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I. INTRODUCTION

Due to their remarkable physical properties [1,2], hard-
sphere models of fluids cover a primary role in statistical
mechanics from both the theoretical [3] and the computational
point of view [4,5]. A number of methods were developed to
simulate hard-sphere systems more efficiently than the local
Metropolis method [6–8], and parallelization schemes were
proposed to run hard-sphere Monte Carlo (MC) simulations on
parallel architectures (see Anderson et al. [9], and references
therein). In such methods, space decomposition techniques are
used to avoid overlaps, which can arise from the synchronous
movement of more than one particle (atom or molecule).

In the present work we show how the updating rule of a
synchronous cellular automaton (CA) [10–15] for mutually
exclusive particles [16,17] can replace the role of space de-
composition in the MC updating of hard-sphere configurations,
producing a synchronous MC algorithm.

Our algorithm shares with the work of Anderson et al. [9]
the tessellation of the space enclosed within the simulation box
by means of a three-dimensional grid of adjacent cubes, which
we call cells. However, in our work the spheres are allowed
to leave their parent cells during every single MC step, and a
further tessellation of the physical space enclosed within every
cell into a number of sites is used to determine the destination
position of every moving sphere within the available space
only.

II. OFF-LATTICE AND LATTICE SPACE

In order to proceed with the description of the algorithm,
we need to define the (off-lattice) simulation space and its
discrete (lattice) counterpart. For simplicity, we consider a
cubic space, V , of volume V = L3 ranging from 0 to L ∈ R
in each one of the x, y, and z directions and enclosing N hard
spheres of diameter σ . The N spheres are allowed to occupy
any position in V provided that one sphere does not overlap
another. Periodic boundary conditions are assumed.

The lattice counterpart of the simulation space V is the
homogeneous lattice L, defined as

L = {c1, . . . ,cz3}, (1)

made of z cells per side of the simulation box (z is an
integer number) and containing, therefore, z3 cells each of side
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� = L/z and volume v = �3. In Eq. (1) the (cubic) cells are
labeled by their centers, ck , with k = 1, . . . ,z3.

Every cell communicates with a limited number of cells,
which constitute the cell neighborhood. The neighborhood
is the same for every cell (due to lattice homogeneity), and
includes a different number of cells depending on whether the
Von Neumann (VN) or the Moore (M) neighborhood is used
[11]. The notation NVN(c) and NM(c) will be used to indicate
the Von Neumann and the Moore neighborhood, respectively,
of the cell centered at the position c ∈ L. The cell c itself
is not included in the definition of NX(c) (with X = VN,
M). In Table I we provide an accurate description of the two
types of neighborhood, whereas in Figs. 1(a) and 1(b) the
Von Neumann and Moore neighborhoods are represented (2D
projection).

III. BOUNDARY LATTICE

According to Table I, the distance vectors c + v̂j , j =
1, . . . ,6, indicate the relative positions of the six first neighbors
of cell c, constituting the Von Neumann neighborhood of cell
c. The center of every boundary between c and each of such
neighbors is then located at the position c + 1

2 v̂j , j = 1, . . . ,6,
and it is called boundary site. Given that there are z3 cells
in the cubic lattice L, we have that the boundary lattice,
defined as

B = {b1,b2,b3, . . . ,b3z3−2,b3z3−1,b3z3}
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is made of 3z3 boundary sites, and we say that the six boundary
sites located at positions

ck ± 1
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enclose the cell ck .
Let us now define the neighborhood of a boundary site.

Whereas the boundary lattice described above makes use of
the Von Neumann neighborhood only (i.e., it does not change
whether the Von Neumann or the Moore neighborhood is used

1539-3755/2014/90(2)/023307(7) 023307-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.023307


PAZZONA, DEMONTIS, AND SUFFRITTI PHYSICAL REVIEW E 90, 023307 (2014)

TABLE I. The Von Neumann and the Moore neighborhoods
for a three-dimensional grid of cells (the superscript T indicates
the transpose). Given a cell centered at rc, the set of neighbors is
given, respectively, by {c + v̂1, . . . ,c + v̂6} or {c + û1, . . . ,c + û26},
depending on whether the Von Neumann or the Moore neighborhood
is used.

