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Thermodynamic Casimir forces of film systems in the O(n) universality classes with Dirichlet boundary
conditions are studied below bulk criticality. Substantial progress is achieved in resolving the long-standing
problem of describing analytically the pronounced minimum of the scaling function observed experimentally in
4He films (n = 2) by Garcia and Chan [Phys. Rev. Lett. 83, 1187 (1999)] and in Monte Carlo simulations for the
three-dimensional Ising model (n = 1) by O. Vasilyev et al. [Europhys. Lett. 80, 60009 (2007)]. Our finite-size
renormalization-group approach describes the film systems as the limit of finite-slab systems with vanishing
aspect ratio. This yields excellent agreement with the depth and the position of the minimum for n = 1 and
semiquantitative agreement with the minimum for n = 2. Our theory also predicts a pronounced minimum for
the n = 3 Heisenberg universality class.
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Thermodynamic Casimir forces occur in a large variety of
confined condensed-matter systems [1] and have attracted the
interest of many theoretical and experimental researchers over
past decades, including very recently [2–18]. Of particular
interest are O(n) symmetric film systems where both long-
range Goldstone and critical fluctuations are the physical origin
of such Casimir forces. One of the most prominent systems
is superfluid 4He (n = 2) where the Casimir force causes a
surprising and as yet unexplained effect close to the superfluid
transition: a pronounced minimum of the Casimir force scaling
function at a temperature Tmin as observed experimentally by a
thinning of liquid 4He films [5]. This effect has been confirmed
by Monte Carlo (MC) simulations for the XY model (n =
2) [9,11,13], and similar minima were found in MC data for
the Ising model (n = 1) [9] and in a numerical analysis of
the O(n) ϕ4 model with free boundary conditions (BC) in the
large-n limit [16]. In all cases, Tmin is found to be below bulk
Tc and, for n = 1,2, above the film critical temperature Tc,film.
This calls for an explanation of the minima that is not specific
to the superfluid transition and the XY universality class and
is largely unrelated to the existence of and the crossover to a
Goldstone regime at low temperatures.

An early renormalization-group (RG) description of the
thermodynamic Casimir effect in d = 4 − ε dimensions [4]
covers essentially only the region above bulk criticality where
this effect is quite small and where no indication of the
large minimum below bulk criticality of 4He is recognizable.
Subsequent theoretical work is based on mean field (MF)
theory [8,10,15], which, however, is not capable of making a
prediction of the depth of the minimum because of the strong
dependence on an undetermined nonuniversal parameter. A
RG-improved version of MF theory [8] yields a minimum
that is roughly five times deeper than the experimentally
measured minimum. Recently an analytic RG calculation
of the minimum of O(n) symmetric systems in a L2

‖ × L

slab geometry with periodic BC and finite aspect ratio
ρ = L/L‖ [12,17] was found to be in agreement with MC
data [9,19,20] but the position and the depth of the minima
are rather far from those of the minimum in real 4He films [5],
which requires a description with Dirichlet BC because of the
vanishing of the order parameter at the boundaries.

In this paper we develop an analytic theory of the Casimir
force that is in substantially improved agreement with the
observed minima of systems with free or Dirichlet BC. Our
approach is focused at the outset on the important region
Tc,film < T < Tc. It is based on the physical fact that the
disordered phase of the system for n = 1 and n = 2 includes
the entire region above Tc,film rather than only the region above
bulk Tc, which enables us to develop a finite-size theory for
general n below Tc without encountering problems due to
Goldstone modes. We also predict a minimum for the (n = 3)
Heisenberg universality class. Our theory with Dirichlet BC
should also be an appropriate basis for describing Casimir
forces in superconducting films [7] and finite-size effects in
confined magnetic materials provided that the theory includes
the effects of lattice anisotropy [21].

