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Scalable replica-exchange framework for Wang-Landau sampling
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1Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
2National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
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We investigate a generic, parallel replica-exchange framework for Monte Carlo simulations based on the
Wang-Landau method. To demonstrate its advantages and general applicability for massively parallel simulations
of complex systems, we apply it to lattice spin models, the self-assembly process in amphiphilic solutions, and
the adsorption of molecules on surfaces. While of general current interest, the latter phenomena are challenging
to study computationally because of multiple structural transitions occurring over a broad temperature range. We
show how the parallel framework facilitates simulations of such processes and, without any loss of accuracy or
precision, gives a significant speedup and allows for the study of much larger systems and much wider temperature
ranges than possible with single-walker methods.
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I. INTRODUCTION

In Monte Carlo simulations, one is interested in stochas-
tically sampling the configurational space of a model system
by the creation of a chain of consecutive microstates Xi (via a
random “walker”):

X0
update−→ X1

update−→ · · · update−→ Xn.

The resultant “dynamics” is artificial and depends upon the
mechanism of proposing new microstates; n is usually a large
number � 106. The proposed new microstate is accepted with
a certain probability that determines the statistical ensemble.
In statistical physics, most common simulations are carried out
in the canonical ensemble by fixing the volume and particle
density of a system and by setting the acceptance probabilities
equal to the fraction of Boltzmann factors between the actual
and the proposed new microstate [1].

A serious weakness of this scheme is well known: Typically,
there are barriers in the free-energy landscapes of complex
systems, and the time it takes to overcome these barriers
grows exponentially with their height. Various Monte Carlo
methods have been developed to confront the challenge of
sampling such rough free-energy landscapes [2–6] and to
carry out simulations in an ensemble where the walker is not
hindered by any barrier. For instance, Wang-Landau sampling
[7,8] has been shown to be very effective in overcoming
energy barriers by iteratively determining the energy density
of states (DOS) of a system and seeking to perform a random
walk in energy space, i.e., eventually performing a walk
through configurational space such that all possible energies
are visited uniformly (“flat histogram”). Wang-Landau (WL)
sampling was successfully used in many scientific problems
[9–22]. Another powerful approach is parallel tempering or
replica-exchange Monte Carlo [23–27]. Here, the idea is to
run multiple simulations in canonical ensembles at different
temperatures and propose replica or conformational exchanges
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between them, which are accepted with a probability according
to their respective Boltzmann weights. This configurational
mixing among different walkers greatly alleviates the trapping
problem near conformational or energy barriers.

Whereas a parallel implementation of replica-exchange
Monte Carlo is straightforward, efficient and correct par-
allelization of the WL algorithm has posed some subtle
difficulties. Previous attempts have, for example, focused on
running multiple, independent WL samplers that simultane-
ously update the same density of states [28–30]. However,
a recent massively parallel implementation of this approach
[30] has revealed that interdependencies among the various
WL walkers can introduce an erroneous bias in the estimate
of the DOS and thus render this parallelization scheme highly
problematic. Another WL parallelization, which is based on
a simple splitting of the global energy range into smaller,
independently sampled, nonoverlapping energy windows, is
also unsatisfactory. If the energy windows chosen are too
small, configurational space may not be sampled correctly
anymore due to ergodicity breaking, resulting again in subtle
systematic errors [this effect becomes particularly pronounced
in two-dimensional (2D) WL simulations, where one samples
a joint DOS, e.g., in energy and magnetization space [19]].
Moreover, the total simulation time is bound to the WL
convergence time of the slowest walker (generally in the
low-energy region).

Unlike replica-exchange Monte Carlo [24], such issues
have severely limited the use of WL sampling as a means in
large-scale parallel Monte Carlo simulations. A natural route
toward successful parallelization of WL sampling would be
to combine it with the benefits of replica-exchange Monte
Carlo. Variants of this general idea have been used for specific
applications by other authors on a small scale [20,31,32],
however no details about the implementation, parallelization,
or the effect on the performance are provided. The critical
issue of combining results from different replicas is omitted
entirely. Our approach [33] is different in that it introduces a
fast but generally applicable framework suitable for massive
parallelization combined with a general and precise scheme
to combine results from all walkers. We also start by running
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individual WL walkers in many overlapping energy windows
[8,34,35] covering the whole energy range, and we allow for
conformational exchanges between walkers according to the
actual WL weights. In addition to splitting up the global energy
range, we run multiple walkers within each energy window.
To avoid any possible bias, these walkers are independent and
fulfill convergence, or flatness criteria, individually. However,
they work together by merging their weights after each
Wang-Landau iteration, reducing the statistical error during
the simulation.

In this paper, we investigate this hierarchical, parallel
Wang-Landau scheme in detail with the aim to present a
framework that nevertheless remains, in a sense, as easy to
implement as the original single-walker WL method itself.
Most importantly, the scheme does not depend on having
previous knowledge about the system under investigation. We
apply the method to a standard benchmark model in statistical
mechanics, the 10-state Potts model, and to two cutting-
edge problems that have attracted great interest recently:
the self-assembly of amphiphilic peptides into micelles and
lipid bilayers, and the surface adsorption process of polymers
and proteins. In Sec. II, we introduce the complete parallel
Wang-Landau framework in detail and in its most general
formulation. We discuss the key points to make the framework
efficient. In Sec. III, we describe the models that will be used in
Sec. IV to assess the applicability and accuracy of our parallel
WL scheme (Sec. IV A). Furthermore, we present the results
of performance and scaling analyses in Secs. IV B and IV C.
Finally, we combine our findings and suggest further potential,
methodological improvements in Sec. V.

