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Spontaneous reorientations of meta-atoms and electromagnetic spatial solitons
in a liquid metacrystal
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We show that transverse electromagnetic waves propagating along an external static electric field in liquid
metacrystal (LMC) can provoke spontaneous rearrangement of elongated meta-atoms that changes the direction
of the anisotropy axis of the LMC. This kind of instability may reorient the meta-atoms from the equilibrium
state parallel to a static field to the state along a high-frequency field and back at the different threshold intensities
of electromagnetic waves in such a way that bistability in the system takes place. Reorientation of meta-atoms
causes a change in the effective refraction index of LMC that creates, in turn, the conditions for the formation
of bright spatial solitons. Such spatial solitons are the self-consistent domains of redirected meta-atoms with
trapped photons. We find that the instability thresholds as well as energy flux captured by the spatial soliton can
be easily managed by variation of the static electric field applied to the LMC. We study the effects of soliton
excitation and collisions via numerical simulations.
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I. INTRODUCTION

Liquid metacrystals (LMCs), that is, resonant elongated
particles suspended in a viscous medium (for example, liquid)
in a static (dc) electric field, have recently been suggested
[1] as a new type of resonant metamaterial. LMCs potentially
possess a number of unique properties, such as, for example,
high tunability and very strong nonlinearity, absent in natural
materials as well as in most known metamaterials. These prop-
erties are caused by meta-atom reorientation under the action
of both dc and high-frequency (HF) electric fields resulting
in redirection of the optical axis of LMCs. Furthermore, the
resonant response of meta-atoms enhances LMC tunability
and nonlinearity, which are in no way the tunability and
nonlinearity of media composing LMCs.

In fact, any new metamaterial expands the capability of
electromagnetic radiation control, which makes them very
attractive for further applications. Indeed, in the past decade,
a lot of different kinds of metamaterials have appeared,
operating in frequency ranges from microwaves up to visible
light. These include negative index linear and nonlinear meta-
materials [2–9], plasmonic metamaterials [10–13], tunable
and elastic metamaterials with controllable electromagnetic
properties [14,15], different nanoparticle arrays [16,17], etc.,
which paved the way for achieving superresolution [18–20],
subwavelength light localization [21–24], nanolasing [25–27],
cloaking [28,29], and artificial mimicry coatings [30]. In this
respect, LMCs might also find their niche among other meta-
materials, and a comprehensive study of their electromagnetic
potentiality in different frequency domains seems to be highly
important.

In this paper, we show that transverse electromagnetic
waves propagating along a dc electric field in LMC can
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trigger an instability leading to meta-atom reorientation and
consequently to the changing of the effective refraction index
of the metamaterial. In the frequency range where the effective
refraction index increases due to the meta-atom re-orientation,
the conditions of the photon confinement in the self-consistent
waveguide channels (spatial solitons) arise. One should notice
that a nonlinear change of refractive index at frequencies close
to resonance can be of the same order, greater than, or even
much greater than its unperturbed value, which, according
to the terminology accepted in the optics of conventional
liquid crystals [31,32], corresponds to colossal or maybe
supercolossal nonlinearity.

II. ELECTROMAGNETIC WAVES IN LMC:
SIMPLIFIED MODEL

For further analysis, we keep the model used in our
recent paper [1] of resonant dumbbell-like elongated metal
subwavelength particles (meta-atoms) suspended in viscous
liquid. The chosen specific shape of meta-atoms shown in
Fig. 1 just allows us to determine its resonant frequency
and quality factor in the simplest way, bearing in mind that
dumbbell spheres define the capacitance of a meta-atom,
C = εla, while the straight dumbbell handle determines
the inductance L = 2lLW and resistance R = 2ρl/πr2 (the
ESU is used throughout the paper), where a is the radius
of the dumbbell sphere, εl is the dielectric permittivity of
surrounding liquid, 2l is the length of the dumbbell handle,
LW = 2

c2 log d
r

is the inductance per unit length of the direct
wire of circular section [33], ρ is the specific resistance of the
metal, r is the radius of the handle, d = min{2l; N−1/3; λl} is
some characteristic distance truncating logarithmic divergence
of the inductance of the straight wire, N is the volume
density of meta-atoms, λl = 2πc/ω

√
εl is the electromagnetic

wavelength in surrounding liquid, and c is the speed of light.
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FIG. 1. (Color online) Schematic view of a meta-atom and an
equivalent electric circuit (inset).

