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Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic
crystal under gravity

A. Merkel, V. Tournat, and V. Gusev
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We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of
acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression
increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of
the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric
propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the
propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed
nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical
band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal
wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the
measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare
the in-depth distributions of the contact nonlinearity and of acoustic absorption.
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I. INTRODUCTION

Asymmetric acoustic wave propagation is of major interest
for wave propagation control and its ultrasonic applications.
This phenomenon can lead to the design of acoustic diode
or acoustic rectifier [1–6]. Asymmetric acoustic wave propa-
gation can be obtained with a graded phononic structure [7],
a combination of two nonlinear layers [8], a combination of
phononic effects with nonlinearity [2–4,9], or diffraction [10].
Noncohesive granular phononic crystals offer interesting
perspectives in this topic due to the combination of the
periodicity of the structure leading to phononic effects [11–22]
with a highly nonlinear behavior of granular materials [16,23–
27]. A noncohesive granular phononic crystal is a periodic
arrangement of monodisperse elastic beads. The nonlinearity
comes from the microscopic level of the contacts between
the beads which in some cases is well described by the
Hertz-Mindlin theory of contact between two spheres [28,29].
For instance, the acoustic properties of granular crystals can
be controlled by an external static loading that can change the
spectrum of bulk modes propagating inside of them [15,17–
19,30]. Recently, the combination of the phononic effects with
a nonlinear effect around a localized breather has been used to
observe an important rectification effect in a one-dimensional
granular crystal with defect [4,31,32]. It has been also
demonstrated that the asymmetry in the defect position in the
chain can induce the asymmetry in the propagation of acoustic
waves.

In three-dimensional noncohesive granular media, the
translational symmetry is actually always naturally broken
along the direction of the gravity field, because the static load-
ing on the contacts between the beads and, as a consequence,
their rigidities, increase along the gravity direction [33].
It has been earlier demonstrated that this gravity-induced
inhomogeneity of the elastic properties in the vertical direction
induces acoustic waves guided along the mechanically free
surface of the granular assemblies [34–36] and in subsur-
face channels [37]. Here, we demonstrate how the gravity
introduces asymmetry in the vertical propagation of nonlinear

acoustic waves by inducing an in-depth inhomogeneity of the
linear and nonlinear elastic parameters.

We experimentally reveal and theoretically interpret the
asymmetry introduced by the gravity in the three-wave mixing
down-conversion processes in a three-dimensional granular
crystal. We excite acoustic wave packets, i.e., high frequency
signals centered within a narrow frequency band, in the
granular crystal from its surface. We detect low frequency
waves with frequencies of the order of the width of the wave
packet in frequency, which are nonlinearly generated in the
bulk of the granular crystal. In others words, we are using
for the diagnosis of the vertical propagation of acoustic waves
in granular crystals the nonlinear parametric emitting antenna
phenomenon [38]. Earlier, the demodulation, or rectification,
effect of acoustic wave packets has been experimentally stud-
ied in disordered granular media [24,39,40]. The parametric
emitting antenna has been theoretically studied in disordered
granular media [41,42] and in a one-dimensional monoatomic
granular chain [43].

In our experiment in the three-dimensional granular crys-
tal, the amplitude of the demodulated acoustic wave is
detected from two different paths of propagation. For the
first path, the wave packet is emitted at the top of the
crystal, the propagation is therefore along the gravity direction,
i.e., “from top to bottom” (downward) ↓-propagation. For
the second path, the wave packet is emitted at the bottom
of the crystal, the propagation is along the direction op-
posite to the gravity, i.e., “from bottom to top” (upward)
↑-propagation. The detected amplitudes of the demodulated
waves from the two different paths differ. The directional
asymmetry is documented both in parametric emission with
mode conversion from rotational-transverse wave packets
into longitudinal acoustic pulses and in parametric emission
without mode conversion from longitudinal wave packets into
longitudinal demodulated pulses. It is worth noting that, in the
first case, the frequency down-conversion process is observed
for an acoustic wave with opposite directions of the phase
and group velocities. We also observe that the sign of the
directional asymmetry, i.e., the parameter indicating which one
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of the propagation directions leads to more efficient parametric
emission, depends on the central frequency of the acoustic
packets. We provide qualitative physical explanations for all
the observed phenomena.