II. GENERAL PARALLEL FRAMEWORK FOR
WANG-LANDAU SIMULATIONS

In generalized ensemble Monte Carlo simulations, one is
interested in the density of states (DOS) g(E) over a large
energy range (E). In our framework, g(E) will be determined
in parallel by employing multiple computing cores, resulting
in multiple, individual DOS pieces. If there is no generic
and precise way of putting these pieces together in the
postprocessing step of the simulation, the whole framework
becomes meaningless. We will hence split this section into
two parts: the production of the individual DOS pieces, and
their assembly into a global density of states. Both are equally
important aspects of our framework.

A. Replica-exchange Wang-Landau sampling

In the standard Wang-Landau method [7,8,34], a single
walker (i.e., a chain of microstates) samples the conformational
space in an energy range between Emin and Emax, improving
the estimate of g(E) iteratively. The microstates are sampled
according to the actual weights 1/g(E), which are adapted on
the fly in the following way: After each Monte Carlo trial, the
estimator for g[E(X)] for the walker residing at microstate X

is multiplied by a modification factor f . At the same time,
the histogram of visited energies H [E(X)] is incremented.
Whenever there are “sufficient” entries in H (E), the histogram
will be reset and the modification factor will be decreased,
for example as ln f → ln f/2.0. Initially, g(E) = 1.0 and

H (E) = 0,∀E, and ln f = 1.0. There are different approaches
to ensure that there are “sufficient” entries in the histogram
for all values of E or for all energy bins, respectively. In
the original formulation [7], the histogram H (E) is required
to be “flat,” i.e., no value for H (E) may be smaller than
a certain percentage of the average histogram value. Other
authors [36] only insist that there are more entries in the
histogram for each E than a minimal threshold number, which
increases with the actual value of f . Additionally, a method
has been proposed where the modification factor f decreases
as 1/t , where t is the simulation time [37]. (We emphasize
that our parallel framework presented here is general in the
sense that it does not depend on such details.) The estimated
density of states converges to the true one with an increasing
number of iterations, and the simulation is terminated when
the modification factor reaches a minimal value fmin, typically
set to ln fmin < 10−6–10−8. For all practical purposes, the WL
walker eventually performs a random walk in energy space.

For large systems, this very efficient generalized-ensemble
sampling can be enhanced by making use of multiple pro-
cessors working in parallel. This can be done, for example,
by splitting up the global energy range into smaller energy
windows and estimating the density of states for the respective
windows by independent walkers [8,34,35]. See Fig. 1 for three
examples of possible energy windows. Following the general
idea of replica-exchange methods [23,24,27], it is natural to
allow for replica exchanges between independent walkers in
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FIG. 1. Possible partitioning of the global energy range into nine
windows: (a) the trivial case with an overlap of 100%; (b) energy
windows are slightly shifted with an overlap of 90%; (c) an example
of a run-time balanced splitting with an overlap of (at least) 75% (note
that the widths of the windows vary for different systems). Several
walkers might run in each window.
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Emin Emax

FIG. 2. (Color online) The communication for the replica ex-
change between energy windows alternates between the one marked
by red (left) and the one marked by blue (right) arrows.

WL sampling as well if the energy windows overlap. From
the detailed-balance condition for the combined trial move,
the acceptance probability Pacc is derived for the exchange of
conformations X and Y between walkers i and j :

Pacc = min

[
1,

gi[E(X)]

gi[E(Y )]

gj [E(Y )]

gj [E(X)]

]
, (1)

where gi[E(X)] is the current estimator for the density of
states of walker i at the energy of its present conformation
(microstate X).

For replica-exchange attempts, the walker synchronously
communicates with a neighbor in an adjacent energy window;
see Fig. 2 for an illustration. (Note, in principle, that one could
allow replica exchanges between walkers in any windows with
nonzero energy overlap.) In addition to replica exchange, we
will also run multiple, independent walkers in each individual
energy window. Each walker carries its own estimator for
the density of states g(E) and its own histogram H (E) and
is required to fulfill the “flatness” criterion individually. In
particular, individual histograms H (E) will not add, a feature
that eliminates the potential for systematic errors as observed
previously [30]. However, walkers in the same energy window
will merge and average their individual g(E) estimator before
simultaneously proceeding to the next Wang-Landau iteration
step. This averaging results in a reduction of systematic
errors of g(E) during the course of the simulation and,
thus, reduces the overall convergence time. The parallel
simulation terminates when every walker has reached the final
modification factor fmin. Walkers that have converged to the
final modification factor early will continue walking in order to
allow for replica exchange with walkers that have not finished
yet.

As in any replica-exchange scheme, one has to ensure that
the exchange of replica, and thus the overall flow of the simu-
lation, does not get stuck, and hence each replica can perform
frequent round trips over the entire energy range. Obviously,
there must be some overlap between communicating energy
windows in the first place. Furthermore, in order to make
this framework efficient, two questions arise that have to be
answered individually for different systems:

(i) What is a reasonable overlap between neighboring
energy windows? Certainly, the overlap must not be too small
or it would lead to small acceptance rates for conformational
exchanges, just as in parallel tempering simulations when
two probability distributions have a very small overlap. On
the other hand, excessive overlaps will make the scheme

inefficient, as in the extreme case one would have n walkers
in energy windows identical to the global energy range; see
Fig. 1(a).

