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Transient scaling and resurgence of chimera states in networks of Boolean phase oscillators
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1Department of Physics, Duke University, 120 Science Drive, Durham, North Carolina 27708, USA
2Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, Berlin D-10623, Germany
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We study networks of nonlocally coupled electronic oscillators that can be described approximately by a
Kuramoto-like model. The experimental networks show long complex transients from random initial conditions
on the route to network synchronization. The transients display complex behaviors, including resurgence of
chimera states, which are network dynamics where order and disorder coexists. The spatial domain of the
chimera state moves around the network and alternates with desynchronized dynamics. The fast time scale of
our oscillators (on the order of 100 ns) allows us to study the scaling of the transient time of large networks of
more than a hundred nodes, which has not yet been confirmed previously in an experiment and could potentially
be important in many natural networks. We find that the average transient time increases exponentially with the
network size and can be modeled as a Poisson process in experiment and simulation. This exponential scaling is
a result of a synchronization rate that follows a power law of the phase-space volume.
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As discovered recently, the dynamical state of networks can
show a surprising behavior called chimeras, where network
nodes split into coexisting domains of entirely different
dynamics, such as synchronized and unsynchronized dynam-
ics [1–7]. Chimera states have possible applications to brain
activity patterns, cardiac fibrillation, and social systems [8].
Recently, chimera states have been identified theoretically
as long chaotic transients towards synchrony for finite-size
networks, scaling exponentially with the system size [9]. Such
an exponential scaling of the transient with the system size
is called a supertransient in extended systems, but is not
commonly known to appear in networks.

Predicting the time scale for the transition to synchroniza-
tion is crucial for technological applications, such as cascading
failure in power grids and turbulent flows in pipes [10,11].
Furthermore, it is of great importance for biological systems,
such as ecological and neural systems [12,13]. Transient
scaling is especially important in networks because network
structures dominate many natural and engineered systems [14],
but has not yet been shown experimentally. For example,
for networks displaying chimera states, slow characteristic
time scales have previously prevented the measurement of
transient scaling [15–20]. Even in theoretical studies, this
scaling could only be verified in small networks of less than
45 nodes because larger networks require prohibitively long
computation times [9,21].

Here, we study the transient behavior of networks showing
chimera dynamics in an experimental network of Boolean
phase oscillators realized with electronic logic circuits. Be-
cause these nodes operate on a time scale of ∼100 ns, we
can study the scaling of the transient in large networks of
more than a hundred nodes. The transient includes chimera
states for about 14% of the time for N = 128 and ends in
a nearly synchronized state. We find that the transient time
follows a Poisson process with an average transient time that
increases exponentially with the network size, which is a result
of the synchronization rate that follows a power law of the
phase-space volume.

The oscillatory network nodes are realized with unclocked
logic circuits and directly wired links on microelectronic chips,
realizing an autonomous Boolean network (ABN). Besides
their application as engineered systems for random number
generation and neuromorphic computation [22–24], ABNs
are also a common model for genetic circuits [25–27]. The
ABN studied here is a variant of all-digital phase-locked loops,
which are widely used for frequency synthesis [28,29].

We study networks of N coupled Boolean phase oscillators
as shown schematically in Fig. 1(a), where oscillator i ∈
{1,2, . . . ,N} is nonlocally coupled to multiple other oscillators
j forming a network. The oscillators consist of an inverter gate
with delayed feedback as shown in Fig. 1(b). For constant delay
τi , this setup is known as a ring oscillator with a frequency
given by [30]

fi = 1

2τi

, (1)

where the factor 2 accounts for inverted delayed feedback (one
period includes two inversions). We extend the oscillator to
allow for an adjustable frequency by making the delay τi state
dependent so that τi and fi change in response to the coupling
signals. The coupling signals are generated by measuring the
phase difference between the local oscillator and its neighbors,
as introduced in Ref. [31] for two oscillators.