It is necessary to note that the considered model of dumbbell-
like meta-atoms has a certain generality because it gives
qualitatively identical results for any resonant elongated
subwavelength meta-atoms, which enables us to avoid quite
complicated simulations, at least in the first step of LMC study.
The tensor of effective dielectric permittivity of the LMC with
identically aligned meta-atoms has the form [1]

ε̂eff = εl + 4πχm(ω)σ̂ , (1)

where

χm(ω) = 3

4π

ω2
C

ω2
s − ω2 + iγ ω

, (2)

σ̂ =
⎛
⎝cos2 φ sin2 θ sin φ cos φ sin2 θ cos φ sin θ cos θ

sin φ cos φ sin2 θ sin2 φ sin2 θ sin φ sin θ cos θ

cos φ sin θ cos θ sin φ sin θ cos θ cos2 θ

⎞
⎠ , (3)

ω2
s = ω2

0 − ω2
C , ω0 = 1/

√
LC is the resonant frequency of

the meta-atom, ω2
C = 4πlNc2/3 log(d/r) is the so called

Lorenz shift of resonant frequency in the array of interacting
oscillators [33], and γ = R/L. Expressions (1)–(3) describe
effective uniaxial crystal with the axis characterized by spheri-
cal angles φ and θ or, in the same way, by the unit vector e0 with
Cartesian components (e0)x = cos φ sin θ , (e0)y = sin φ sin θ ,
(e0)z = cos θ , which is called the director. The direction of
the optical axis of LMC is determined by the director, and it
can be changed under the influence of both dc and HF electric
fields. The dynamics of meta-atoms with two active rotational
degrees of freedom obeys the following equations, written in
terms of spherical angles φ and θ [1]:

d2θ

dt2
−

(
dφ

dt

)2

sin θ cos θ + ξ
dθ

dt

= A0q(Ex cos φ cos θ + Ey sin φ cos θ − Ez sin θ ),

(4)

d

dt

(
dφ

dt
sin2 θ

)
+ ξ

dφ

dt
sin2 θ

= −A0q sin θ (Ex sin φ − Ey cos φ), (5)

d2q

dt2
+ γ

dq

dt
+ ω2

s q = B0(Ex cos φ sin θ

+Ey sin φ sin θ + Ez cos θ ), (6)

where Ex,y,z are the Cartesian components of a macroscopic
electric field (including both dc and HF fields) acting on a
meta-atom, q is the charge induced by an external electric field
in the meta-atom, A0 = 3/(4πη�a3l), B0 = c2/[2 log(d/r)],
ξ = 3ν/(4πη�a3), ν is the kinematic viscosity, and η� is the
density of meta-atom material, including correction because
of the added mass of the liquid. Within the framework of
quasistationary interaction of an electromagnetic field with
LMC, a self-consistent director orientation can be found,
assuming that the right-hand parts of Eqs. (4) and (5) averaged

over the period of the HF electromagnetic field are equal to
zero,

R(θ) ≡ 〈q(t)[Ex(t) cos φ cos θ

+Ey(t) sin φ cos θ − Ez(t) sin θ ]〉t = 0, (7)

R(φ) ≡ 〈q(t) sin θ [Ex(t) sin φ − Ey(t) cos φ]〉t = 0, (8)

where the angular brackets denote the corresponding averaging
procedure.