From the physical point of view, the amplitude of the
demodulated wave depends, for a fixed amplitude of the
wave packet in excitation, on the efficiency of the interaction
between the high frequency components of the acoustic
spectrum and on the effective amplification length of low
acoustic frequencies by high frequencies [38,40–44]. Inter-
action efficiency is proportional to the nonlinear acoustic
parameter and can depend on frequency. Theoretically, the
amplification length, i.e., the length of the parametric antenna,
can be controlled by absorption, dispersion, diffraction, and
nonlinearity of the acoustic propagation in the medium. We
argue that, in our experiments, the directional asymmetry of
the demodulation phenomenon is due to the influence of the
depth-dependent static loading of the contacts between the
grains either on the nonlinear acoustic parameter only or both
on the nonlinear acoustic parameter and on the length of the
parametric antenna.

The paper is structured as follows. In Sec. II, we present
the experimental setup and remind the theoretical predic-
tions of the dispersion curves of the different modes of
linear propagation. The experimental results are presented in
Sec. III. In Sec. IV, we provide qualitative explanations of
the documented phenomenon of the directional asymmetry.
A simplified mathematical model of the parametric emission
in inhomogeneous media, which supports our qualitative
interpretations of the experimental results, is described in
Sec. V, followed by the discussion and conclusions.

II. EXPERIMENTAL SETUP

The experimental setup, exposed in Fig. 1, is basically the
same as the one used earlier for the demonstration of the
rotational elastic mode propagation in a granular phononic
crystal [19]. A hexagonal closed-packed (hcp) crystal of 27
layers of noncohesive stainless steel beads is built inside a
Plexiglas cell of an equilateral triangular base in which an

FIG. 1. (Color online) Sketch of the experimental setup.

exact number of particles fits in the first layer. The crystalline
structure considered here is stable with gravity and easy to
build. This structure is a vertical stacking of hexagonal layers A
and B, which are in the closest position relative to each others,
in a ABAB...sequence [18]. The bottom of the container is an
aluminum plate with an imprint of a hexagonal lattice. The
diameter a of the beads is a = 2 mm and the vertical distance
of propagation is H = 44 mm. The Young’s modulus of the
stainless steel is 200 GPa, the mass density is 7780 kg m−3,
and the Poisson’s ratio is 0.3. The crystal is carefully built
layer by layer removing manually the geometrical defects. The
acoustic waves are generated and detected by nominally shear
transducers. A static loading is applied on the crystal resulting
in forces from N0 = 2 mN to N0 = 25 mN per contact. Even
in macroscopically ordered structures, disorder exists at the
microscopic level of the contacts [17]. The main consequence
is the existence of force chains and weakly loaded contacts in
the assembly [24,45–49]. The effects of disorder are reduced
here by the external loading applied on the crystal, a weak
polydispersity in the diameter of the beads, and the controlled
dimensions of the container. An important role is also played
by the averaging of the signals over the transducer’s surface,
which diameter is D = 2.5 cm and is much larger than the
diameter of the beads. Then, the measurements weakly depend
on a precise configuration of the crystal inducing a specific
network of force chains which is not reproducible. The results
exposed below are reproducible. The elastic waves propagate
in the direction perpendicular to the hexagonal layers, i.e.,
the z direction. The earlier experiments on linear acoustic
propagation [19] in this geometry have been successfully
correlated with the theoretical expectations. In this direction
of propagation, the theory predicts the propagation of one
pure longitudinal mode L, one pure rotational mode R, two
coupled transverse and rotational modes T R and RT [18,19].
The dispersion relations of these modes along this direction
of propagation are exposed in Fig. 2. The dispersion relations
are developed in the reciprocal space (kx,ky,kz) from the point
� = (0,0,0) to the point 2A = (0,0,

√
3/2π/a) [19].