(ii) What is a good number of energy windows? Generally,
one would like as many windows as possible to improve
the scaling of the simulation and exploit the capabilities of
modern parallel computers. On the other hand, when the
number of energy windows increases, the time for complete
round trips also increases. Also, given a fixed global energy
range and equal-size energy windows, the number of energy
windows is directly related to their width, and too small energy
windows will eventually increase the occurrence of systematic
errors, even though the risk of “locking out” parts of the
conformational space practically becomes negligible due to
the replica-exchange mechanism. In any case, this problem
obviously depends much more on the actual system than the
first question does.

On the algorithmic level, the scaling of the framework
is important for its general applicability and has to be
investigated:

(iii) How does the performance depend on the number of
computing cores used? In the optimal case, a method would
achieve both strong scaling and weak scaling, i.e., if more
cores are applied, one wants to be able to obtain results
faster or to simulate larger systems, respectively, or even both.
In that context it is important to know how the number of
Wang-Landau walkers within each energy window affects the
performance of the framework and the error of the final DOS
estimate.

With the help of different “test” systems, ranging from
discrete lattice spin models to coarse-grained molecular sys-
tems in continuous space, we will examine these questions in
more detail and demonstrate the potential of our approach. All
models are qualitatively different and known to show complex
behavior. We will use the following notations throughout
this paper: h, number of energy windows; m, number of
independent walkers per energy window; o, overlap with the
next lowest energy window (0 � o � 100%); sh(o), speedup
of the parallel simulations with overlap o and constant h

[see Eq. (7) for definition]; so(h), speedup of the parallel
simulations with h energy windows at constant overlap o.

B. Concatenation of DOS pieces

At the end of a parallel WL simulation we are left with h

DOS pieces, which first need to be put together carefully before
any thermodynamic quantities, such as the internal energy
or specific heat, can be calculated. This DOS concatenation
procedure is a delicate technical challenge since even small
artificial steps or kinks in the entropy, [∝ ln g(E)], may cause
significant artificial peaks and oscillations in observables such
as the specific heat. Therefore, simply joining DOS pieces at
some fixed positions likely results in discontinuities in the
DOS, which, in turn, cause significant artifacts in derived
quantities. To minimize such erroneous effects, we proceed
as follows:

(i) We calculate the first derivative ∂ ln[g(E)]/∂E (i.e., the
inverse microcanonical temperature) for each DOS piece in the
overlap region between two adjacent energy windows. A large
number of overlap data points allows us to use higher-order
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five-point approximations of the derivative with varying step
width of the order of up to 10 (depending on the system and
the width of the energy windows), which provide very smooth
estimates for the derivatives.

(ii) We determine the point where the inverse microcanon-
ical temperatures of the two overlapping DOS pieces coincide
the best, and then we connect the DOS pieces at this point
and cut the “overhanging tails” at the respective sides of each
piece, thus avoiding nondifferentiable points in the resulting
entropy by construction. This technique of connecting DOS
pieces turned out to be indispensable for obtaining accurate
results; for more details, see [38,39].

For a rigorous error analysis, we perform n independent
parallel simulations from which we get n × h individual DOS
pieces. We then calculate the mean of the n DOS pieces
for each energy window before proceeding to steps (i) and
(ii) above. This yields the mean global DOS. To estimate
statistical errors, we apply a bootstrap resampling technique
[40]. That is, we randomly choose n DOS pieces (with
repetitions) for each energy window and apply the above
two steps. This procedure is repeated multiple times (e.g.,
200) yielding multiple resampled global DOSs. From these
we calculate the statistical errors of the global DOS and its
derived observables. The entire technique is unambiguous and
very precise; moreover, it has the advantage that due to the
random selection of DOS pieces during the bootstrap analysis,
connection points are always at different positions, leading
to statistical smoothing of potentially remaining artifacts in
derived quantities.

III. MODELS AND MODEL-SPECIFIC
ALGORITHMIC DETAILS

A. The Potts model for lattice spins

The first model we use to test our parallel WL scheme
is the well-studied Q-state Potts model for lattice spins in
two dimensions [41,42]. It is a common test bed for novel
simulation methods (see [3,8,43] for examples), as the system
size is scalable in a straightforward manner and exact results
exist, e.g., for the infinite-size transition temperature of the
first-order phase transition between the ordered and disordered
phases for Q > 4 [44]. The Hamiltonian is given by

H = −
∑
〈i,j〉

δ(qi,qj ), (2)

where the spins qi can take values qi = 1, . . . ,Q and the sum
is over all nearest-neighbor pairs 〈i,j 〉. For this study, we
choose the 10-state Potts model, i.e., Q = 10, and we use
periodic boundaries. The total energy range is given by −2N �
E � 0, where N = L × L is the total number of spins and L

is the lattice size. As we use this model for demonstration
purposes only, we perform the simplest Monte Carlo update
move, namely a random, single-spin update trial.

B. The hydrophobic-polar (HP) model for protein adsorption

The HP model [45] is a minimalist, coarse-grained lattice
model used to study generic protein-folding behavior. It clas-
sifies amino acids into only two types of monomers according
to their affinity to water: hydrophobic (H) and polar (P).