III. INSTABILITY AND BISTABILITY OF LMC IN THE
FIELD OF A STRONG ELECTROMAGNETIC WAVE

We consider a plane transverse electromagnetic wave
propagating along an LMC polarization axis (say the z axis,
k ‖ z0, where z0 is the unit vector along z axis) which is
assigned by the direction of the dc electric field E0 = E0z0.
The linear polarization of the wave is assumed to be directed
along the x axis: E ‖ x0, x0 is the corresponding unit vector.
The HF field of the electromagnetic wave has zero projection
upon the dc field direction, so elongated meta-atoms do not
affect the propagation conditions, and the wave travels as in
a medium with dielectric permittivity εl . However, such a
stationary regime takes place only up to some critical intensity
of the wave, I = |E|2 < Ic. If the intensity exceeds this
threshold value, the state with k ‖ e0 ⊥ E becomes unstable.
To obtain a stability criterion, one should linearize Eq. (4)
with the right-hand part time-averaged over the period of the
HF field (taking into account that the mechanical motion is
much slower in comparison with the HF field) in the vicinity
of θ ∼ 0. In this case, φ is a degenerate variable and it can be
considered as an arbitrary constant value; φ = const. A new
component of electric field Ez that arose due to a deflection of
meta-atom axes from the equilibrium state θ = 0 can be found
from the condition of the zero longitudinal component of the
electric displacement, Dz = (ε̂effE)z = 0,

Ez = −�ε sin θ cos θ cos φ

εl + �ε cos2 θ
Ex, (9)
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where �ε = 4πχm(ω). It is easy to show that the Ey

component of the electric field emerging at φ 	= 0 is of the
second order of smallness Ey ∼ θ2 at θ 
 1 and, therefore,
it should not be taken into account. As a result, we come to
the equation describing the dynamics of a meta-atom in the
vicinity of equilibrium state θ = 0,

d2θ

dt2
+ ξ

dθ

dt
= R(θ)

=A0B0

ω2
s

E2
0

{
−1 + 2σ 2

NLRe

(
εlF (ω)

εl + �ε

)
cos2 φ

}
θ,

(10)

where σ 2
NL = |Ex |2/E2

0 , F (ω) = ω2
s /(ω2

s − ω2 + iγ ω). The
ratio of the HF field amplitude to the static field strength
(σNL) plays the role of a nonlinear parameter. The equilibrium
state with θ = 0 becomes unstable when the value in the
curly brackets on the right-hand side of Eq. (10) is positive,
which in turn defines the stability threshold depending on
frequency. One can see from Eq. (10) that a minimal threshold
takes place at φ = 0, implying the meta-atom rotation in the
plane made up by vectors of dc and HF electric fields. This
dynamics of meta-atoms somewhat resembles the so called
Kapitza pendulum with an oscillating hanger point [34]. Most
simply, the instability threshold can be calculated for a lossless
medium with γ = 0. In this case, taking into account that
�ε = εlηF (ω) and η = 3ω2

C/(εlω
2
s ), we come to the desired

stability criterion

σ 2
NL > σ 2

C1 ≡ 1

2

(
1

F (ω)
+ η

)
, ω < ωs

√
1 + η, (11)

where σC1 = σC(θ = 0) denotes the critical value of the
nonlinear parameter calculated for θ = 0.

Since we consider the mechanical rotations of meta-atoms
as much slower in comparison with the oscillations of an
electromagnetic field, formula (11) is valid down to lowest
frequencies for which the averaging procedure on the right-
hand part of Eq. (10) is still correct. The value �ε is
positive at ω < ωs and ω > ωs

√
1 + η, which corresponds

to the focusing nonlinearity of LMC, and �ε is negative at
ωs < ω < ωs

√
1 + η, exhibiting defocusing nonlinearity of

LMC. In a lossless case, the expression (11) gives a zero
value of σC at the upper boundary of the frequency range,
which indicates an infinite growing of the Ez component
of the HF electric field due to excitation of the plasmalike
longitudinal potential mode with [ε̂eff(ω = ωs

√
1 + η)]zz = 0.