We start from the O(n) symmetric ϕ4 Hamiltonian

H =
∫

V

ddx

[
r0

2
ϕ2 + 1

2
(∇ϕ)2 + u0(ϕ2)2

]
, (1)

where ϕ(x) is an n-component field in a d-dimensional Ld−1
‖ ×

L slab geometry with a finite volume V = Ld−1
‖ L. We consider

periodic BC in the d − 1 “horizontal” directions but Dirichlet
BC in the dth “vertical” direction. Accordingly ϕ(x) ≡ ϕ(y,z)
is represented as ϕ(x) = √

2
∑

n,m ϕ̂n,meipy sin(qz), where the
sum

∑
n,m runs over (d − 1)-dimensional p vectors with com-

ponents pα = 2πnα/L‖, α = 1,2, . . . ,d − 1, with integers
nα = 0, ±1, ±2, . . . , and over wave numbers q = πm/L

with integers m = 1,2, . . . (up to some cutoff �). Our system
differs from the periodic slabs studied previously [17] in that
now there exist surface contributions to the free energy and
an inhomogeneous lowest mode ψ(z) = 	

√
2 sin(πz/L) with

	 ≡ ϕ̂0,1 which implies an enhanced four-point coupling of
the lowest-mode Hamiltonian and an (unrenormalized) shift
∝L−2 of the film transition. As shown below, our approach
succeeds in renormalizing this shift for Dirichlet BC and
in predicting a finite temperature range Tc,film < T < Tc, in
good agreement with experiment and MC data, whereas this
temperature range is not captured in the film limit ρ → 0 of
the RG theory of Ref. [17] for periodic BC where all three
temperatures Tc,film,Tmin, and Tc coincide.
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Our applications will be focused on Ising-like and XY -like
systems. For ρ → 0, they undergo a phase transition for
n = 1,d > 2 and for n = 2,d � 3 at a finite temperature
0 < Tc,film(L) < Tc. For n = 2,d = 3, this is a Kosterlitz-
Thouless transition. No finite Tc,film exists for n > 2 in
d � 3 dimensions. The Casimir force per unit area FCas =
−∂[Lf ex]/∂L can be derived from the excess free energy
density (divided by kBT ) f ex = f − fb where f (T ,L,L‖) =
−V −1 ln

∫
Dϕ exp(−H ) and fb ≡ limV →∞ f are the free

energy densities of the finite and bulk systems, respectively.
One expects that, for isotropic systems near Tc and for large L

and L‖, FCas can be written in a scaling form [22]

FCas(t,L,L‖) = L−dX(x̃,ρ) (2)

with the scaling variable x̃ = t(L/ξ0+)1/ν , t = (T − Tc)/Tc,
where ξ0+ is the amplitude of the bulk correlation length above
Tc. We derive the scaling function X(x̃,0) above Tc,film for
general n without any adjustment of parameters.

Unlike earlier theories [4,7,15] for film (ρ = 0) geom-
etry, our strategy is to describe the film system as the
limit ρ → 0 of the finite-slab (ρ > 0) systems. This differs
from [12,17] whose applicability near Tc is restricted to
ρ > 0. We first present our approach for n = 1. We decom-
pose ϕ(x) = ψ(z) + ϕ̂(x) with the higher-mode fluctuations
ϕ̂(x) = ∑′

n,m

√
2ϕ̂n,meipy sin(qz) where the sum

∑′
n,m does

not include the lowest mode (0,1). Accordingly we decompose
H = H0 + H (2) + H (3) + H (4),

H0(	2) = V

[
1

2
(r0 + π2/L2)	2 + 3

2
u0	

4

]
, (3)

H (2)(	,ϕ̂) =
∑
n,m

′
{

1

2
[r̃(	2) + p2 + q2]ϕ̂n,mϕ̂−n,m

+ b(	2)[ϕ̂n,mϕ̂−n,mδm,1 − ϕ̂n,mϕ̂−n,m+2

− ϕ̂n,mϕ̂−n,m−2]

}
− w(	)ϕ̂0,3, (4)

with b(	2) = 3u0	
2, w(	) = 2u0	

3, and the “longitudinal”
parameter r̃(	2) = r0 + 12u0	

2. The interesting aspect here
is the treatment of finite-size effects on the basis of H (2) and
H (3) ∼ O(u0	ϕ̂3) below Tc whereas only surface properties
above Tc were treated previously [23] on the basis of H (2) and
H (4) ∼ O(u0ϕ̂

4). After integration over ϕ̂, we obtain the free
energy density

f = f0 − 1

V
ln

{∫ ∞

−∞
d	 exp[−H0(	2) − �(	2)]

}
, (5)

�(	2)=
∑
n,m

′
{

1

2
ln an,m(r̃ ,b) − 2b2

an,m(r̃ ,b) an,m+2(r̃ ,b)

}

− 6u0	w
1

a0,3

{∑
n

′ 1

an,1(r̃ ,b)
−

∑
n

1

an,2(r̃ ,b)

