice
[11], whereas all practical formulas for the two-dimensional
realization are presented in the Supplemental Material [12].

We begin with a remark that populations can be equiva-
lently represented in terms of moments (a set of b linearly
independent combinations of fi’s). Then we can write

fi = ki + si + hi, (5)

where ki (=kinematic part) depends only on the locally
conserved fields, si (=shear part) depends on the stress tensor
� = ∑b

i=1 vi ⊗ vifi , and hi (=higher-order moments) is a
linear combination of the remaining higher-order moments.
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Representation (5) is easily obtained for any lattice and any
moment basis (see Supplemental Material [12]). For now,
it suffices to mention that si is a linear combination of
D(D + 1)/2 functions �αβ (D is space dimension), and hi is
a linear combination of the remaining b − (D + 1)(D + 2)/2
higher-order moments.

With the representation (5), a different mirror state can be
sought in a one-parameter form,

f mirr
i = ki + [

2s
eq
i − si

] + [
(1 − γ )hi + γ h

eq
i

]
, (6)

where γ is a parameter which is not yet specified. We note
that, when (6) is used in (1), one arrives at nothing but a
special (not the most general) LB model of the type considered
earlier by many authors for various choices of the moment
basis [13–15]. For any γ , the resulting LB model still recovers
hydrodynamics with the same kinematic viscosity ν (4). A
similar idea was widely used in the LB literature to extend the
stability range of LBGK (γ = 2), by using multiple relaxation
times (MRT) that do not affect the over-relaxation of stresses
si . The MRT models were successful in moderately stabilizing
the LB method but still remain challenged by high Reynolds
numbers [16]. Note that Eqs. (1) and (6) can also be rewritten
as f ′

i = fi + 2β(f GE
i − fi), with the generalized equilibrium

[17–19] of the form f GE
i = f

eq
i + (1/2)(γ − 2)(heq

i − hi).
The proposal (6) is a family of possible mirror states, and

the most crucial question is how to choose the stabilizer γ

in order to achieve better performance at small kinematic
viscosity (β → 1). At first glance, it seems plausible to set
γ = 1 (“relax” the higher-order degrees of freedom h to their
equilibrium heq; see, e.g., [20]). However, in many benchmark
flow situations no improvement is achieved. Hence, just the
proposal (6) is incomplete because it does not readily answer
the above question of how to find an optimal mirror state (6).

The major change of perspective here is that the stabilizer
γ should not be considered as a “tunable” parameter. Rather,
it has to be put under entropy control and computed by
maximizing the entropy in the postcollision state f ′. This
matches the physics of the problem at hand, since constrained
equilibria correspond to the maximum of the entropy (here
the constraint is that the stress part remains fixed by the
over-relaxation, smirr

i = 2s
eq
i − si).

Specifically, let S(γ ) be the entropy of the postcollision
states appearing in the right-hand side of (1), with the mirror
state (6). Then we require that the stabilizer γ corresponds to
the maximum of this function. Introducing deviations �si =
si − s

eq
i and �hi = hi − h

eq
i , the condition for the critical point

reads

b∑
i=1

�hi ln

(
1 + (1 − βγ )�hi − (2β − 1)�si

f
eq
i

)
= 0. (7)

Equation (7) suggests that among all nonequilibrium states
with the fixed mirror values of the stress, smirr

i = 2s
eq
i − si ,

we pick the one which maximizes the entropy. Note that, in
this way defined entropic stabilizer γ appears not as a tunable
parameter but rather it is computed on each lattice site at every
time step from Eq. (7). Thus, the entropic stabilizer self-adapts
to a value given by the maximum entropy condition (7).

In order to clarify the properties of the solution to Eq. (7),
let us introduce the entropic scalar product 〈X|Y 〉 in the

b-dimensional vector space,

〈X|Y 〉 =
b∑

i=1

XiYi

f
eq
i

, (8)

and expand in (7) to the first nonvanishing order in �si/f
eq
i

and �hi/f
eq
i to obtain

γ ∗ = 1

β
−

(
2 − 1

β

) 〈�s|�h〉
〈�h|�h〉 . (9)

The result (9) explains the mechanism of failure of the
proposal γ ≈ 1 at β ≈ 1: Whenever vectors �s and �h are
nonorthogonal (in the sense of the entropic scalar product),
the deviation of γ ∗ from γ = 1 may become very significant.
Indeed, in (9), the correlation between the shear and the
higher-order parts ∼〈�s|�h〉 is not a correction to γ = 1
but rather a contribution of the same order O(1). Below, we
shall discuss why the estimate (9) is valid for high Reynolds
numbers.