Von Neumann neighborhood, NVN

v̂T
1 , . . . ,̂vT

6 := (±�,0,0) (0, ± �,0) (0,0, ± �)

Moore neighborhood, NM

ûT
1 , . . . ,̂uT

26 := (±�,0,0), (0, ± �,0), (0,0, ± �),
(±�, ± �,0), (±�, ∓ �,0), (±�,0, ± �),
(±�,0, ∓ �), (0, ± �, ± �), (0, ± �, ∓ �),
(±�, ± �, ± �), (±�, ∓ �, ± �), (±�, ± �, ∓ �),
(∓�, ± �, ± �)

to describe the cell-to-cell connections), the neighborhood
of a boundary site is sensitive to the particular type of cell
neighborhood chosen for the simulation. The definition of
neighborhood, NB(b), of the boundary site b, assumed to be
located at the center of the interface between cells ck and
ck′ , is the following: given the cell neighborhood, NX (with
X = VN or M, depending on whether the Von Neumann or the
Moore neighborhood is used),NB(b) includes all the boundary
sites enclosing the cells contained in NX(ck)and NX(ck′). By
definition,NB(b) turns out to contain the boundary site b itself.
In Figs. 1(c) and 1(d), the boundary neighborhood around a
boundary site is represented, respectively, in the case of Von
Neumann and Moore neighborhoods (2D projection).

Finally, we indicate as c1(b) and c2(b) the two cells that
communicate with each other through the boundary site b. For
example, if we indicate as b the boundary site in yellow in
Figs. 1(c) and 1(d), then {c1(b),c2(b)} = {c8,c13}.

IV. ALGORITHM

The simulation starts with a random configuration of
N nonoverlapping spheres and proceeds through discrete
(k = 1,2, . . . ) MC iterations. The position of the centers of
the N spheres at iteration k represents a configuration, denoted

Rk = {r1, . . . ,rN }. We shall describe the evolution of the
system through a sequence of operations, each one represented
as the action of an operator on the configuration R. Since the
algorithm does not change from one MC iteration to the other,
we drop the iteration superscript k.

First of all, the operator C maps the configuration R into a
coarse-grained configuration, called R̃, in which the position
of every sphere’s center is rounded to the center of the cell it
falls within:

C : R �→ R̃ := {
INT[rj /�] + (

�
2 , �

2 , �
2

)T }
j=1,...,N

= { r̃1, . . . ,̃rN }, (4)

where T indicates the transpose.
Now, we use the lattices L and B to let the spheres

move while preserving the excluded volume condition. Let
us suppose the system is configured as R = {r1, . . . ,rN }, and
let us consider the sphere j , with position rj , belonging to the
cell �j . We introduce γ (with 0 < γ � 1) as the probability
of sphere j (as of any other sphere) to stay at rest. As a
consequence, the probability of the particle to reach one of
the six boundaries around the cell r̃j reads (1 − γ )/6. All
the spheres pick one (or none) of their respective nearest
boundaries at the same time according to such criterion. In
the resulting configuration, I = {i1, . . . ,iN }, which we call a
boundary configuration, some spheres appear to have jumped
from their original positions (i.e., rj ) into the exact location of
a nearest boundary (so that for such spheres ij �= rj ), and the
other spheres did not move from their original positions (i.e.,
for such spheres ij = rj ). The generation of I from R can be
represented as the action of the stochastic operator I:

I : R �→ I with probability p(I|R), (5)

where the conditional probability of generating I from R is

p(I|R) =
N∏

j=1

(
1 − γ

6

)ξj

γ 1−ξj , (6)

with the boolean ξj indicating whether or not the sphere j

jumped into a nearest boundary during the transformation
R → I; i.e., ξj = 1 − δ(rj − ij ). The occupancy of each
boundary site, n(b), is the number of spheres that, according

(a) (b) (c) (d)

c1 c2 c3 c4 c5

c6 c7 c8 c9 c10

c11 c12 c13 c14 c15

c16 c17 c18 c19 c20

c21 c22 c23 c24 c25

c1 c2 c3 c4 c5

c6 c7 c8 c9 c10

c11 c12 c13 c14 c15

c16 c17 c18 c19 c20

c21 c22 c23 c24 c25

FIG. 1. (Color online) (a) A two-dimensional sketch of a small lattice of cells, numbered as c1,c2, . . . . Cell c13 is enhanced in yellow, and
its Von Neumann neighboring cells are in green. In (b) we sketch the same as in (a), but with the Moore neighbors of cell c13 enhanced in
green. In (c) the cell-to-cell boundaries are sketched as a two-dimensional grid (filled circles). We enhanced the connections (Von Neumann
neighborhood) involving the boundary (in yellow) placed in between of cells �8 and �13. Of such connections, the 6 pointing to the boundaries
(red circles) having access to either cell �8 or cell �13 constitute the first connection shell and are in red, whereas the 16 pointing to to the
boundaries (cyan circles) having access to either the neighbors of cell �8 or the neighbors of cell �13 constitute the second connection shell and
are in cyan. In (d) the enhanced connections refer to the case of the Moore neighborhood.
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to the boundary configuration I, occupy each boundary site:

n(b) =
N∑

j=1

δ(ij − b). (7)