FIG. 3. (Color online) Illustration of a partly adsorbed protein
composed of 36 monomers in the HP model. Besides the surface
contacts (not shown), there are two contacts between nonbonded
hydrophobic monomers (indicated by arrows).

There is only an interaction between nonbonded, hydrophobic
monomers occupying nearest-neighbor sites, with a coupling
strength εHH.

Protein adsorption can be simulated with a slight modifi-
cation to the HP model [46]. On a three-dimensional cubic
lattice, a substrate, placed at the z = 0 plane, attracts H and
P monomers in the HP chain with a strength εSH and εSP,
respectively. The energy function of this model can then be
written as

E = −εHH nHH − εSH nSH − εSP nSP, (3)

where nHH is the number of H-H interacting pairs and nS[HP]

is the number of H or P monomers adjacent to the substrate.
While periodic boundary conditions are imposed for the x and
y directions, a nonattractive wall is placed at z = N + 1 to
confine the simulation box from above, where N is the chain
length of the sequence.

In the following, we consider a 36mer (P3H2P2H2

P5H7P2H2P4H2P2HP2) [47] interacting with a weakly attrac-
tive surface by setting εHH = 12 and εS[HP] = 1. This system
has a very rugged density of states (see below), which makes
it an excellent test case for our new parallel framework.
Conformational updates are proposed by means of pull moves
and bond-rebridging [22,48–51]. For a fair comparison with
previous results [52–54], pull moves make up 20% of the
Monte Carlo moves, while bond-rebridging moves make up
80% of them. For the WL sampling, we use the originally
introduced 80%-flatness criterion [7], and the simulations
end when the modification factor reaches ln(fmin) = 10−8.
Figure 3 shows a schematic part of the system; for more details,
see [52–54].

C. Generic model for amphiphilic molecules in solution

Lastly, we use a continuous, molecular model that is based
on generic models previously employed to study the self-
assembly of molecules into simple membranes, bilayers, or
micelles. It includes small amphiphilic molecules surrounded
by explicit solvent particles [55,56]. There are three different
types of coarse-grained particles: polar (P) and hydrophobic
(H) monomers and the water or solution (W) particles. The
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amphiphilic molecules are composed of a polar head and two
hydrophobic tail monomers: (P-H-H). The interaction between
solution particles and tail monomers as well as between
head monomers and tail monomers is purely repulsive and
is modeled by a repulsive soft-core potential,

U soft core
repulsive = 4 εrep

(
σrep

rij

)9

, (4)

where εrep = 1.0 and σrep = 1.05σ (see below), following
[55,56]. All other nonbonded interactions are of Lennard-
Jones type,

ULJ = 4 εX-Y

[(
σX-Y

rij

)12

−
(

σX-Y

rij

)6]
. (5)

rij is the Euclidean distance between two nonbonded particles
i and j , and the notation X-Y stands for the interaction
between particles of type W-W, W-P, P-P, and H-H; cf.
Fig. 4. In principle, the parameters εX-Y and σX-Y can have
different values for different X-Y combinations allowing for
the introduction of different energy scales. As we focus here
on the technical aspects of our work, we fix all εX-Y = 1.0 and
σX-Y = σ = 2−1/6r0, where r0 = 1.0 defines the length scale
in the system. The potentials in Eqs. (4) and (5) are cut off at
rc = 2.5σ and shifted such that there are no discontinuities at
this point.

Bonds are modeled using the finitely extensible, nonlinear
elastic (FENE) potential,

UFENE
bond = −KR2 ln

[
1 −

(
ri,i+1 − r0

R

)2]1/2

, (6)

where ri,i+1 is the length of a particular bond, R = 0.3
is half the width of the potential (clearly, the potential
diverges at ri,i+1 = r0 ± R), and the “spring” constant is set to

FIG. 4. (Color online) Illustration of particles and interaction
parameters in the generic coarse-grained lipid model. P (blue): polar
head monomer, H (yellow): hydrophobic tail monomer, W (red):
solution particle (“water molecule”).

K = 40. The equilibrium length r0 at which UFENE
bond = 0

coincides with the equilibrium length for the nonbonded
potential ULJ. Periodic boundary conditions apply.

Figure 5 shows examples of typical configurations for this
model. The sequence of pictures shows snapshots of a system
containing M = 125 amphiphilic molecules and N = 1000
particles in total at a number density of ρ = 0.8. One Monte
Carlo (MC) sweep consists of N individual MC steps. Among
these N steps are, on average, 3 × M/10 reptation moves,
which we found to be essential in order to thoroughly examine
the conformation space for large systems. The other moves are
local displacements of individual particles. For the reptation
move, we first select, at random, a solution particle in the
vicinity of one end of an amphiphilic molecule. This particle
is then converted into either the new head or the new tail of the
molecule, and the opposite-end monomer is converted into a
solution particle. The bias introduced due to different numbers

FIG. 5. (Color online) Conformations of a system containing M = 125 amphiphilic molecules and a total of N = 1000 particles.
(a) Random configuration, E ≈ −200 (typical initial configuration for simulation). (b) Amphiphilic molecules assemble and form loose
clusters, E ≈ −4000. (c) Low-energy, single-cluster configurations with compact shape, E ≈ −5100. Upper row: Only the amphiphilic
molecules are shown; different colors mark different clusters of amphiphilic molecules. Periodic copies of the simulated system are shown.
Bottom row: simulation boxes including all particles.
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of neighbors at opposite ends of an amphiphilic molecule is
accounted for in the calculation of the acceptance probability
of this move; for more details, see [38]. For this model, we use
the originally proposed “80%” WL flatness criterion; the final
modification factor is ln fmin = 10−7.