The present LB scheme with the entropic stabilizer was
realized in two and three dimensions (see Supplemental
Material [12] for the D = 2 lattice with b = 9 discrete
velocities). For a benchmark, a perturbed double periodic shear
layer flow was used, with initial conditions [21]

ux =
{
U tanh [λ (y/L − 0.25)] , y � L/2,

U tanh [λ (0.75 − y/L)] , y > L/2,

uy = δU sin [2π (x + 0.25)] .

Here L is the number of grid points in both x and y

directions, and periodic boundary conditions are applied in
both directions. Varying the parameter λ alters the width of
the shear layers, and this is fixed at λ = 80 (thin layer case).
The velocity perturbation in the y direction initiates a Kelvin-
Helmholtz instability causing the roll up of the antiparallel
shear layers. The parameter δ controls the size of the initial
perturbation and is fixed here at δ = 0.05. U determines the
magnitude of the initial x velocity. The Reynolds number is
defined as Re = UL/ν; the velocity amplitude U = 0.04 was
used.

Figure 1 demonstrates a snapshot of the roll up on a
fine grid L = 512 at time t = 1 (t = T U/L, where T is the
number of lattice time steps). The solution to (7) was found by
Newton-Raphson iteration at each lattice node at every time
step. While the simulation excellently reproduces the expected
shape of the vortex [21], the corresponding snapshot of the
spatial distribution of the entropic stabilizer γ is also shown
in Fig. 1. It is clear that the entropic stabilizer is far from any
fixed value, moreover both positive and negative values of γ

are present. Note that, the computed values of the entropic
stabilizer γ are not necessarily confined to the so-called linear
stability interval [0,2]. This clearly shows that the present
new model is far from any LB model with a fixed γ , even
in a well resolved simulation. Amazingly, as the result of the
self-adaptation, the spatial distribution of γ follows the pattern
of the developing vortex.

For the stability analysis, a coarse grid was used, L =
128. At this grid size, the standard LBGK scheme becomes
numerically unstable at Re ≈ 20 × 103. Moreover, the choice
γ = 1 in (6) does not bring any improvement on the stability. In
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FIG. 1. (Color online) Roll up of the double shear layer. Grid
L = 512, Re = 30 000. (a) Snapshot of the vorticity at t = 1. (b)
Distribution of the entropic stabilizer γ .

contrast to this, the present scheme delivers stable simulation
all the way up to high Reynold numbers, till at least Re ∼
107. In Fig. 2, the history of the total entropy Stot(t) =∑

x S[f (x,t)] is shown for the four LB models: the LBGK, the
LB model with γ = 1, the entropic LBGK (ELBGK) model

0 1 2 3 4 5
t

−2.32

−2.25

−2.18

S t
ot
/L

2

×10−3

FIG. 2. History of the total entropy in the simulation of the double
shear layer. Solid: present LB; dashed: ELBGK; dotted: LB with
γ = 1; dash-dotted: LBGK. Grid size: L = 128; Reynolds number
Re = 30 000.

[22], and the present LB with the entropic stabilizer. Collapsing
of the former two models is accompanied by the unbounded
decay of Stot, whereas the latter two LB schemes (the present
and the ELBGK) demonstrate monotonic and very similar
growth of the total entropy.

Moreover, evaluations of the entropic stabilizer via numer-
ically solving Eq. (7) were found in excellent agreement with
the analytical formula (9). This is not surprising. Indeed, the
LB models are valid for high Reynolds numbers rather than for
the low ones [1]. This is obvious from the von Kármán relation,
Re = Ma/Kn, where Ma = U/cs is the Mach number and
Kn = ν/csL is the Knudsen number. The hydrodynamic limit
is valid at Kn → 0. Thus, large Re implies small deviations
from the local equilibrium. Close to the local equilibrium, the
entropy in the postcollision state �S = S[f ′] − S[f eq] is a
quadratic function (β = 1 for simplicity),

�S(γ ) = − (1 − γ )2

2
〈�h|�h〉 + (1 − γ )〈�s|�h〉

− 1

2
〈�s|�s〉. (10)