}
(6)

apart from contributions of O(b3,w2,u0), with an,m(r̃ ,b) =
r̃ + 2bδm,1 + 4π2n2/L2

‖ + π2m2/L2. The sum
∑′

n does
not include n = 0. The constant f0 is independent of
r0 and u0. The main contribution of the integration
over 	 comes from the region around 	2 ≈ M2

0 where

M2
0 = ∫ ∞

−∞ d		2 exp[−H0(	2)]/
∫ ∞
−∞ d	 exp[−H0(	2)] is

the lowest-mode average. This provides the justification for
approximating �(	2) by �(M2

0 ). The structure of our �(M2
0 )

is considerably more complicated than that of the sum∑
k �=0 ln(r̃ + k2) of Ref. [17] for periodic BC. In particular,

our bulk limit of f below Tc differs from that for periodic
BC [17] because of the enhancement factor 3/2 in H0 and the
term ∝b(M2

0 )2 in �(M2
0 ).

Since the smallest value of q is finite, namely π/L, f is
an analytic function of r0 at r0 = 0 for ρ � 0. On the level of
the unrenormalized theory, the analyticity for ρ = 0 extends
down to the film transition temperature at r0 = −π2/L2.
The focus of our theory is the (renormalized counterpart of
the) range r0 > −π2/L2. As shown below, this range fully
includes the minimum of the Casimir force scaling function
where this function is nonsingular, in contrast to the MF
results [8,10,15].

According to our concept of analyzing the range above
the film transition, we have performed an exact analytic
calculation of �(M2

0 ) not only for r̃(M2
0 ) ≡ r̂ > 0 but also

for its full range of existence r̂ > −π2/L2 for finite L 

�−1,L‖ 
 �−1 and arbitrary ρ > 0 above and below Tc in
2 < d < 4 dimensions including the limits L → ∞,L‖ → ∞.
This differs from earlier calculations [4] of two-loop sums that
were restricted to r0 > 0 and ρ = 0. We apply this calculation
to the excess free energy above Tc,film(L) for 0 < ρ � 1. The
result above (+) and below (−) bulk Tc reads f ex(r0,L,L‖) =
fs(r̂ ,L,L‖) − f ±

b,s(r0) with the unrenormalized singular
parts

fs(r̂ ,L,L‖) = − Ad

dr̄ε/2

{
r̂2

ε
+ π2

2L4

[
r̄L2 − (d + 2)π2

4

]}

+ Ad−1 r̄ (d−3)/2

2(d − 1)(5 − d)
L−3

[
r̄L2 − (d − 1)π2

2

]

+L−dP(r̄L2,ρ), (7)

f +
b,s(r0) = −Ad

dε
r

d/2
0 , (8a)

f −
b,s(r0) = − r2

0

24u0
− Ad

dε
(−r0)d/2

[
3 − ε(d + 2)

4

]
(8b)

for r0 > 0 and r0 < 0, respectively, apart from terms
of O(M2

0 ,ρd−1), with r̄ = r̂ + π2/L2 and Ad = �(3 −
d/2)[2d−2πd/2(d − 2)]−1. The function P is given by

P(r̄L2,ρ) = 1

2d+1π

∫ ∞

0
dz

{(
π

z

)1/2(
1 + z + z2

2

)

− [2ρK(4ρ2z)]d−1ez[K(z) − 1]

(
π

z

)(1−d)/2

− (1 + z)

}(
π

z

)(d+1)/2

exp [−r̄L2z/π2] (9)

with K(z) = ∑∞
m=−∞ exp(−zm2) and 2ρK(4ρ2z) →

(π/z)1/2 for ρ → 0. For finite r̄L2 > 0, the integral P(r̄L2,ρ)
exists in 1 < d < 5 dimensions for ρ � 0. Note that a d = 3
pole is contained in the surface contribution ∝Ad−1 in Eq. (7).
This pole term is well understood as an artifact of perturbation
theory due to the vanishing of the critical exponent of the
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Gaussian surface energy density at d = 3 [24]. Here the
d = 3 pole is not problematic because it is canceled in the
quantity −f ex − L∂f ex/∂L = FCas. Our function fs , Eq. (7),
is nonsingular at r0 = 0 for finite L, in agreement with
general analyticity requirements [25]. In fact, fs(r0,L,L‖)
constitutes the analytic continuation of an earlier result
(as given by the singular part of Eqs. (66), (67), and (69)
of Ref. [24] that is valid only for r0 � 0) to the region
r0 > −π2/L2 [26]. A proof of this statement will be given
elsewhere.