More rigorous calculations for γ 	= 0 show that the instability
disappears when ω > ωs

√
1 + η. The instability growth rate g

can be found from Eq. (10). Writing R(θ) = ω2
B(σNL,ω)θ , we

get

g = −ξ

2
±

√
ξ 2

4
− ω2

B. (12)

As soon as ω2
B becomes negative, instability develops. Now we

shall demonstrate that this instability leads to the meta-atom
turnover that aligns them along the θ = π/2, φ = 0 direction,
i.e., along the HF field. For that, one should find all equilibrium
states and determine their stability at φ = 0 and Ey = 0 within
the framework of a lossless case, as before. Omitting obvious

calculations, we adduce the final equation, which determines
the equilibrium states in the system,

sin θ cos θ

{
−1 + 2F (ω)σ 2

NL

(
1 − (�ε)2 sin2 θ cos2 θ

(εl + �ε cos2 θ )2

−�ε(cos2 θ − sin2 θ

εl + �ε cos2 θ

)}
= 0. (13)

One can see that meta-atom orientations with θ = 0 and θ =
π/2 are always equilibrium. We have already obtained the
stability criterion for the equilibrium state θ = 0. Carrying
out calculations similar to those done for θ = 0, one can find
another critical nonlinear parameter σC2: For σNL exceeding
this critical value,

σ 2
NL > σ 2

C2 ≡ 1

2F (ω)[1 + ηF (ω)]
, (14)

the equilibrium state θ = π/2 becomes stable. The character-
istic behavior of both critical nonlinear parameters along with
�ε are shown in Fig. 2(a) as functions of the normalized
frequency. In calculations, the following set of parameters
was used: l = 2 × 10−4 cm, a = 10−4 cm, d = 10−3 cm,
r = 5 × 10−5 cm, N = 107 cm−3; the meta-atom material is
silver with η� ≈ 10g × cm−3, εl = 2. It gives the values for the
resonant frequency ω0 ≈ ωs ≈ 6.1 × 1013 s−1, the damping
coefficient γ ≈ 10−3 × ω0 ≈ 6.1 × 1010 s−1, the Lorentz shift
frequency ωC ≈ 1.6 × 1012 s−1, and the parameter η ≈ 0.001.

It is important that

σ 2
C2

σ 2
C1

= 1

[1 + ηF (ω)]2
< 1

for F (ω) > 0, i.e., for ω < ωs . Besides the orientations with
θ = 0 and θ = π/2, an additional equilibrium state emerges
that can be found from the solution of Eq. (13). As a result, we
come to the explicit expression for new equilibrium, θ = θ̄ ,

cos2 θ̄ = σNL
√

2εlF (ω)(εl + �ε) − εl

�ε
. (15)

This equilibrium state exists exactly within the intensity
domain

σ 2
C2 < σ 2

NL < σ 2
C1, (16)

as it immediately follows from expression (15) and it is
unstable. Therefore, the three equilibrium states take place
within this interval of electromagnetic wave intensity, two of
them are stable (θ = 0 and θ = π/2), being of the stable focus
type. The intermediate equilibrium state given by expression
(15) is unstable, representing a saddle point. Thus, LMC turn
out to be bistable in the intensity region (16) so that at the
same value of the wave intensity, both stable orientations of
the director are possible. The transition of LMC to one or
another stable state depends on the temporal prehistory of the
process. Therefore, in the increasing HF field, the meta-atoms
transit from θ = 0 to θ = π/2 at σ 2

NL > σ 2
C1; when the field

decreases, the transition occurs in the opposite direction
at a smaller level of intensity, σ 2

NL < σ 2
C2. This hysteresis

behavior is illustrated in Fig. 2(b). The model parameters
�ε = 0.1 − 0.005i, σ 2

C1 = 0.0105, and σ 2
C2 = 0.0095 used

in the calculations of this dependence were obtained for
ω = 0.99ωs . The factor η is small in the case of quite rare
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FIG. 2. (Color online) (a) Dependence of the critical values of
the nonlinear parameter σ 2