IV. RESULTS AND DISCUSSION: ACCURACY AND
PERFORMANCE

A. Number and size of energy windows; degree of overlap

When applying our parallel framework to the 10-state
Potts model (which shows a strong, temperature-driven
first-order transition), we first vary the system size (N =
10 000, 40 000, 90 000, and 160 000 spins) while keeping the
energy window size (�E = 1000) and overlap (o = 75%)
fixed. Consequently, the number of energy windows needed
to cover the whole energy range increases. We used up to
nine walkers in each energy window so that, in total, �10 000
cores were used for the biggest system. In Fig. 6(a), we
plot the densities of states for the four lattice sizes. The
data are composed of 77, 317, 717, and 1277 pieces for
the N = 10 000, 40 000, 90 000, and 160 000 spin systems,
respectively; the density of states of the largest system covers
more than 150 000 orders of magnitude. To further demonstrate
the simulational challenge, we show in Fig. 6(b) that transition
states are suppressed by a factor of 10−17–10−18 for the largest
system. To verify the results, we reproduced and extended
the corresponding analysis from the original Wang-Landau
paper [8]. Figure 6(c) shows the specific heats for all system
sizes, and Fig. 6(d) shows the finite-size scaling analysis
of the transition temperature. By extrapolating the peak
positions of the specific-heat peaks, we estimate the transition
temperature in the thermodynamic limit to be 0.701 231 3(5),
in agreement with the exact value 0.701 231 6 [44]. While this

analysis would take years for a serial, single-walker code (the
simulation for the 100 × 100 system for a single WL walker
still takes several days), we obtained all results within a few
hours applying our parallel scheme. The scaling analysis is
presented below.

After this first “proof of concept,” we now apply our
method to much more complex molecular models. Before
presenting the physical results, we demonstrate the influence
of the overlap of neighboring energy windows on the speedup
sh(o) (as compared to single-walker runs) and acceptance
rates for the replica exchange using the continuous model
for amphiphilic molecules as described in Sec. III C. The
system setup is the same as the one used in Fig. 5. We
split the whole energy range of interest into nine windows
(h = 9) and, for simplicity, employ only one walker in each
window (m = 1). The overlaps take the following values: o =
50%,62.5%,75%,87.5%,or100%. Consequently, for h = 9,
the widths of the individual energy windows for these overlap
values are 1/5, 1/4, 1/3, 1/2, and 1 of the width of the global
energy range, respectively; cf. Fig. 2 for the case (h = 9,
o = 75%). The speedup sh(o) is measured by the total number
of MC steps (“MC time”) it takes for the “slowest” WL walker
to satisfy the termination criterion [tparallel

term (h,o)], compared to
that for a single-walker WL simulation (t single

term ):

sh(o) = t
single
term

t
parallel
term (h,o)

. (7)

The acceptance rate α is the percentage of accepted replica
exchanges compared to the number of proposed exchanges.

The results of this test are shown in Table I. The statistical
error of sh(o) is relatively large due to the well-known fact
that the run time of traditional WL iterations at very small
values of f can vary significantly for independent runs. For

T exact
c = 0.7012316

Tc(∞) = 0.7012313(5)

Tc(∞)

1/N = (L−2)

Tc(N)400 × 400
300 × 300
200 × 200
100 × 100

T

C
V
(T

)/
N

N = 4002
N = 3002

T = Tc(N)

E/N

P
(E

)

1

10−5

10−10

10−15

10−20

400 × 400
300 × 300
200 × 200
100 × 100

E

10
g
(E

)

(a b)

(c

()

() d)

FIG. 6. (a) Density of states of the 2D 10-state Potts model for four lattice sizes. The data are composed of 77 (100 × 100), 317 (200 × 200),
717 (300 × 300), and 1277 (400 × 400) pieces. (b) Canonical distributions at the finite-size transition temperature for the larger systems.
(c) and (d) The corresponding specific-heat curves and the finite-size scaling of the size-dependent transition temperature. Temperatures in (d)
were obtained from peak positions in the specific heats in (c).
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TABLE I. Speedups [sh(o)] and acceptance rates (α) for replica
exchange at different overlaps (o) for the amphiphilic test system.
h = 9, m = 1. See text for details.

o 50% 62.5% 75% 87.5% 100%
sh(o) 5.5 ± 0.6 4.4 ± 0.5 4.2 ± 0.5 2.0 ± 0.3 1.0 ± 0.2
α 15–25% 25–40% 30–55% 35–75% 25–35%

α, minimal and maximal values are given as the acceptance
rates vary for different energy windows. Overall, the data
allow us to draw the following consistent conclusions: An
overlap of 100% does not improve performance. In fact, there
is not much difference compared to n noncommunicating
single-walker simulations in this setup. However, the speedup
is already significant for a relatively large overlap of 75%,
and it increases rather slowly as the overlap decreases. On the
other hand, even though acceptance rates for replica exchange
in the range of 15–25% are satisfactory, the rates for o = 75%
are much better and are comparable to the rates desired for
canonical replica-exchange simulations. Keeping in mind that
more overlap between neighboring energy windows will allow
us to better connect the individual DOS parts later, we thus
decided to fix the overlap to o = 75%.