Let us assume that j reached a boundary. If other spheres
occupy the same boundary or a neighboring one, there is
chance for them to end up in conflicting positions. Therefore,
the sphere in a boundary is driven back to its original position
if, as a result of the choice made by all the spheres, the
boundary occupied by j (which is ij ) is occupied by some
other sphere, and/or if any of the boundaries in the set NB(ij )
is occupied. We apply such operation to all the spheres at the
same time. The resulting configuration, I′ = {i′1, . . . ,i′N }, is
another boundary configuration originated through the action
of a deterministic operator D on I:

D : I �→ I′ := {rj + (ij − rj )ξ ′
j }j=1,...,N

= {i′1, . . . ,i′N }, (8)

with

ξ ′
j = ξj�

⎡
⎣2 −

∑
b∈NB(ij )

n(b)

⎤
⎦ , (9)

where � is the Heaviside function, i.e., �[x] = 0 if x < 0 and
1 otherwise.

Every sphere in a boundary site, say sphere j in i′j , has
now access to the space enclosed within the two cells that
share that boundary [i.e., c1(i′j ) and c2(i′j )], and is therefore
to be considered as a jumping sphere. At this point, the space
enclosed within these two cells is further discretized into a
lattice of A sites, say A(j ) := {a(j )

1 , . . . ,a(j )
A }. The lattice A(j )

can be chosen arbitrarily. Our choice for A is a 2M × M × M

lattice of cubes tessellating the two-cell space. In principle,
any point in the space within every cube represents a possible
destination of the jumping sphere. However, to minimize the
jump rejectance, we operate on the lattice A(j ) in such a
way as to enhance the probability of the particle to choose a
position which does not cause any overlap with other spheres.
Therefore, we generate the lattice Â (j ) := { â (j )

1 , . . . ,̂a (j )
A } of

possible outcoming positions by operating on A(j ) as follows:
(i) We discard all the sites that have all their respective

eight corners falling within a radius σ from the center of any
of the spheres in the neighborhood.

(ii) We locate the site that is nearest to the position, say rj ,
occupied by the jumping sphere before reaching the boundary
site, and we move it to a position exactly coincident with rj .
This is a necessary step because the jumping sphere, j , must
be given the chance to recover its original position to ensure
detailed balance.

(iii) We move independently each of the nondiscarded sites
(all except the one located at rj ) of a random amount within
their respective cube.

The resulting site positions represent the lattice Â (j ). At
this point, the notion of cubic volume associated to each site
[we used such notion to determine the site corners in step (i)]
is lost; i.e., every site represents merely a position in space.

We derive the probability of each position in Â (j ) to be chosen
by proceeding as follows:

(iv) We assign to each position ν in the lattice Â (j ) a
statistical weight, w

(j )
ν , equal to 1 if the distance between the

νth point, located at â (j )
ν , and each of the spheres in the cell

containing ν and in its neighborhood is larger than σ , and equal
to 0 otherwise.

(v) We choose as the outcoming position of j one site
out of all those sites in set Â (j ) that have w

(j )
ν = 1. For a

hard-spheres system, this is the same as choosing an output
site, say ν, according to the probability p

(j )
ν defined as

p(j )
ν = w

(j )
ν∑

ν ′ w
(j )
ν ′

. (10)

Let us now interpret the displacement of every jumping sphere
(i.e., every j such that ξ ′

j = 1) from its original position

(i.e., rj ) to a new one (i.e., a(j )
ν , with ν ∈ [1,A] ∈ N) as

the action of the operator W . Let us call Wsyn and Wseq,
respectively, the synchronous and the sequential version of W ,
in the sense that Wsyn invokes for displacement all the spheres
satisfying ξ ′

j = 1 independently, whereas Wseq assumes the
sphere displacements to be dependent and therefore invokes
the jumping spheres in sequence. The structure of Wsyn is
especially simple:

Wsyn :

{
rj �→ sj = a(j )

ν with probability p
(j )
ν , ∀j : ξ ′

j = 1
rj �→ sj = rj , ∀j : ξ ′

j = 0
,

(11)

where sj is the new position of sphere j (the whole new
configuration is denoted S = {s1, . . . ,sN }), and is appropriate
only if the cell neighborhood is of the Moore type, which
ensures that no overlap will ever occur between two jumping
spheres.