C1 ≈ σ 2
C2 (left axis, dash-dotted line) and

also their normalized difference, 1 − σ 2
C2/σ

2
C1, and �ε (right axis,

dashed and solid lines, respectively) on the normalized frequency
ω/ωs . (b) Cosine of the equilibrium orientation angle as a function
of nonlinearity parameter σ 2

NL: When the HF field increases, the
switching from θeq = 0 to θeq = π/2 takes place at σNL = σC1; a
decreasing field induces the inverse switch at lower σNL = σC2. The
dashed line shows the behavior of unstable θeq = θ̄ [see Eq. (15)].
The hysteresis behavior becomes clear in the vicinity of resonance
(in the calculations, ω = 0.99ωs was used). If this is not the case,
the critical fields for “on” and “off” switching are quite close to each
other.

meta-atom suspension, and thus the difference between the two
critical nonlinear parameters is δσ 2

C ≡ σ 2
C(θ = 0) − σ 2

C(θ =
π/2) 
 1. For any ω < ωs not too close to resonance, this
difference δσ 2

C ≈ η, and approaching the resonance, δσ 2
C → 0.

However, in the vicinity of resonance, σ 2
C(θ = 0) also tends to

zero, the normalized difference δσ 2
C/σ 2

C(θ = 0) increases, and
the hysteresis becomes more pronounced at ω/ωs ≈ 1. The
reorientation of meta-atoms in the frequency domain ω < ωs

leads to the switching of effective dielectric permittivity in such
a way that in a stronger (superthreshold) field, the refraction

index is larger than in a smaller (subthreshold) field. This
means that in a transversally inhomogeneous wave field, for
example in an electromagnetic beam, a spatial domain can
arise with a higher refraction index, which provides conditions
for the field localization. The width of such a domain in
the stationary case is determined self-consistently, taking into
account that the HF field intensity at the domain walls is equal
to the threshold value. In the case of defocusing nonlinearity,
a similar stepwise permittivity structure resides in the fre-
quency domain ωs < ω < ωs

√
1 + η/2. However, for higher

frequency (ωs

√
1 + η/2 < ω < ωs

√
1 + η), where �ε is still

negative, both states θ = 0 and θ = π/2 become unstable, and
the meta-atoms take some intermediate orientation depending
on the local field intensity I (y,z): 0 < θ (I ) < π/2.

IV. BRIGHT SPATIAL SOLITONS

The presence of the domain of identically reoriented
meta-atoms with higher refractive index makes it possible
to confine the electromagnetic radiation inside the domain,
or, in other words, to form an electromagnetic spatial soliton.
Actually, the bright spatial soliton in LMC is the self-consistent
fundamental mode of TE-type of a planar waveguide in which
the effective dielectric permittivity is ε

(in)
eff = εl + �ε inside the

waveguide and ε
(out)
eff = εl outside. It is caused by the absence of

off-diagonal components of the tensor of effective dielectric
permittivity when the director orients along the z or x axes
while the HF electric field in the wave propagating along the
bias direction z has a sole component Ex . In the stationary
case, Maxwell’s equations yield the expression for Ex(y) in a
localized nonlinear mode,

d2Ex

dy2
+ [

k2
0εeff(|Ex |2) − k2

]
Ex = 0, (17)

where

εeff(|Ex |2) = εl, |Ex |2 < E2
C (18)

for the case of meta-atoms aligned along the dc field, and

εeff(|Ex |2) = εl + �ε, |Ex |2 > E2
C (19)

if the meta-atoms are aligned along the HF electric field; EC

is one of the instability threshold fields on the boundaries of
the bistability zone. We assume that the electromagnetic wave
is traveling along z ∼ exp(−ikz). The boundary conditions
at the domain walls in the plane (x,z) correspond to the
continuity of tangential components of electric (Ex) and
magnetic [Hz = (ik0)−1dEx/dy] fields. Furthermore, the HF
electric-field amplitude at the domain walls has to be equal
to that of the instability threshold values, which correspond
either to σC1 or σC2, which are the same at both walls. One can
show that only single-hump spatial solitons are realized, and
neither multihump (except periodic) nor asymmetric solutions
may exist because it is impossible to satisfy the foregoing
boundary conditions. The domain width a of the meta-atoms
reoriented in an alternative electric field is to be determined
self-consistently. The transverse field structure of the spatial
soliton can be found by solving Eq. (17), taking into account
boundary conditions. According to Eq. (17), the electric field
inside and outside the reoriented-meta-atom domain can be
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written as follows:

Ex = Em cos(κiny), |y| < b/2, (20)

Ex = EC exp[−κout(|y| − b/2)], |y| � b/2 (21)

where κin =
√

k2
0(εl + �ε) − k2 , κout =

√
k2 − k2

0εl , b is the
width of the domain, and Em is the electric field amplitude at
the soliton peak. Then, tailoring Ex and dEx/dy at y = ±b/2,
we come to the nonlinear dispersion equation for the spatial
soliton along with formulas describing its peak amplitude Em

and domain width b via wave number k:

(EC/Em)2 ≡ β2 = (
1 + κ2

out

/
κ2

in

)−1
, (22)

tan(κinb/2) =
√

1 − β2/β, (23)

κintan(κinb/2) = κout. (24)

Only two expressions from Eqs. (22)–(24) are independent,
and a third one is their consequence. Thus, we can fix any one
of the parameters, and the other two may be obtained through
this given value. One of the important characteristics of the
spatial soliton is a total energy flux per unit length along x,

P =
∫ ∞

−∞
Sz(y)dt, (25)

where Sz = c Re(ExH
∗
y )/(8π ) = ck|Ex |2/(8πk0) is the time-

averaged density of energy flux. The integration of Eq. (25)
leads to the expression for the total energy flux,

P (k) = kcE2
C

8πk0κout

{
1 + α(1 + α2)arctan

(
α

1 + α2

)
+ α2

}
,

(26)

where α = κout/κin. In Fig. 3, the dependencies of
P (δk/k0)/P0 (P0 = cE2

0/8πk0), k0b(δk/k0), and β(δk/k0)
(δk/k0 = k/k0 − √

εl) for different frequencies are shown
in (a), (b), and (c), respectively. One can see that the
dependence P (k) has a minimum and tends to infinity in
the vicinity of the verges of the soliton existence domain:
k2

0εl < k2 < k2
0(εl + �ε). At the lower verge, k → k0

√
εl , the

soliton field is weakly localized outside of the reoriented
meta-atom domain and the localization disappears completely
exactly at the verge and b → 0, β → 1 (Em → EC). At the
upper verge, k → k0

√
εl + �ε, all the energy flux is actually

concentrated inside the domain of reoriented meta-atoms
so that β → 0 (Em → ∞), and b ≈ π/κin → ∞ as follows
from expressions (22) and (23). According to the Vakhitov-
Kolokolov criterion [35,36], the spatial bright solitons are
stable if dP/dk > 0, and they are unstable in the opposite
case when dP/dk < 0. Thus, only the growing branch of
the curve P (k) is stable when kmin < k < k0

√
εl + �ε, where

kmin corresponds to the wave number for which dP/dk = 0.
Therefore, to excite the spatial soliton by external radiation, for
example by a wave beam, the required total energy flux must
be at least greater than Pmin; Pbeam > Pmin = P (kmin). This is
illustrated in Fig. 4, where the results of numerical simulations
of the soliton excitation in LMC by an electromagnetic beam
in both subcritical Pbeam < Pmin [Fig. 4(a)] and supercritical
Pbeam > Pmin [Fig. 4(b)] regimes are shown. In the first
case, the beam scatters without soliton formation, whereas
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FIG. 3. (Color online) Dependence of the bright soliton parame-
ters P/P0 (a), k0b (b), and β (c) as functions of δk/k0 ≡ k/k0 − √

εl .
Curves (1), (2), and (3) correspond to ω/ωs = 0.9, 0.95, and 0.99.

in the supercritical case the beam field is captured into a
self-consistent wave channel, as shown in Fig. 4(c). These and
further simulations have been carried out within the framework
of the nonlinear Schrödinger equation,