The state-dependent delay τi of an oscillator is built from
unclocked logic gates as shown in Fig. 1(c). It includes a
constant delay τ0,i [31], and a variable delay realized with a
combination of XOR logic gates, Boolean switches, and short
constant delay lines σi . The XOR logic gates generate a signal
xi ⊕ xj that approximates the phase difference between the
ith oscillator (xi) and its j th neighbor oscillator (xj ). This
signal activates one of two paths in the setup of which one has
an additional constant delay. When all phase differences are
zero (xi ⊕ xj = 0 for all j ), then the maximum feedback delay
is selected with τi = τ0,i + 2Rσi . When, on the other hand, a
phase difference is detected (xi ⊕ xj = 1), the delay decreases
by σi . This behavior can be expressed with state-dependent
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FIG. 1. (a) Illustration of a ring network with N = 10 nodes and
coupling range R = 3. (b) Illustration of the Boolean phase oscillator
(a node in the network) with state variable xi . (c) The state-dependent
delay for the coupling mechanism consisting of a constant delay
τ0,i built with 30 cascaded copier logic gates and 2R variable delay
elements. σi , trapezoids, and ⊕ signs denote delay lines, Boolean
switches (multiplexers), and XOR gates, respectively.

delay

τi = τ0,i + σi

i+R∑

j=i−R
j �= i

(1 − xi ⊕ xj ), (2)

which is inserted in Eq. (1) to approximate the frequency
adjustment, leading to a coupling mechanism of oscillators
and hence the possibility of synchronization [31].

As detailed in the Supplemental Material [32], combining
Eqs. (1) and (2) leads to an approximate phase model for the
Boolean phase oscillators

φ̇i = ω0,i + σ̃i

i+R∑

j=i−R

|�[sin(φj )] − �[sin(φi + αij )]|, (3)

with free-running frequencies ω0,i , coupling strengths σ̃i ,
phase lag parameter αij that results from transmission delays,
and Heaviside function �. The oscillators are nonlocally
coupled in a ring network with a coupling range R as shown
schematically in Fig. 1(a). This configuration has been used
previously to observe chimera states with the Kuramoto model,
which is similar to Eq. (3) [1,2,4–7,9,33].

The experimental oscillators have an intrinsic frequency
heterogeneity of |σf |/f̄ = 0.3% with average frequency f̄ =
9.14 MHz and standard deviation σf = 0.03 MHz [32]. In
the model, we assume identical oscillators (ω0,i = ω0) and
homogeneous coupling (σ̃i = σ̃ and αij = α).

We first describe a part of the network dynamics in Fig. 2(a),
showing a snapshot of the phase of oscillators in a chimera
state. The oscillators outside (inside) the dotted lines, marked
region I (region II), have equal (different) phases within our
measurement precision of �φ = ±0.25 rad and hence are
considered phase synchronized (desynchronized). Therefore,
the oscillators in region I stay synchronized, whereas those in
region II drift apart because they have different frequencies.
These frequencies are shown in Fig. 2(b) and are measured
over a time period of 6 μs, which represents approximately
60 oscillation periods with precision of ±0.2 MHz. The

FIG. 2. (Color online) Dynamics measured from coupled
Boolean phase oscillators with N = 128, R = 30, ω0 = 2π (9.3 ±
0.03) MHz, σ̃ = 2π (0.089 ± 0.003) MHz. (a) Snapshot at
t ≈ 304 s; (b) frequency profile fi = 〈φ̇i〉/(2π ). The network is
initialized by deactivating the coupling, resulting in randomized
initial phases, followed by activating the coupling. i is shifted by a
constant to center the unsynchronized domain [32].

oscillators in region II show the characteristic spectral feature
of chimera states [1,2].

The temporal evolution of the frequency is visualized in
Fig. 3(a) for a duration of ∼7 min, corresponding to ∼4 billion
periods. For this specific realization, complex dynamics exists
from time t = 0 until t = 6 min (marked III), where the
frequency varies both from node to node and in time. At time
t = 6 min, the dynamics collapses to a nearly synchronized
state (dark gray region, marked IV), where all but �10
oscillators have a frequency of f = 11.085 ± 0.002 MHz
(compare to f = 9.14 ± 0.03 MHz for uncoupled oscillators).
The remaining oscillators have a frequency different from the
synchronized frequency by about 1% because of heterogene-
ity [32]. The time until synchronization varies considerably
for different experimental runs.