When the Von Neumann cell neighborhood is used instead,
overlappings can result among two or more jumping spheres.
Therefore, a sequential version of the operator Wseq must
be adopted instead of Wsyn. This can be seen clearly from
Fig. 1(c): Let us assume that the jumping sphere, starting from
the boundary site (in yellow) between cells c8 and c13, selects a
location close to the upper-left corner of cell c13 as outcoming
position. If at the same time a jumping sphere in the boundary
site between cells c17 and c22 points to a location close to the
lower-right corner of cell c17, the result is an overlap between
the two jumping sphere. In order to avoid overlaps, the choice
of the lattice site a(j )

ν with probability p
(j )
ν is to be considered

only as a biased trial move, where the bias lies in excluding
all the outcoming position of sphere j that can cause overlap
with the resting spheres, and the actual configuration updating
must be sequential: Wseq prescribes that the sequence with
which we invoke the jumping spheres is randomized, that the
jumps are performed according to the randomized sequence,
and that every one of such jumps is allowed only if it does not
cause any overlap. Even though the configuration updating is
sequential, the biasing procedure during which we exclude any
possible overlap with the resting sphere is still performed with
full independence, i.e., synchronously.
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In brief, the transformation from configuration R to con-
figuration S, which can be written as R → I → S, can be
summarized as

S = W ◦ D ◦ I ◦ R, (12)

where every operation is synchronous made exception for the
last one, W , which is synchronous if Wsync is used (in this case
the Moore neighborhood is adopted for the cell connections)
or is partially synchronous if Wseq is used (in this case the Von
Neumann neighborhood is chosen).

Verifying that detailed balance is satisfied is straightfor-
ward: p(I|S) is given in Eq. (6), I → I′ is deterministic [i.e.,
p(I′|I) = 1]. When Wsync is used, due to the randomization
of the lattice sites we described above, a given set of lattices
A(j ) (for all the j such that ξ ′

j = 1) has the same probability
of being constructed in both the processes R → I → S and
S → I → R. If the lattices A(j ) are the same in both the
forward and the reverse transformations, as a consequence the
distributions p

(j )
ν are the same as well, and detailed balance is

obeyed.
When Wseq is used instead, the probability of picking a

certain sequence with which the spheres are invoked to jump
is equal to the probability of picking exactly the reversed
sequence. When we reverse the sequence of jumps, every
jumping sphere experiences the same scenario it experienced
in the “forward” sequence, thus the resulting A(j ) lattices and
p

(j )
ν distributions are also the same as in the forward sequence

and detailed balance is obeyed.

V. NUMERICAL SIMULATIONS

We performed numerical runs of the simulation model over
a system of size L = 49.70 Å, for values of the packing
fraction, defined as η = πNσ 3/6V (where N is the number
of spheres, σ their diameter, and V = L3 the volume), ranging
from η = 0.035 to η = 0.492, i.e., covering the isotropic
liquid region (the freezing point is located around η = 0.494).
We fixed the sphere diameter to the value of σ = 3.72 Å.
Consequently, the number N of hard spheres ranged between
240 and 2 240. The finer lattices were set according to a value
of the parameter M equal to 10. The number of MC iterations
was set to 107 steps (108 for the cases with N = 2 080 and
N = 2 240). The simulations differed in the value assigned to
the probability parameter, γ (described in Sec. IV), and in the
number of cells per side, z (described in Sec. II), and in the use
of the Moore or the Von Neumann neighborhoods (see Secs. II
and III).

In order to describe how the model works, we need to
properly define a quantity that can be taken as a measure of
the average displacement acceptance. In general, the notion
of acceptance as meant for traditional importance sampling
MC schemes (i.e., the number of successful displacements
divided by the number of displacement attempts) cannot
be applied straightforwardly in the present model. This is
because at each MC iteration the relative success of two
collective operations, namely D ◦ I (in the present context
we consider the application of I followed by D as a unique
operation) and W , must be taken into consideration. Let us
then introduce first the quantity Nk

D , with k = 1, . . . ,Nsteps, to
represent the number of hard spheres that, after the application

of the operation D at each MC iteration, occupy boundary
sites (such spheres are the ones which can actually attempt a
displacement), and the quantity Nk

jump, with k = 1, . . . ,Nsteps,
to represent the number of hard spheres that, at each MC
iteration, actually perform a non-null displacement. Then we
define the acceptance at iteration k as