Related to these considerations is the problem of finding
a reasonable number of energy windows. Given a fixed,
global energy range as well as a fixed overlap, the number of
energy windows defines their widths. As mentioned before,
there are conflicting goals. On the one hand, one would
like to maximize the number of energy windows; however,
individual windows must not be too small or systematic errors
are induced by restricted sampling. To get reliable results,
it is necessary that each replica performs walks through the
entire energy range, which also means that each sample
walks back and forth through every energy window. While
the round-trip times might be shorter when also allowing for
replica exchange between next-nearest-neighboring windows,
there would be much more technical overhead and the implicit
synchronization of the communication pattern would be much
more complex.

For the amphiphilic test system, we find that h of the order
of 10 leads to a good performance with respect to both speedup
and round-trip times for an individual replica. Eventually, for
the given system and a global energy range E ∈ [−4500,

−2000], we find that a splitting into nine energy windows
with an overlap of 75% is a reasonable choice; cf. Fig. 2. In
Fig. 7, we visualize the walk of a replica through the energy
space [Fig. 7(a)] and through the energy windows [Fig. 7(b)]
during ≈2 × 107 MC sweeps (one MC sweep equals N MC
steps, where N is the system size, i.e., the total number of
particles). The replica performs a smooth walk through the
energy space and completes a round trip approximately every
5 × 106 MC sweeps (a replica exchange between walkers is
proposed every 104 MC sweeps). We confirmed that all replicas
behaved similarly.

Figure 8 shows the logarithm of the DOS for both molecular
systems: for the continuous-energy lipid model [cf. Fig. 8(a)],
the global energy range is chosen to be accessible by a
single-walker WL simulation (run time of approximately one
week). For the HP lattice protein [cf. Fig. 8(b)], the complete

1.5×1071×1075×1060

−2000

E

−2833

−3250

−3667

−4083

−4500(a)

(b)

FIG. 7. Path of a replica through energy space (a) and energy
windows (b). The samples perform complete round trips within
fewer than 5 × 106 MC sweeps. A conformational exchange between
walkers is proposed every 104 sweeps, with acceptance rates between
30% and 55% (cf. Table I). Grid lines in (a) correspond to the borders
of the individual energy windows.

energy range (E ∈ [−241,0]) is sampled. Solid lines show
data obtained from nine independent single-walker runs as a
reference. The statistical error bars (estimated by the sample
standard deviation σ ) are smaller than the line thickness and are
shown separately. The filled dots represent data obtained from
a single parallel run with o = 75% and h = 9 for equal splitting
energy windows. The absolute difference between the results
from single-walker runs and the parallel run, �, is compared to
the statistical errors from the reference (single-walker) runs.
For both systems, we found that � � σ for practically all
energies, i.e., the results from the parallel runs are clearly
within the error bars of the reference runs. The speedup
measured for the lattice model was comparable to those shown
in Table I: s9(75%) = 4.3 ± 0.4.

Section II B discussed the need for a technique to connect
DOS pieces without introducing jumps or kinks (i.e., non-
differentiable points) into the entropy or its derivatives. In
particular, the precise results shown in Fig. 8 could not be
obtained otherwise, and kinks in the density of states would
inevitably result in artificial peaks in the heat capacity. To
further illuminate the power of our framework, in Fig. 9
we show parts of the heat capacities corresponding to the
density of states shown in Fig. 8. The data clearly show that
the heat capacities obtained from the parallel and single-
walker (reference) runs are within mutual error bars. For
the system of amphiphilic molecules [Fig. 9(a)], the small
but particularly interesting peak shown corresponds to the
alignment of amphiphilic molecules during the transition
from cylindrical structures to liquid bilayer sections. (The
nature of the transition was unveiled during production runs
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FIG. 8. Logarithm of the density of states obtained by single-walker Wang-Landau runs (solid line) and by parallel runs using nine energy
windows with an overlap of 75% (dots). (a) Data for the system of amphiphilic molecules in solution. For clarity, only a small subset of data
points is shown. (b) Data for the lattice HP 36mer on a weakly attractive surface. For clarity, the data are split into two curves corresponding to
the lower and upper halves of the total energy range, respectively. The inset in (a) and the lower plot in (b)—note the logarithmic scale—illustrate
the accuracy of the method. Solid lines show the standard deviation σ obtained from the serial, single-walker runs; dots show the absolute
numerical difference � between data obtained by the single-walker runs and the parallel runs. All results obtained from the parallel runs are
within the error bars of the reference runs.

measuring the distributions of a bond-orientation-related order
parameter [57] and the asphericity and prolateness resulting
from the gyration tensor [58,59]). We emphasize that this
particular peak is hard to resolve in the heat capacity as it is
almost overwhelmed by stronger signals at lower temperatures
(not shown). The procedure to connect the individual DOS
pieces is thus essential to resolve and separate the signal
from artifacts and statistical noise. For further details and a
study of the physics and thermodynamic behavior of the lipid
self-assembly and transitions between different bilayer phases,
see [38,60]. In Fig. 9(b), we show the peak corresponding to
the adsorption of the 36mer HP-protein to the substrate, which
lies well below the collapse transition. See [52,53] for more
results and discussions.