FIG. 2. (Color online) Dispersion relations of the bulk modes in
a hcp granular crystal along the z direction. The cyclic frequencies
are normalized with the cutoff frequency ωc

L of the longitudinal
mode L.
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TABLE I. Cutoff frequencies at the top and the bottom of the
crystal for the applied static loadings.

Applied static
force per F c

L at the F c
L at the F c

RT at the F c
RT at the

contact (mN) top (kHz) bottom (kHz) top (kHz) bottom (kHz)

2 60.4 69.0 103 118
5 70.4 75.2 120 128
10 79.0 81.9 135 140
15 84.5 86.7 144 148
20 88.7 90.4 151 154
25 92.1 93.5 157 160

The cutoff cyclic frequency of the longitudinal mode is [18]

ωc
L = {[2(2 + �K )(3aN0)1/3E2/3]/[mb(1 − ν2)2/3]}1/2, (1)

where mb is the mass of one bead, N0 is the static normal
force applied on each of the contacts, E and ν are the Young’s
modulus and Poisson’s ratio of the material constituting the
beads, respectively, and �K = 2(1 − ν)/(2 − ν) = KS/KN is
the ratio of shear KS to normal KN rigidities of the con-
tact [28,29]. The cutoff frequency of the mode RT, which is the
highest cutoff frequency for bulk mode propagation, is given
by ωc

RT = [10�K/(2 + �K )]1/2ωc
L. Experimental results have

confirmed the validity of this modelization [19]. The cutoff
frequencies of the longitudinal mode Fc

L = ωc
L/(2π ) and the

rotational-transverse mode Fc
RT = ωc

RT /(2π ) can be predicted
in our system and are summarized in Table I.

Two frequency ranges can be distinguished (see Fig. 2). The
translational frequency band, where propagate the longitudinal
mode L and the transverse mode modified by the rotation
T R, is called here the L band and is defined from 0 to Fc

L.
The rotational frequency band, where propagate the rotational
mode R and the rotational-transverse mode RT , is called here
the RT band and is defined from Fc

L to Fc
RT . There are no

modes propagating in the rotational frequency band if the
rotational degrees of freedom of the individual beads are not
taken into account.

The shear transducers have been used in the experiments
because, being nominally shear, they are also emitting longitu-
dinal wave, and are sufficiently sensitive in their detection [19].
Thus, they can be used to explore all the longitudinal and
coupled rotational-transverse modes. It is assumed that the
shear transducers can neither excite nor detect the pure
rotational mode R. The variations of the relative importance
of the longitudinal and shear waves in the performance of
these transducers have been characterized by us through
measurements of the signal emitted by a shear transducer and
transmitted through an aluminum block using either a shear
or longitudinal detecting transducer as exposed in Fig. 3. The
longitudinal transducer is sensitive only to the longitudinal
waves [19].

In the experiments described below, the burst source signal
is a sine modulated in amplitude by a Gaussian envelope with
a width of 3.5 kHz at −3 dB. The central frequency increases
from 40 to 200 kHz by steps of 2.5 kHz. The transmitted
amplitude is measured on the other side of the crystal by a
shear transducer, which is the same model as the one used for
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FIG. 3. Transmission through an aluminum block with a shear
transducer in excitation and either a shear (continuous line) or a
longitudinal (dashed line) transducer in detection.

the excitation. Specifically for the studies of the directional
asymmetry or symmetry in wave propagation, the emitted and
detected amplitudes from the two exploited transducers have
been checked to be equal through additional experiments with
a third transducer. Moreover, switching the two transducers
leads to similar experimental results. Then, the measurements
are carried out twice with two different paths of propagation.
In the first path of ↑-propagation, the excitation is at the bottom
of the crystal and the detection is at the top. In the second path
of ↓-propagation, the excitation is at the top of the crystal and
the detection at the bottom. Specifically for the studies of the
nonlinear demodulation processes, the source signal is filtered
with a high-pass filter to ensure that there are no low frequency
components in the electric signal exciting the transducer.