J k
acc =

{
Nk

jump/N
k
D if Nk

D > 0
0 if Nk

D = 0
, (13)

and the average acceptance as

〈Jacc〉 = 1

Nsteps

Nsteps∑
k=1

J k
acc. (14)

In Fig. 2(a) the average acceptance is plotted versus the
total number of spheres when Wsync is used (together with
the Moore neighborhood). The quantity 〈Jacc〉 gives the
probability of any displacement to happen at each iteration. To
complete the description of the model behavior under different
parametrizations, we show in Fig. 2(b) the average number of
jump attempts. Both the quantities 〈Jacc〉 and 〈ND〉 need to be
looked at in order to get a complete scenario.

When Wsync is used (together with the Moore neighbor-
hood), we found that low values of γ are not recommended,
since such conditions cause a high number of spheres to
attempt a jump at each MC iteration. This, in turn, causes
a high probability of boundary conflicts to be solved by the
deterministic operator D, which results in a low number of
actually moving spheres—we recall that at each MC step, say
the kth, the operator D forces the conflicting spheres at the

J
ac

c

η

(a)

N
D

η

(b)

z = 12
z = 10

z = 12
z = 10

FIG. 2. (a) The jump acceptance and (b) the average number of
jump attempts when the Moore neighborhood is used, for γ = 0.9
and for two different values of the number of cells per side; i.e.,
z = 12 and 10, corresponding, respectively, to � ≈ 4.17 and � = 5.0.
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boundaries to return back to their original positions, so that
only the nonconflicting spheres at the boundary nodes, Nk

D in
number, can actually keep their boundary position, thus having
the chance to actually move. In fact, for low-intermediate
values of γ we found (not shown) that the quantity 〈Jacc〉
decays very rapidly with the number of particles (for γ = 0.5
and γ = 0.1 it reaches zero value at η ≈ 0.17 and η ≈ 0.12,
respectively). In agreement with such considerations, we
obtained the best 〈Jacc〉 and 〈ND〉 trends through high values of
γ and z, more specifically γ = 0.9 and z = 12 [see Figs. 2(a)
and 2(b)]. Intuitively, a higher number of cells (i.e., higher z)
corresponds to a higher number of boundaries, which in turn
implies a higher number of jump attempts. This, together with
a high value of γ , which reduces the probability of conflicts at
the boundaries, is expected to produce higher values of both the
acceptance, 〈Jacc〉, and the average number of displacements
per MC step, 〈ND〉. Such expectation is confirmed by the
curves reported in Figs. 2(a) and 2(b). In particular, in Fig. 2(b)
we can see that after an initial increase in 〈ND〉 due to the
increase in the number of spheres accessing the boundary
sites, a certain loading is reached above which the number
of spheres accessing the boundary sites during operation I is
large enough to cause a higher number of conflicts to occur,
which are solved by operator D through the cancellation of
more displacement attempts.

As we can see from Figs. 3(a) and 3(b), when the Wseq

is used (together with the Von Neumann neighborhood) the
curves of 〈Jacc〉 and 〈ND〉 change substantially. With respect
to the Moore neighborhood, the use of the Von Neumann
neighborhood causes much less conflicts to be solved by D,

J
ac

c

η

(a)

N
D

η

(b)

z = 14
z = 12

z = 14
z = 12

FIG. 3. (a) The jump acceptance and (b) the average number of
jump attempts when the Von Neumann neighborhood is used, for
γ = 0.9 and for two different values of the number of cells per side;
i.e., z = 14 (a) and 12 (b), corresponding, respectively, to � ≈ 3.57
and � ≈ 4.17.

and the unsolved conflicts to contribute to lower the average
acceptance—we remind that in such a case some jump attempts
may fail due to superposition with spheres located at the corner
cells as described in Sec. IV. This is the reason why the curve of
〈Jacc〉 versus η starts decreasing immediately (i.e., it decreases
with increasing hindering). At low loadings, 〈Jacc〉 decreases
approximately in the same way for all values of γ , then (not
shown) more steeply for low γ because at higher loadings
too many spheres attempt a jump and this fact, combined to
the hindering effect of the moving particles with spheres at
the corners, causes the average acceptance to fall rapidly. In
Fig. 3(b), we can see that all the curves can be described
analogously to what we did for Fig. 2(b), that is, a maximum
of 〈ND〉 is reached at a certain loading, which in the present
case moves to higher values than the Moore neighborhood
case. Again, this is a consequence of the fact that the use of
the Von Neumann neighborhood causes much less conflicts
to be solved by D. Accordingly, in all the cases the number
〈ND〉 is itself much higher than with the Moore neighborhood.
The restraint imposed to the number of spheres to keep their
position in the boundary sites is much weaker in the Von
Neumann case, and the shape of 〈ND〉 as a function of η