The conceptual progress of our approach manifests itself in
the representation of Eqs. (7) and (9) in terms of closed func-
tions of the shifted variable r̄ relative to the (unrenormalized)
film critical point rather than relative to bulk Tc. The variable
r̄ is an analytic function of r0 which immediately proves the
analyticity of fs [27]. Equations (7)–(9) do not yet correctly
describe the finite-size scaling behavior in terms of the scaling
variable x̃ with the correct critical exponent ν. This will be
achieved by appropriate renormalizations that we perform
within the minimal subtraction scheme at fixed dimension
d [21,28].

It is straightforward to extend our calculation to n > 1
as far as the disordered phase above Tc,film is concerned.
Then n − 1 transverse contributions exist which depend on
the “transverse” parameter r̃T(M2

0 ) = r0 + 4u0M
2
0 rather than

the “longitudinal” parameter r̃(M2
0 ) defined above. These

definitions are parallel to those in Ref. [17]. Especially in the
limit ρ → 0, each of the n components of ϕ(x) contributes
equally to the free energy, which amounts to multiplying
both fs and the bulk part f +

b,s by n. As far as the transverse
finite-size contributions are concerned, our approach is not
applicable to T < Tc,film(L) where r̃T(M2

0 ) would become
negative. This can be traced back to the factor 3/2 in the
	4 term of H0. As far as the transverse bulk contribution
is concerned we argue, however, that no unrenormalized
transverse bulk contributions below Tc exist at O(u−1

0 ) and
O(1) as is known from bulk perturbation theory [29]. This
remains true also for the renormalized bulk theory in terms of
the renormalized coupling u. Thus, on our level of the theory
which neglects terms of O(u) and for the application restricted
to Tc,film(L) < T < Tc, we approximate the bulk part below
Tc for general n � 1 by the longitudinal bulk contribution
below Tc as given in Eq. (11b) below (where the n dependence
enters only through the fixed point value u∗ and the flow
parameter l−).

The quantity of primary interest is the Casimir force
scaling function X(x̃) = limρ→0 X(x̃,ρ) in the film limit. From
Eqs. (7)–(9) we derive its analytic form for general n above
(+) and below (−) Tc and above Tc,film(L)

X(x̃) = −Adl
d
±

n

ε

[
1

4
− lε±

d
l̂−ε
±

]
+ F±

b (x̃) + Adnπ2l4
±

d
l̂d−6
±

+ Adnπ2

2d
l̂−ε
±

{
− l̂2

± + π2(14 − d)/4 + π4

4l̂2±
(d − 4)

×(d + 2)

}
− n

π (9−d)/2

2d
�

(
5 − d

2

)
l̂d−5
± + n

2d+1π

×
∫ ∞

0
dz

[
d − 1 ± 2

l2
±

π2
z

]{(
π

z

)1/2(
1 + z + z2

2

)

− ez[K(z) − 1] − (1+z)

}(
π

z

)(d+1)/2

exp [−l̂2
±z/π2],

(10)

F+
b (x̃) = −Adl

d
+n/(4d), (11a)

F−
b (x̃) = −Adl

d
−[1/(24u∗) + 1/(4d) − 1/4], (11b)

where l± = (± x̃Q∗)ν and l̂± = (± l2
± + π2)1/2. The quantity

Q∗ = Q(1,u∗,d) is the fixed point value of the n-dependent
amplitude function Q(1,u,d) of the second-moment bulk
correlation length above Tc [28]. Equations (10) and (11)
are the central results of this Rapid Communication. They
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FIG. 1. (Color online) Scaling function X(x̃) of the Casimir force
as a function of x̃ = t(L/ξ0+)1/ν in three dimensions for n = 1,2,3.
Thick solid lines: RG theory from Eqs. (10) and (11). MC data (i) and
(ii) in panel (a) from Ref. [9] for the Ising model with L = 20. Thin
line in panel (b): 4He data from Ref. [5] with ξ0+ = 1.43 10−8 cm.
Dashed line in panel (b): RG improved MF theory from Refs. [8,10]
with a minimum XMF

min = −6.92 at x̃MF
min = −9.87.
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contain no adjustable parameters. They are valid in 2 < d < 4
dimensions (with a finite limit for d → 4) including d = 3 in
the range x̃ > x̃c,film, which is the renormalized counterpart of
the range r0 > −π2/L2 mentioned above. The film transition
occurs at l̂− = 0 or l− = π , i.e.,

x̃c,film = −π1/ν/Q∗. (12)