The maximum of this parabola returns γ ∗ (9). If the �s

and �h parts happen to be uncorrelated, 〈�s|�h〉 = 0, the
entropic stabilizer returns γ = 1. It is only in this case
that the maximum of the entropy in the postcollision state
is achieved by the “relaxation,” h′ = heq. However, any
correlation between the s and h parts shifts the maximum
entropy postcollision state h′ away from heq. Close to the local
equilibrium, this shift is simply proportional to the relative
strength of the correlation, 〈�s|�h〉/〈�h|�h〉. The entropy
in the maximum entropy state is always higher than in the
“relaxed” state:

�S(γ ∗) − �S(1) = 〈�s|�h〉2

2〈�h|�h〉 � 0. (11)

These arguments explain why γ ∗ (9) is a physically relevant
entropy control rather than a mere approximation to (7). Hence,
in all the subsequent simulations, only the analytical formula
(9) was used. The computational overhead of the present model

10−1 100 101 102
y+

0
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10

15

20

u+

FIG. 3. (Color online) Average streamwise velocity in wall units
in the simulation of the turbulent channel flow at Reτ = 180. Symbol:
present LB model; solid line: DNS data [25]. The log-law of wall
(dashed) is shown as a guide to the eye.
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FIG. 4. (Color online) Snapshot of a fully developed turbulent
flow past a round cylinder at Re = 140 000. Vorticity isosurface is
shown colored with the velocity magnitude.

compared to an implementation with a fixed γ is only about
10%. If compared to standard LBGK the amount of work
is larger as D(D + 1)/2 moments � have to be computed
additionally which results in an overhead of about two times.

The present method is extended to three dimensions in a
straightforward way, and was realized on the standard lattice
with b = 27 discrete velocities. First, we considered the Kida
vortex flow which was extensively studied previously using
LB methods [23,24]. Simulation on the coarse grid (periodic
box with the side L = 100) confirmed stability observed in two
dimensions (simulations were stable till at least Re ∼ 109).

In order to confirm the accuracy of the present LB model in
coarse-grid simulations, we present the result for the standard
benchmark of the turbulent channel flow. In Fig. 3, the average
streamwise velocity profile for the uniform grid resolution
�+ ≈ 3.5 at Reτ ≈ 180 is compared with the direct numerical
simulation (DNS) data [25]. Agreement is excellent, especially
in the log-law regime (cf., e.g., [26]).

Finally, in order to validate that the present LB model
is compatible with the existing boundary conditions, we
run the simulation of the flow past a round cylinder. The
Reynolds number is Re = Ud/ν, where d is the diameter of
the cylinder, and U is the uniform inlet velocity. The grid of the
size X = 45d (streamwise), Y = 5d (spanwise) and Z = 20d

(vertical) was used in the simulation, with d = 30 lattice
spacings. Boundary conditions described in [26] were used
on the cylinder surface. No-boundary condition was applied
at the outlet, free slip at the top and the bottom sides, and
periodic boundary condition in the span direction. A snapshot
of the vorticity field of the fully developed three-dimensional
turbulent flow at Re = 1.4 × 105 is shown in Fig. 4. Results
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FIG. 5. (Color online) Averaged streamwise reduced velocity
ux/U . Lines: simulation; shaded: experiment [27].

were compared with particle image velocimetry measurements
of the near-wake velocity field at the same Reynolds number
reported in [27]. In Fig. 5, the averaged streamwise veloc-
ity contours are overlapped with the experimental data of
Ref. [27].

A comparison between the present simulation and experi-
mental data provides compelling evidence of increased stabil-
ity and good accuracy of our model. Such simulations were
hitherto not possible without the use of subgrid turbulence
models. These results will be expanded in our subsequent
publications.

In summary, we proposed a different perspective on the
direct simulation of low-dissipative hydrodynamic flows using
advanced fluid-kinetic theory. Entropy control, with its solid
physical background, significantly extends the operation range
of the lattice Boltzmann method, with only a minute computa-
tional overhead for the evaluation of formula (9). No tunable
parameters, considerably higher stability, and ease in the
implementation are the salient features of this LB model. Based
on these observations, we believe that this approach will find
attractive applications in the emergent fluid-kinetic approaches
to complex flows and fluids, ranging from turbulence to
multiphase flows [4], to relativistic hydrodynamics [5], soft-
glassy systems [6], and beyond.
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