shown in Figs. 3(b) and 2(b) is to be considered quite peculiar
of the two different cell connectivities. However, for the lowest
packing fractions (i.e., η = 0.035 and η = 0.070) we found
that (not shown) lower values of γ cause a gain in the value of
〈ND〉. These are the only cases in which a lower value of γ is
to be preferred. This is due to the much more open structure of
the Von Neumann neighborhood, where low values of γ at low
loadings can still give rise to an acceptable number of actually
moving particles. However, increasing η above 0.070 with low
values of γ gives rise to an increasing number of conflicts, thus
causing acceptance and number of actually moving spheres to
fall rapidly to zero.

An important remark needs to be done about z, on which the
number of cells of the lattice L depends. Again, higher values
of z give higher values of 〈ND〉, but the most important fact is
that, once we relax the feature of full synchronicity of operator
W , it is possible to carry simulations where � < σ . This is the
case for z = 14 [see Figs. 3(a) and 3(b)], a parametrization
that is feasible only with Wseq and is not applicable to the
case of Wsync used together with the Moore neighborhood,
since this would cause unavoidable overlaps and the sphere
displacements would be no longer independent.

In all cases, the acceptance and the average number of
invoked particles reach low values when the loading is high.
Observation of Figs. 2 and 3 suggests that our simulation
method is not appropriate above the freezing point (i.e., for
η � 0.494), since for high loadings the number of generated
moves appears too low to ensure an accurate sampling.
Different synchronous simulation strategies must be devised
to explore the properties of the hard sphere system for packing
fractions above the freezing point. However, below the freezing
point, even in the case where the average acceptance and the
number of attempted moves reach relatively low values, we
found our sampling algorithms to provide reasonably accurate
data. In Figs. 4(a) and 4(b) we compare the radial distribution
functions, g(r), obtained whenWsync is used (analogous results
are found when Wseq is used instead) with the g(r) obtained
through standard MC for the isotropic liquid phase. As one
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FIG. 4. (Color online) (a) and (b) are radial distribution functions at various values of the packing fraction, η, for a system simulated through
the synchronous MC sampling with parameters γ = 0.9 and z = 12 (symbols), compared with the curves obtained through standard MC runs
(lines). In (a) the solid and the dotted line refer to η = 0.070 and η = 0.211, respectively. In (b) the solid and the dotted line refer to η = 0.351
and η = 0.421, respectively. In (c) we show compressibility factors (dots) compared with the curve obtained through the Carnahan-Starling
equation for the same systems (solid line).

can see, the agreement is excellent although the average
acceptance is significantly less than in the lower loadings case.
We calculated also the compressibility factor, defined through
the virial theorem as [3]

Z = pV

NkBT
= 1 + 2πσ 3N

3V
lim

r→σ+
g(r), (15)

where kB is the Boltzmann factor and T the temperature. In our
calculations, we approximated the limiting value of the radial
distribution function at r → σ+ with g(σ+) ≈ g(σ + 5 ×
10−3 Å). We compared the results with the Carnahan-Starling
equation of state [18]:

Z = 1 + η + η2 − η3

(1 − η)3
. (16)

Such comparison is shown in Fig. 4(c) for the case of Wsync

with γ = 0.9 and z = 12 (an equivalent behavior was found
for the case, not shown, of Wseq with γ = 0.9 and z = 14).
The good agreement confirms that, in the range of loadings
investigated, the accuracy of the sampling is good despite the
low average acceptance rates at η � 0.421.

We also tested the sampling through the operator Wsync

to the stationary source-sink problem applied to the case of
hard disks migrating on a plane from a reservoir of length
20 Å to a sink located at the distance of 80 Å from the
right end of the reservoir. The size of the system under
consideration was of 100 Å along the x direction (reservoir
included) and 50 Å along the y direction. We constructed
the lattice of cells by partitioning the system into squares of

0
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0.3
0.4
0.5

20 30 40 50 60 70 80 90 100

η
(x

)

x

FIG. 5. (Color online) Stationary distribution for the source-sink
problem applied to the case of hard disks. The solid and the
dotted lines refer to the case of synchronous MC and standard MC,
respectively.