In the following, we discuss the dynamics on a microsecond
time scale, at times marked in Fig. 3(a).

Figure 3(b) shows the frequency of the oscillators for about
60 periods after 304 s, corresponding to a millionth of the
total transient. The network shows high frequencies (dark
gray) for oscillator indices from i ∼= 20 to i ∼= 100 and low
frequencies (light gray) for the remaining oscillators. This
figure corresponds to the chimera state already identified in
Fig. 2(a). The unsynchronized domain of the chimera state
(high frequency, dark gray) moves irregularly in the network
because of finite-size effects [4,34]; this also indicates that the
chimera state is not pinned to the network heterogeneities.

At an earlier time in the transient shown in Fig. 3(c), the
dynamics alternates between complete desynchronization and
chimera states. For times 0 < t < 2.5 μs (marked V), the
figure shows large variations in the frequencies of neighboring
nodes but with no obvious chimera domain (see phase analyses
in [32]). In the remaining time interval (marked VI), two
domains of high and low frequencies can be identified, which
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FIG. 3. (Color online) (a) Frequency evolution over a time period
of 7 min; averaged over 6 μs windows (60 oscillations) every 4 s.
(b), (c) Frequency evolutions shown over a time period of 5 μs;
averaged over 500 ns windows (five oscillations) with (b) t = t ′ +
304 s and (c) t = t ′′ + 56 s. The arrow in (b) indicates the phase
measurement in Fig. 2(a). Parameters of the experiment as in Fig. 2.

correspond to a chimera state that moves in the network and
lasts for ∼30 oscillations. We are the first to report on this
reappearance and disappearance of chimera states, which we
call resurgence of chimera states.

After a transient time TN , the complex dynamics collapses
to a synchronized state. We find that TN varies between
extreme values of TN = 1 s and TN = 32 min for N = 128
and 1000 measurements from different random initializations.
Different from Ref. [19], chimeras appear at every acquisition.
Figure 4(a) shows the experimental distribution ρN of transient
times, where each dot corresponds to the normalized number
of transients with a given lifetime TN . We find that TN follows
an exponential distribution (solid line) according to

ρN (TN ) = 〈TN 〉−1 exp(−TN/〈TN 〉), (4)

with the average transient time 〈TN 〉 = 5.4 min based on our
experimental measurements for N = 128. The exponential
distribution follows analytically by considering the collapse

FIG. 4. (Color online) (a) Histogram of transient times TN with
N = 128 from 1000 experimental acquisitions (circles) and distribu-
tion function Eq. (4) (solid line). (b), (c) Average transient time 〈TN 〉
as a function of N measured from (b) 1000 experimental transients
each, (c) 200 simulated transients each (circles). Both are fitted with
Eq. (5) (solid line) with (b) κ = 0.28 ± 0.10, (c) κ = 0.30 ± 0.08.
The right axis shows the approximate number of periods per transient.
Experimental parameters R/N ≈ 0.24, ω0 ≈ 1000/[19.7 + 2.9R]
(see [32]), and σ̃ = σω2

0/π with σ = 0.515 ± 0.018 ns; initial
conditions as in Fig. 2. Numerical parameters are R/N = 1/3,
σ̃ = 0.089 MHz × 40/R, α = 0.1 and initial conditions as in Fig. 5.
N in (c) is limited by available computation time.

to synchronization as a Poisson process, which occurs con-
tinuously in time at a constant average synchronization rate
λ = 1/〈TN 〉.

Such exponential distribution has been found theoretically
to describe the transient times for chimera states in the Ku-
ramoto model under the assumption of identical oscillators [9].
The appearance of the same scaling is very interesting because
our experiment has heterogeneity and shows resurgence of
chimeras, which are not included in previous models.