Finally, Fig. 10 shows log10 g(E) for the amphiphilic sys-
tem over a larger global energy range (E ∈ [−5000,−2000]),
which is not accessible by single-walker simulations anymore.
The data were obtained by a parallel sampling scheme with
h = 9, o = 75%, and m = 3, hence n = 27 walkers in total
(a sketch of this setup is given below the data). As it is not
possible to sample this energy range with a single walker, we
cannot measure the speedup for this case; however, we are able
to cover an additional range of the density of states of several
hundred orders of magnitude at low temperatures (marked
by dotted lines in the plot). Due to this extended sampling
range, it has been possible to uncover the intricacies of the
low-temperature lipid bilayer phases such as the liquid versus
gel phase—processes that are of physiological importance and

m = 1

T

C
(T

)

m = 1

T

C
V
(T

)

)b()a(

FIG. 9. (Color online) Comparison of heat capacities obtained from single-walker runs and those from parallel runs. (a) The amphiphilic
system in the region of the peak corresponding to the transition from cylindrical conformations into bilayer sections involving the alignment
of amphiphilic molecules (for clarity, solution particles are not shown in the pictures). (b) The 36mer in the HP model in the region of the
adsorption peak. Pictures show representative adsorbed and desorbed conformations. The inset shows the same data in the full temperature
range for reference. In both plots, the curves are within mutual error bars.
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FIG. 10. Logarithm of the density of states for a system contain-
ing M = 75 amphiphilic molecules and a total of N = 1000 particles.
Comparison of results from single-walker runs with Emin = −4500
(solid line, lower limits marked by dotted lines) and a parallel run
with Emin = −5000, m = 3 (dots). The inset shows the deviation �

between both data. The diagram below the plot shows the parallel
setup employed.

are often studied in biochemistry and related fields; see [60]
for further discussions. In the inset of Fig. 10, we give the
deviation � of the results from the reference simulations in
the energy range accessible for such.

B. Multiple walkers per energy window

To quantify the effect of m walkers per energy window,
we calculate the estimator of the error made after the kth WL
iteration, which is denoted by �Hm,k . We define this measure
analogously to the case for single-walker WL sim-
ulations introduced in [61]. In Fig. 11, we plot
�H1,k=25/�Hm,k=25(

√
m), i.e., the error reduction after con-

√
m

Δ
H

1
,k

Δ
H

m
,k

FIG. 11. Reduction of the WL error for different numbers of
walkers per energy window (m) after convergence (k = 25) of the
WL iteration. The straight dotted line is only a guide to the eye (not
a fit to the data).

vergence of the WL scheme as a function of m. This is
measured in the highest energy window of a run for the
amphiphilic molecules system (cf. Fig. 10 for the setup).
The figure shows that the error reduces with

√
m, i.e., as

for uncorrelated WL simulations; cf. [36]. This behavior is
independent of k for iterations with ln(f ) � 10−2, i.e., the
error is reduced after each iteration during the simulation.
Furthermore, increasing m can improve the convergence of
the WL procedure by reducing the risk of statistical outliers in
g(E), which typically slows down subsequent iterations.

The use of multiple walkers within each energy window
hence provides the possibility to complete WL iterations faster
by choosing a weaker flatness criterion. For single-walker
simulations, this usually results in faster convergence but also
larger statistical errors, however this can now be compensated
for by applying multiple walkers to reduce the error. We can,
for example, apply the flatness criterion proposed in [36].
Then, each walker leaves its modification factor unchanged
until all walkers have accumulated a minimum number of
histogram entries for each energy (bin), i.e., the flatness
criterion is fulfilled if

H (E) � a/
√

ln f , ∀ E (8)

and for all m walkers inside the energy window. We thus
guarantee that each energy has been visited by independent
walkers at least (ma)/

√
ln f times in total during each WL

iteration, yet every walker still fulfills the flatness criterion
independently. This ensures that systematic errors as found
in [30] cannot occur. These m walkers will then merge
their DOS estimators and proceed together to the next WL
iteration. For every choice of a, it should in principle be
possible to find a value for m such that the resulting statistical
error is of the same order as for a single walker fulfilling a
stricter flatness criterion. We applied this idea to simulations
of the amphiphilic model, setting the parameter a in Eq.
(8) as small as 1, and we measured a speedup of an order
of 10. A quantitative number, however, cannot be given,
as comprehensive simulations assuring that the statistical
errors are of equal size for both approaches would require
unreasonable computational costs just for this purpose. (This
approach shares basic ideas with a recently proposed technique
of merging histograms in multicanonical simulations [62].)

A setup with multiple walkers per energy window is
also suitable for fault-tolerant implementations [63] of the
simulation code. Besides the fact that hardware or network
failures otherwise usually result in a complete abortion of the
program, a loss of some walkers due to such failures can easily
be tolerated if there are multiple walkers in each window. In
most cases, it would not “disconnect” the “communication”
between the outer energy windows but only affect the statistical
error in that region where walkers fail.