side 3.125 Å and performed the simulation with probability
parameter equal to γ = 0.9. We found that in the present
application, where we used the Moore neighborhood together
with the operator Wsync, such value of γ ensures a good value
of the average number of simultaneously moving disks per
step (approximately 5%). The reservoir was constantly filled
with disks through random insertions in such a way as to
maintain an approximately constant packing fraction of 0.5.
The disks were allowed to move without any directional bias
throughout the plane. Moves to positions with x < 0 were
always rejected, whereas moves beyond the right boundary of
the system (i.e., positions with x > 100 Å) were interpreted
as disk deletions. During their random motion throughout
the system, no directional bias was applied. 106 steps were
given to the system to converge to the stationary distribution,
which was then sampled for the next 106 steps. The system
was subdivided in slices 3 Å thick along the x axis, and
data were collected for the quantity η̃(x), an approximate
measure of the packing fraction in every slice, defined as
the average number of disk centers falling within each slice
multiplied by the factor πσ 2/4A, where A = 3 × 50 Å2 is
the area of a single slice. The simulation was replicated
50 times starting from slightly different initial conditions
(namely, different values of the seed of the random number
generator), and the stationary distributions were averaged
together to give the profile reported in Fig. 5, along with results
from standard MC simulations performed with the same crite-
ria described above. Expectedly, the results show a trend which
is an approximately linear decreasing function of the distance
x from the reservoir. The satisfactory agreement between the
two curves reported in Fig. 5 suggests that the synchronous
algorithm described here could be used successfully in both
equilibrium and nonequilibrium applications involving hard
spheres (or hard disks).

VI. CONCLUSIONS

We developed a Monte Carlo algorithm for hard-sphere
systems that contains elements of synchronicity that can
be exploited in parallel computation. The method works by
means of a sequence of operations, some of which require
space discretization and cellular automata updating rules, that
(i) select (synchronously) which spheres will move at each
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iteration, (ii) solve (synchronously) the possible conflicts,
(iii) generates (synchronously) possible outcoming positions
for all the moving spheres, and (iv) subsequently performs
the selected displacements (synchronously or sequentially).
Full synchronicity is reached when the Moore neighborhood
is used, together with the condition that the sphere diameter
be less than the side of a lattice cell. If the feature of full
synchronicity is relaxed, i.e., if the final operation (i.e., the
actual displacement performing operation W) is performed
sequentially, the side of the lattice cell has no restraints (even
though � not too less than σ is recommended, in order to lower
the hindering effects), and the Von Neumann neighborhood
can be used instead of the Moore neighborhood. In such a
case, the number of displacements per time step increases
significantly, but the feature of displacement independence
of the operation W is lost. However, even in the latter case,
all the other operations (generation of the boundary config-
uration, resolution of conflicts, and biasing of the individual
displacements) are still synchronous. We tested the algorithm
to packing fractions in the range 0 < η < 0.494, obtaining
radial distribution functions in agreement with the ones
obtained by standard MC simulations, and compressibility
factors in agreement with the Carnahan-Starling equation.
Finally, we applied the synchronous algorithm to the stationary

source-sink problem finding a good agreement between the
stationary distribution obtained by the synchronous algorithm
and the one obtained through standard MC sampling. Although
the applicability of the sampling criteria illustrated in the
present work is restricted to the isotropic liquid phase only—at
higher loadings the rejectance and the average number of
moves are too low to ensure an accurate sampling, thus a
different sampling algorithm must be devised to efficiently
simulate the metastable liquid phase—we believe this model
to be the first step toward the development of novel routes to
introduce the feature of synchronicity in MC simulations, by
suitably embedding cellular automata rules into off-lattice MC
algorithms.
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[1] B. J. Alder and T. E. Wainwright, Phys. Rev. 127, 359 (1962).
[2] B. J. Alder and T. E. Wainwright, Phys. Rev. A 1, 18 (1970).
[3] D. A. McQuarrie, Statistical Mechanics, 1st ed. (Harper and

Row, New York, 1976).
[4] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.

Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
[5] B. J. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1208

(1957).
[6] C. Dress and W. Krauth, J. Phys. A 28, L597 (1995).
[7] A. Jaster, Physica A 264, 134 (1999).
[8] E. P. Bernard, W. Krauth, and D. B. Wilson, Phys. Rev. E 80,

056704 (2009).
[9] J. A. Anderson, E. Jankowski, T. L. Grubb, and M. Engel, J.

Comp. Phys. 254, 27 (2013).
[10] S. Wolfram, Rev. Modern Phys. 55, 601 (1983).