III. EXPERIMENTAL OBSERVATIONS

Our measurements demonstrate that nonlinear acoustic
phenomena in noncohesive granular crystals are important
and, similarly to disordered granular media, can be directly
assessed experimentally. In Fig. 4, we present as an illustration
the spectrum of the signal transmitted through a granular
crystal in comparison to a signal transmitted through an
aluminum block, which is estimated to behave linearly at the
considered excitation levels. The comparison in Fig. 4 clearly
demonstrates the nonlinear acoustic processes of second
harmonic generation and demodulation or rectification.

In the experiments devoted to the studies of the direc-
tional asymmetry in acoustic propagation through the three-
dimensional granular crystal, we measured the amplitudes of
the fundamental wave and of the demodulated wave as a
function of the central frequency of the pump wave packet.
The amplitude of the demodulated wave is measured as a
difference between the amplitudes of the first two phases of
opposite polarity in the low frequency acoustic pulse arriving
on the detecting transducer. The form of the demodulated
wave and its arrival time, which is estimated to correspond
to the arrival time of the longitudinal mode at low frequencies,
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FIG. 4. Examples of the amplitude of the spectra of the source
signal (black continuous line) and transmitted signal (gray dashed
line) with the identification of linear and nonlinear wave propagation
in the case of an excitation with a central frequency at 60 kHz.
The second harmonic component is here visible at 120 kHz. The
maximum amplitude component of the demodulated wave is found
around 3 kHz.

weakly change with the central frequency of the pump
wave confirming the nonlinear generation of low frequency
longitudinal wave by high frequency pump waves. It is worth
noting that determining the amplitude of the demodulated wave
from spectral measurements, as those depicted in Fig. 4, leads
to similar results.

In Fig. 5, we present the results of the asymmetry measure-
ments conducted in the case of a 15-mN static loading applied
on each of the contact between the beads at the top of the
granular crystal. The vertical lines indicate the positions of the
cutoff frequencies of the longitudinal and rotational-transverse
acoustic modes estimated for the static loadings at the top and
the bottom of the crystal.

The basic experimental observations can be summarized as
follows. First, the amplitude of the signal at the fundamental
frequency does not depend on its propagation direction at all
tested frequencies, i.e., in complete L and RT bands and also
in the evanescent regime of waves penetration above Fc

RT .
We believe that the theoretically predicted forbidden band gap
between Fc

L and the lowest frequency of propagation of the
mode RT is not visible here because of the width of this band
gap, which is comparable with the frequency width of the
source signal. Second, the parametric emission is found to be
practically always directionally asymmetric, i.e., the detected
amplitude of the demodulated wave from the (downward)
↓-propagating pump wave packet is nearly always different
from the one from the (upward) ↑-propagating pump wave
packet. The sign of the directional asymmetry changes at a
critical frequency belonging to the L band. Above this critical
frequency, the parametric antenna operating from the top of
the crystal is more efficient than the one operating from the
bottom. Below this critical frequency, the situation is opposite.

These basic observations are qualitatively reproduced with
other external static loadings, with an expected shift of all
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FIG. 5. (Color online) Transmitted amplitude of the linear (con-
tinuous curves and filled markers) and demodulated (dashed curves
and empty markers) waves as a function of the central frequency
of the excitation for a 15-mN static loading applied on the contacts
at the top of the crystal. Propagation from the bottom to the top
in black squares, from the top to the bottom in blue circles. The
markers correspond to the experimental data, the curves correspond
to a smoothed interpolation of the experimental results. The vertical
curves represent the cutoff frequencies of the modes L and RT at the
top and the bottom of the crystal.

the characteristic frequencies with pressure. As an illustration,
we present in Fig. 6 the dependence of the asymmetry of
the nonlinear demodulation phenomenon on pump frequency
at different static loadings. Asymmetry is measured by the
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FIG. 6. (Color online) Difference of the amplitudes of the de-
modulated waves from the two paths of propagation, from the bottom
to the top minus from the top to the bottom, in function of the central
frequency of the excitation and for different static loading applied on
the top of the crystal. The squares represent F c

L at the top and the
bottom of the crystal. The circles represent F c

RT at the top and the
bottom of the crystal.