−2ik0
√

εl

∂ψ

∂z
+ ∂2ψ

∂y2
+ k2

0[εeff(|ψ |2) − εl]ψ = 0, (27)

where Ex = ψ(z,y) exp(−ik0
√

εlz), ψ(z,y) is the HF electric-
field amplitude considered as a slowly varying function of
z, and εeff(|ψ |2) is given by Eqs. (18) and (19). The initial
transverse field structure is specified at z = 0. Figure 5
demonstrates the interaction and collision of two converging
spatial solitons in LMC excited by two displaced Gaussian
in-phase beams. Figure 5(a) illustrates the linear process of
dispersion spread of narrow initial beams, and in Fig. 5(b) the
nonlinear interaction of these two beams is shown. In-phase
spatial solitons attract each other, and since Eq. (25) belongs
to the nonintegrable class, its solutions allow inelastic soliton
collisions, which only occur as a result of joining the reoriented
meta-atom domains [see Fig. 5(c)]. It should be noted that
joining the two beams together is accompanied by considerable
radiation loss of the initial energy flux, however the amplitude
A0 = 1.5 is sufficient for the emergence of the soliton-type
solution.

In Fig. 6, the interaction of repulsive out-of-phase beams
is shown. Comparing again linear [Fig. 6(a)] and nonlinear
[Figs. 6(b) and 6(c)] regimes, one can see that in this case
for the field distribution with the amplitude A0 = 1.5, the
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FIG. 4. (Color online) Spatial structure of normalized field
|E/Ec| in the case of subcritical (a) and supercritical (b) amplitude;
the solid line shows the boundaries of the reoriented meta-atom
domain. The field amplitude at z = 0 is taken in the form of a Gaussian
beam, E/Ec = A0 exp[−(y)2/2w2], with k0w = 5, A0 = 0.9, and
A0 = 2 for the subcritical and supercritical structures, respectively;
ω/ωs = 0.95.

reoriented meta-atom domain (the domain boundaries are
shown by the contour line) is formed only at the initial
part of the beams paths, and after that the field evolution in
Fig. 6(b) becomes linear. However, formation of solitons could
be achieved for higher amplitude. This case is illustrated in
Fig. 6(c), where the two divergent solitons form. This non-
interacting propagation takes place because upon increasing
the distance between the solitons, the field overlap decreases
exponentially.

The initial distributions for in-phase (Fig. 5) and out-of-
phase (Fig. 6) fields are very similar. These both functions
are a sum of two Gaussian beams E/Ec = A1 exp[−(y/w1 −
h)2/2 + iφ1] + A2 exp[−(y/w2 + h)2/2 + iφ2] with equal
amplitudes A1 = A2 and widths w1 = w2, and differ only

FIG. 5. (Color online) Spatial structure of normalized field
|E/Ec| in the case of subcritical (a) and supercritical (b) amplitude;
the solid line shows the boundaries of the reoriented meta-atom
domain. The field amplitude at z = 0 is taken in the form of
two in-phase Gaussian beams E/Ec = A0{exp[−(y/w − h)2/2] +
exp[−(y/w + h)2/2]} with h = 2; k0w = 5; A0 = 0.9 and 1.5 for
the subcritical and supercritical structures, respectively; and ω/ωs =
0.95.

by the phase shift �φ = φ2 − φ1 between them (�φ = 0
and �φ = π ). So it is interesting to look at the intermediate
case with �φ = π/2. The corresponding field evolution is
illustrated in Fig. 7 for subcritical as well as supercritical
regimes. The obtained supercritical spatial dynamics of the
soliton channel maintains the features of both in-phase and out-
of-phase solutions. The two input beams produce two domains
of reoriented meta-atoms generating eventually a sole soliton
channel with a direction slightly deviated from the z axis.