The crucial conceptual advance of our theory is the function
X below Tc which provides a description relative to the
renormalized film critical point (12) as reflected in the variable
l̂− = (−l2

− + π2)1/2. Our function X(x̃) is an analytic function
in the entire region x̃c,film < x̃ < 0 and 0 < x̃ < ∞. By
definition, X(x̃) has a weak singularity at x̃ = 0 arising from
the bulk part of f ex.

Our result in Eqs. (10) and (11) is compared with ex-
perimental and MC data in Figs. 1(a) and 1(b). For d = 3
we employ the following numerical values [28,30–32] u∗ =
0.0404,0.0362, Q∗ = 0.946,0.939, and ν = 0.6301,0.671 for
n = 1,2, respectively. We obtain x̃c,film = −6.44, − 5.86 for
n = 1,2, respectively. This is not far from the observed
transitions at x̃c,film = −7.6 for both the Ising (n = 1) and
the XY (n = 2) universality classes [9]. The positions of the
minima predicted by our theory are x̃min = −5.53, − 4.73 for
n = 1,2, respectively. This is in excellent agreement with the
position x̃MC

min = −5.7 observed by MC simulations for n =
1 [9] and in reasonable agreement with x̃

exp
min = −5.7 measured

by experiments for n = 2 [5], as shown in Figs. 1(a) and 1(b).
The position predicted by MF theory [8,10] x̃MF

min = −π2 =
−9.87 differs considerably from the observed position. Also
the shape of X(x̃) and the depth of the minimum Xmin = −1.53
predicted by our theory for n = 1 are in excellent agreement
with the MC data [Fig. 1(a)] while semiquantitative agreement
with the experimentally measured depth for n = 2 [Fig. 1(b)]
is found. The RG improved MF theory [8] [dashed line in
Fig. 1(b)] has a minimum XMF

min = −6.92 that is far from the
experimental value and is outside the range of the vertical scale
shown in Fig. 1(b).

Although our theory captures well the film transition point
Eq. (12), our function X does not correctly describe the weak
singularity at x̃c,film [9] for n = 1,2 but yields a divergence
for n � 1. Nevertheless we expect that our function X(x̃)
provides a reasonable prediction at a semiquantitative level for
general n > 2 in the range x̃min � x̃ � ∞. An application of
our result in Eqs. (10) and (11) to n = 3 (with parameters u∗ =
0.0327,Q∗ = 0.937,ν = 0.7112 taken from Refs. [30,31,33])
yields a pronounced minimum Xmin = −2.07 at x̃min = −4.20
as shown in Fig. 1(c). The latter value is close to x̃(∞)

min =
−4.56 of the pronounced minimum found recently in the
large- n limit [16]. It would be interesting to test our n = 3
prediction by MC simulations for Heisenberg models with free
BC.

Our analytic theory provides the opportunity of studying
separately the contributions arising from bulk and finite-
size parts. For n = 1,2,3, the occurrence of the pronounced
minimum can be understood as the result of a competition
between a decreasing bulk contribution [as represented by
the term F−

b (x̃) in Eq. (10)] and an increasing L-dependent
fluctuation contribution to the Casimir force as the temperature
is lowered below bulk Tc toward Tc,film(L). An analysis of
Eqs. (10) and (11) for larger n > 3 can answer the question
whether this feature persists up to n = ∞ [16]. The fluctuation
contribution is missing in MF theory which explains why no
minimum exists in MF theory [dashed line in Fig. 1(b)] above
the MF film transition temperature x̃MF

c,film = −π2 = −9.87.
To summarize, we have shown that the pronounced minima

of the Casimir force scaling function of O(n) symmetric
film systems observed in experiments [5] and MC simula-
tions [9,11,13] can be described analytically within a finite-size
RG approach on the basis of the ϕ4 model with Dirichlet BC.
Our approach may also be applicable to the low-temperature
phase of superfluid films and superconducting films where
Goldstone modes play an important role [6,17].

The author is grateful to O. Vasilyev for providing the data
of Refs. [5,9] in numerical form.
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