023206-4



DIRECTIONAL ASYMMETRY OF THE NONLINEAR WAVE . . . PHYSICAL REVIEW E 90, 023206 (2014)

difference of the amplitude of the demodulated wave emitted
by the ↑-propagating pump wave and the one emitted by
the ↓-propagating pump wave. The frequency of the crossing
point, where the amplitudes of the demodulated waves from
the two paths of propagation are equal, moves with the
static loading ensuring that these observations come from the
granular medium behavior.

IV. THEORETICAL INTERPRETATIONS

From the experimental results, we can observe that the
propagation of the high frequency pump wave packets is
much more directionally symmetric than the low frequency
parametric emission by the pump waves. This observation
is mostly related to a much lower sensitivity to pressure
variations of the linear acoustic effects compared to the
nonlinear ones. As a consequence, it is also related to the spatial
inhomogeneity of pressure distribution within the granular
packing. In particular, the linear processes of diffraction,
refraction, and scattering depend on the wavelength λ, which is
proportional to the acoustic phase velocity cph, e.g., λ ∝ cph,
and the phase velocity weakly depends on the static pressure p

in granular media. In classic Hertzian model of contact [28,29],
cph ∝ p1/6. In contrast, the acoustic parameter ε of quadratic
elastic nonlinearity, to which the amplitude of the parametric
emission is directly proportional, varies much faster with
pressure change, ε ∝ p−2/3 ∝ c−4

ph .

A. Directional symmetry of the linear propagation

It is instructive to estimate the possible directional asym-
metry of the linear acoustic wave packets emitted and detected
by equivalent transducers. The acoustic impedance of the used
piezoceramic transducers is much higher than the acoustic
impedance of the granular crystal. From the density of
stainless steel ρsteel = 7780 kg m−3 and the compacity of the
hexagonal close-packed packing η = 0.74, the density ρ of
our granular crystal is ρ = 5760 kg m−3. It is practically
independent of pressure for the pressure variations involved
in our experiments. Thus, the acoustic impedance varies
proportionally to the pressure as cph ∝ p1/6. For the highest
velocities of the acoustic waves cph ∼ 500 m s−1, measured
and theoretically estimated for the highest experimental static
loadings, the acoustic impedance Z = ρcph is smaller than
3.106 kg m−2 s−1, i.e., about an order of magnitude smaller
than the impedance of the ceramic transducers. In this case,
assuming a perfect elastic contact between the transducer
and the granular crystal, the transmission of the acoustic
displacement from the emitting transducer to the granular
crystal does not depend on the impedance of the crystal,
while the transmission from the granular crystal into the
receiving transducer is proportional to the crystal impedance
and thus is proportional to p1/6. It should also be taken into
account that the amplitude of the acoustic wave varies when
it propagates in an inhomogeneous medium. In the frame
of geometrical acoustics [50,51], the displacement amplitude
scales in inhomogeneous medium of constant density as
∝c

−1/2
ph . Consequently, it scales as ∝ c

−1/2
ph ∝ p−1/12 in the

granular crystal. So the theory predicts, for instance, that
the amplitude of the ↓-propagating wave will diminish in its

in-depth propagation but this diminishing will be overcompen-
sated by its better transmission into the receiving transducer at
the bottom of the crystal, which is subjected to higher pressure.
As a result, the amplitude A↓(ω) of the detected ↓-propagating
wave scales as A↓(ω) ∝ [p(z = H )/p(z = 0)]−1/12p1/6(z =
H ), while the detected ↑-propagating wave scales as A↑(ω) ∝
[p(z = 0)/p(z = H )]−1/12p1/6(z = 0). Here, z = 0 and z =
H are the vertical coordinates of the top and bottom surfaces of
the granular crystal, respectively. This leads to the theoretical
expectation of weak directional asymmetry of the linear
acoustic wave, A↓(ω)/A↑(ω) ∝ [p(z = H )/p(z = 0)]1/6. The
highest pressure ratio, of about 2, between the bottom and
the top of the crystal is achieved in our experiment at the
lowest static loading. Even in this limiting case, the theoretical
prediction is A↓(ω)/A↑(ω) � 1.1 � 1 dB. It is also worth
mentioning here that possible spatial inhomogeneity of the
linear absorption does not contribute to the asymmetry of
linear propagation, because the decrease in wave amplitude
along the propagation from the emitter to the receiver depends
on the integral of the absorption coefficient along this path of
propagation. This integral does not depend on the direction of
propagation.