C. Strong and weak scaling behavior

We now consider the scaling of our method with an
increasing number of computing cores, including a detailed
analysis of both the speedup (strong scaling) and the potential
for simulating larger system size (weak scaling) resulting from
the increase in the number of individual energy windows. In
Fig. 12(a), we show the speedup s75%(h) for different numbers
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FIG. 12. Scaling results: (a) Speedups so(h) for different numbers
of energy windows h of equal size and overlap o = 75% (filled
circles, cf. Fig. 2) and using run-time balanced energy splitting [open
circles, cf. Fig. 1(c)], measured using the continuous lipid model.
h = 1 corresponds to the single-walker (one CPU) reference runs.
The speedup is determined by the MC sweeps needed to complete
the first WL iteration. Straight dotted lines are fits to the data. (b)
Simulation-time increase for increasing system size for the 10-state
Potts model. Results for single-walker runs (open symbols); parallel
runs (filled symbols).

of energy windows h � 15 in the first WL iteration while
keeping the number of processes in each energy window fixed.
We employ m = 1 walker per energy window and use the
continuous, amphiphilic system for this test. We find that the
speedup scales linearly with the number of energy windows
in this region, whereas the slope depends on the method of
splitting of the energy range. With a run-time balanced speedup
[33], we can achieve a slope > 1, i.e., a speedup that is greater
than the increase in the number of cores used.

Note again that for our purpose, we are using a particular
definition of speedup, which might differ from others com-
monly used, and that this surprising result can be attributed
to a combination of two effects. First, due to the way the WL
algorithm behaves when building up the entropy estimator
(see, e.g., [36]), the total effort (e.g., MC sweeps) needed for
multiple walkers to fill up their individual histograms can,
depending on the energy splitting and the shape of the entropy
curve, be less than the work needed for a single walker to
fill a histogram over the whole energy range. Second, there
could be an algorithmic speedup through the introduction
of the replica-exchange move, an effect that is independent
of the speedup from parallelization using multiple physical
CPU cores. Indeed, timing experiments on a moderate-sized

(48 × 48) Potts model using 15 energy windows revealed
such an algorithmic speedup of up to roughly a factor of 2,
depending on the frequency of the replica-exchange move,
compared to a scheme without replica exchanges (data not
shown). Hence, not only does the replica-exchange move
between multiple energy windows reduce systematic errors
in the WL simulations, it can also potentially increase the
algorithmic efficiency.

However, we stress that the actual performance and the
relative importance of different mechanisms would vary from
model to model; they are also related to the settings of the
simulations. The speedup results presented above are merely
examples and should not be taken as universal values for our
framework.

In Fig. 12(b), we show the growth of simulation time with
system size. We use the 2D Potts model here as the scaling of
the system is straightforward and the corresponding increase of
the global energy range is known. We compare single-walker
runs (open symbols) with parallel runs (filled symbols), where
we increase the number of energy windows correspondingly
with the increase in system size. Hence the size of individual
energy windows and the overlap are fixed, and we add windows
as needed to cover the entire global energy range. By doing this,
we can keep the simulation time practically constant compared
to the increase in simulation time for single-walker runs.

In summary, we find both strong and weak scaling: (i) for
a given global energy range, a small number of additional
energy windows can increase the speedup significantly, and
(ii) system sizes can be extended without increasing the run
time significantly by introducing additional individual energy
windows.

V. SUMMARY AND PERSPECTIVES

We thoroughly investigated the properties of our recently
introduced parallel framework for replica-exchange Wang-
Landau sampling (REWL) [33]. The basic idea is to restrict
individual WL walkers to small, but overlapping, energy
windows and enable them to communicate with neighbors such
that a replica of the system can travel through the whole energy
space. In contrast to traditional replica exchange Monte Carlo,
for which an unfortunate choice of temperatures leads to little
overlap of probability distributions and effectively eliminates
the exchange of replicas, our scheme insures the possibility of
replica exchange by fixing the overlap of energy windows at the
outset. We demonstrated the strength of the simulation frame-
work via a sophisticated data analysis procedure to connect the
resulting pieces of the density of states. We were able to repro-
duce very accurate and precise results of single-walker simula-
tions, only much faster, and to facilitate simulations of systems
that were not at all accessible before. By applying the proposed
framework to qualitatively very different, challenging models,
we showed that the method is generally applicable and robust.
While it is possible to reduce the statistical errors by employing
multiple walkers in an energy window, we also demonstrated
that the proposed method shows both weak and strong scaling
when increasing the number of computing cores. This parallel
framework is much more efficient than single-walker WL sam-
pling even on small hardware architectures such as multicore
CPUs, but, more importantly, it can be readily implemented
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on larger systems, potentially with >105 processors, by
making use of all lines of parallelization presented here.

The description of our method was intentionally kept as
simple and general as possible. Hence, despite its proven
advantages in its current form, the procedure leaves much
room for further optimization. Potential improvements
are conceivable by fine-tuning energy windows sizes and
overlaps, frequency of replica-exchange moves, special
treatment at window boundaries, etc. It is obvious, for
example, that walkers in different equal-size energy windows
will not proceed through the WL scheme at equal pace, i.e.,
the time it takes to fulfill the flatness criteria will greatly
differ, particularly in the first iterations when the estimator
for the density of states still differs significantly from the true
DOS [33]. At that stage, the shape of the histogram H (E)
is not really flat. Hence, an optimal energy window size
distribution would be based on the areas under the respective
local histograms such that the flatness criteria in each window
will be fulfilled after approximately the same number of MC

steps. On the other hand, in later stages of the iteration, when
the walkers perform almost random walks through energy
space, equal-size energy windows might indeed be favorable.
Eventually, one would like to end up with self-tuning,
variable-size energy windows such that all walkers proceed
synchronously through the parallel WL scheme at all times.
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