The energy flux captured by the spatial soliton is propor-
tional to the critical field EC , which in turn is proportional
to the dc electric field E0. Hence, this energy flux along with
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FIG. 6. (Color online) Spatial structure of normalized field
|E/Ec| in the case of subcritical (a), intermediate (b), and supercritical
(c) amplitude; the solid line shows the boundaries of the reoriented
meta-atom domain. The field amplitude at z = 0 is taken in the
form of two out-of-phase Gaussian beams E/Ec = A0{exp[−(y/w −
h)2/2] − exp[−(y/w + h)2/2]} with h = 2; k0w = 5; A0 = 0.9, 1.5,
and 2 for cases (a), (b), and (c), respectively; and ω/ωs = 0.95.

FIG. 7. (Color online) Spatial structure of normalized field
|E/Ec| in the case of subcritical (a) and supercritical (b) amplitude;
the solid line shows the boundaries of the reoriented meta-atom
domain. The field amplitude at z = 0 is taken in the form of two
Gaussian beams with the π/2 phase shift E/Ec = A0{exp[−(y/w −
h)2/2] + exp[−(y/w + h)2/2 + iπ/2]} with h = 2; k0w = 5; A0 =
0.9 and 2 for the subcritical and supercritical structures, respectively;
and ω/ωs = 0.95.

the threshold beam power necessary for soliton excitation can
be easily managed just by changing the dc field strength.
Besides, EC depends strongly on the wave frequency. All
of this enables us to obtain the nondiverging wave beams
in LMC with parameters prescribed beforehand. Moreover,
our numerical simulations show an easy way to control the
soliton structure and the direction of propagation by means of
phase-shifting.

At frequencies above the resonant value, the nonlinear
correction �ε to the effective permittivity of LMC is negative,
which, it might seem, enables the dark spatial soliton forma-
tion. However, one can show that there are no dark soliton
solutions.
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The above analysis and the numerical calculations do
not take into account thermal off-orientation of meta-atoms,
which can influence the conditions for soliton creation and
propagation, especially in the case of weak electric fields.
The thermal fluctuations result in random reorientation of
the meta-atoms, and the critical field ET can be estimated
from the condition of equality of the thermal energy kBT and
the induced electric energy of meta-atom 2εlal2E2

T . If the
amplitude of the electric field, no matter how static or high
frequency it is, exceeds ET , the thermal disordering does not
prevent the meta-atom alignment. The estimations give for the
considered parameters ET ∼ 21/

√
εl V/cm. The bistability

threshold for this minimal constant field of ordering and,
hence, the threshold of soliton excitation corresponds approx-
imately to the energy density flux S ∼ 3 × 10−4/εe W/cm2.
With increasing the dc field, this threshold power also increases
proportionally to the squared constant field strength.

It should be noted that the thermal effects may somehow
smooth the jump of permittivity at the interface of the
reoriented meta-atom domain. However, the soliton structure
is robust with respect to these boundary perturbations if the
fields are considerably stronger than ET . It is interesting to
note that the averaged ponderomotive forces acting on the
meta-atoms in the electromagnetic field result in adiabatically
slow compression of the particle density near the soliton
core, which in turn can enhance the localization of the
electromagnetic field. Thus, it may increase the propagation
distance of the spatial soliton.

V. CONCLUSIONS

In conclusion, the conditions were found of the instability
development of LMC in the field of electromagnetic waves
propagating along the dc field, which leads to the meta-
atom turnover. The meta-atom upset changes the effective
refraction index of LMC, which creates the possibility for
photon trapping into a self-consistent waveguide channel, or,
in other words, a spatial soliton. The excitation, stability, and
propagation features of the spatial soliton have been studied.
The numerical results presented in this paper are obtained for
the microsized meta-atoms and terahertz frequency domain.
Apparently, one can expect that similar effects can take place
in the arrays of elongated metal nanoparticles under the
action of visible light or near-infrared radiation, when the
resonant properties of nanoparticles are related to plasmonic
resonances. In contrast to the terahertz meta-atoms, the
plasmonic particles at optical frequencies have a significantly
lower resonance quality factor than that considered above,
which results in increase of the soliton excitation threshold
because of the expansion of the bistability region.
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