We measure the average transient time 〈TN 〉 for networks
of different size N and the same network topology. Figure 4(b)
shows 〈TN 〉 for six different network sizes from N = 105 to
N = 128. The average transient time 〈TN 〉 follows approxi-
mately an exponential scaling over three orders of magnitude
according to

〈TN 〉 ∝ exp(κN ), (5)

with κ = 0.28 ± 0.10. Using Eq. (5) and the assumption
of a Poisson process, the synchronization rate follows λ ∝
exp(−κN ) ∝ V −κ , which is a power law of the network
state-space volume V = (2π )N . This is plausible assuming
for a single oscillator’s phase-space volume V = 2π in
accordance with Eq. (3). This supertransient scaling holds for
many spatially extended systems [11], neural networks [35],
and networks of Kuramoto oscillators [9]. This suggests that
the synchronization rate λ ∝ V −κ may be a general law for
networks under certain conditions, such as nearly identical
nodes and the existence of a stable synchronized state.

We study the network dynamics numerically using the
simplified model in Eq. (3). Analogous to Fig. 2, Fig. 5 shows
the dynamics in phase and frequency representations. We use
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FIG. 5. (Color online) (a) Phases φi and (b) frequencies fi =
〈φ̇i〉/(2π ) of the network at t = 50 μ s. Dynamics are obtained
from numerical simulation of Eq. (3) with N = 128, R = 42,
ω0 = 2π × 9.3 MHz, σ̃ = 2π × 0.089 MHz, α = 0.1. Dynamics are
initialized as in Ref. [2] with φi = 6p exp(−0.76x2), where p is a
uniform random variable on [−0.5,0.5] and x = 2πi/N − π . For
simplicity, we do not assume frequency heterogeneity and noise
in the model. To improve simulation performance, we simulate an
altered version of Eq. (3) with a continuous XOR function given
by {tanh[−c sin(φj ) sin(φi + α)] + 1}/2 with slope c = 4 instead of
|�[sin(φj )] − �[sin(φi + α)]|.

a different coupling range of R = 42 (R/N ≈ 1/3) than in the
experiment because the value used in the experiment (R = 30)
does not lead to chimera states in the simulation. The figure
shows a chimera state with coexistence of a synchronized and
desynchronized domain (see also the explanation for Fig. 2).
The model also reproduces the characteristic scaling of the
transient of Eq. (5), as shown in Fig. 4(c) with κ = 0.30 ±
0.08, which is similar to Fig. 4(b). Both results suggest that the
model is well suited to describe our experiment qualitatively.

The model is, however, only a first step towards a com-
plete theoretical description of the experimental dynamics

because of several differences. First, the simulation shows
chimera states for the entire transient and does not show the
resurgence of chimeras as in the experiment [32]. Second,
the simulation (experiment) collapses to a synchronized
(nearly synchronized) state, where nodes are phase and
frequency synchronized (nearly frequency synchronized but
not phase synchronized) after the transient [32]. Third, chimera
states appear in different parameter regions in the model and
experiment.

These differences may be caused by heterogeneity in the
experiment αij �= const, while αij = const is assumed in the
model. Specifically, the experiment implements heterogeneous
wiring leading to differences in link delays [32]. Furthermore,
differences may be caused by noise and frequency heterogene-
ity of 0.3%, and transmission delays along the links (<5 ns)
in the experiment. Future work has to fill this gap to uncover
the underlying mechanism.

In conclusion, we study a network of Boolean phase
oscillators that approximately follows equations similar to
the Kuramoto model [1]. Large experimental networks of up
to 128 nonlocally coupled Boolean phase oscillators show
complex transient dynamics, where chimera states disappear
and reappear, called resurgence of chimera states, which is
not yet theoretically understood. The dynamics collapses to
a synchronized state after a long transient, which can be
modeled by a Poisson process with an average lifetime scaling
exponentially with the network size, as predicted theoretically
in coupled Kuramoto oscillators [9]. The appearance of
supertransient scaling in our experimental networks provides
further evidence that this scaling could be a general feature
of certain networks. Our work motivates future experimental
studies, such as transient scaling in spiking neural networks
and control of chimera states [36].
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