[11] B. Chopard and M. Droz, Cellular Automata Modeling of Phys-
ical Systems, 1st ed. (Cambridge University Press, Cambridge,
England, 1998).

[12] J. Lebowitz, C. Maes, and E. R. Speer, J. Stat. Phys. 59, 117
(1990).

[13] J.-P. Rivet and J. P. Boon, Lattice Gas Hydrodynamics, 1st ed.
(Cambridge University Press, Cambridge, England, 2001).

[14] D. Dab, A. T. Lawniczak, J. P. Boon, and R. Kapral, Phys. Rev.
Lett. 64, 2462 (1990).

[15] A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605 (1999).
[16] F. G. Pazzona, P. Demontis, and G. B. Suffritti, Phys. Rev. E 87,

063306 (2013).
[17] F. G. Pazzona, P. Demontis, and G. B. Suffritti, Phys. Rev. E 88,

062114 (2013).
[18] N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969).

023307-7

http://dx.doi.org/10.1103/PhysRev.127.359
http://dx.doi.org/10.1103/PhysRev.127.359
http://dx.doi.org/10.1103/PhysRev.127.359
http://dx.doi.org/10.1103/PhysRev.127.359
http://dx.doi.org/10.1103/PhysRevA.1.18
http://dx.doi.org/10.1103/PhysRevA.1.18
http://dx.doi.org/10.1103/PhysRevA.1.18
http://dx.doi.org/10.1103/PhysRevA.1.18
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1743957
http://dx.doi.org/10.1063/1.1743957
http://dx.doi.org/10.1063/1.1743957
http://dx.doi.org/10.1063/1.1743957
http://dx.doi.org/10.1088/0305-4470/28/23/001
http://dx.doi.org/10.1088/0305-4470/28/23/001
http://dx.doi.org/10.1088/0305-4470/28/23/001
http://dx.doi.org/10.1088/0305-4470/28/23/001
http://dx.doi.org/10.1016/S0378-4371(98)00337-9
http://dx.doi.org/10.1016/S0378-4371(98)00337-9
http://dx.doi.org/10.1016/S0378-4371(98)00337-9
http://dx.doi.org/10.1016/S0378-4371(98)00337-9
http://dx.doi.org/10.1103/PhysRevE.80.056704
http://dx.doi.org/10.1103/PhysRevE.80.056704
http://dx.doi.org/10.1103/PhysRevE.80.056704
http://dx.doi.org/10.1103/PhysRevE.80.056704
http://dx.doi.org/10.1016/j.jcp.2013.07.023
http://dx.doi.org/10.1016/j.jcp.2013.07.023
http://dx.doi.org/10.1016/j.jcp.2013.07.023
http://dx.doi.org/10.1016/j.jcp.2013.07.023
http://dx.doi.org/10.1103/RevModPhys.55.601
http://dx.doi.org/10.1103/RevModPhys.55.601
http://dx.doi.org/10.1103/RevModPhys.55.601
http://dx.doi.org/10.1103/RevModPhys.55.601
http://dx.doi.org/10.1007/BF01015566
http://dx.doi.org/10.1007/BF01015566
http://dx.doi.org/10.1007/BF01015566
http://dx.doi.org/10.1007/BF01015566
http://dx.doi.org/10.1103/PhysRevLett.64.2462
http://dx.doi.org/10.1103/PhysRevLett.64.2462
http://dx.doi.org/10.1103/PhysRevLett.64.2462
http://dx.doi.org/10.1103/PhysRevLett.64.2462
http://dx.doi.org/10.1063/1.478857
http://dx.doi.org/10.1063/1.478857
http://dx.doi.org/10.1063/1.478857
http://dx.doi.org/10.1063/1.478857
http://dx.doi.org/10.1103/PhysRevE.87.063306
http://dx.doi.org/10.1103/PhysRevE.87.063306
http://dx.doi.org/10.1103/PhysRevE.87.063306
http://dx.doi.org/10.1103/PhysRevE.87.063306
http://dx.doi.org/10.1103/PhysRevE.88.062114
http://dx.doi.org/10.1103/PhysRevE.88.062114
http://dx.doi.org/10.1103/PhysRevE.88.062114
http://dx.doi.org/10.1103/PhysRevE.88.062114
http://dx.doi.org/10.1063/1.1672048
http://dx.doi.org/10.1063/1.1672048
http://dx.doi.org/10.1063/1.1672048
http://dx.doi.org/10.1063/1.1672048