We conclude this subsection with the statement that the
experimentally observed directional symmetry at the pump
frequency (see Fig. 5) can be interpreted as an evidence of the
linear propagation of acoustic waves.

B. Directional asymmetry of parametric emission with
mode conversion

In this subsection, we interpret the experimental results
on parametric emission by the wave packets with pump
frequencies above Fc

L, i.e., in the RT band. First, it is worth
mentioning that the important fall in the parametric emission
efficiency in the vicinity of the top of the RT band and
above this propagating band, i.e., in the case where all the
excited acoustic modes are evanescent (see Figs. 2 and 5), is
in accordance with earlier theoretical predictions for granular
crystals [43].

1. Mode conversion

In the RT band, the parametric emission has several
features. First, the frequency down-conversion takes place
in parallel with mode conversion. The emitted rotational-
transverse waves, which represent the only propagating mode
in this frequency band, are mode-converted into a longitudinal
wave, which is the mode of propagation of the demodulated
wave as argued in Sec. III. Earlier, in the nonlinear processes
of shear waves mode-conversion into longitudinal, both de-
modulation [24] and the second harmonic generation [23]
were observed in disordered granular packings. They were
attributed to nonlinear dilatancy of the granular media [24].
In the current experiments in granular crystals, the growth
of the amplitude of the demodulated signal is proportional
to the square of the excitation amplitude under the majority
of the experimental conditions. Thus, the quadratic nonlinear
dilatancy is predominantly observed [24]. As an illustrative
example, we present in Fig. 7 the measurements conducted
in the case of a 20-mN static loading at a pump frequency of
120 kHz, which is in the RT band.
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FIG. 7. (Color online) Dependence of the amplitude of the de-
modulated wave on the excitation amplitude with a central pump
frequency of 120 kHz and a static loading of 20 mN per contact. The
central frequency of the pump wave belongs to the RT band.

Second, in contrast to the previous experiments on nonlin-
ear dilatancy [23,24], the nonlinear process is accompanied by
band conversion. The high frequency pump waves belong to
the RT band while the demodulated signal belongs to the L

band.

2. Asynchronism

In the presentation of the phononic band in Fig. 2, the
pump wave packets have negative group velocities and positive
phase velocities. In reality, the situation is just opposite:
the pump wave packets have negative phase velocities but
positive group velocities. The corresponding point belongs to
the symmetric part ω(k) = ω(−k) of the complete dispersion
structure, which is not reproduced in Fig. 2. For the energy
conserving demodulation process ω1 − ω2 = �, with high
carrier frequencies ω1 > ω2 ≡ ω and low demodulated cyclic
frequency � 	 ω, the momentum conservation requirement
k(ω1) − k(ω2) = k(�) can be approximated by the equality of
the group velocity of the wave packet and the phase velocity
of the demodulated wave, cgr (ω) = cph(�) [43]. As it follows
from the dispersion relations for the experimental granular
crystal (Fig. 2), the latter condition cannot be fulfilled and,
thus, the demodulation process is importantly asynchronous,
especially in the upper part of the RT band. The characteristic
length of synchronism can be estimated from the condi-
tion �kLsyn = π/2 [52,53], where �k ≡ |k(ω1) − k(ω2) −
k(�)| ∼= �|1/cgr (ω) − 1/cph(�)| is the mismatch of the wave
vectors. Thus, Lsyn = [λ(�)/4]/|1 − cph(�)/cgr (ω)|, where λ

is the wavelength. The estimates for the typical low frequency
of 3 kHz and typical longitudinal velocity of 300 m s−1 predicts
that the synchronism length is twice shorter than the thickness
of the crystal already for cgr (ω) ≈ cph(�)/2. Closer to the top
of the RT band, the synchronism length is much shorter than
the crystal thickness. We believe that it is the synchronism
length which controls the effective length of the parametric
emitting antenna in the upper part of the RT band and which

importantly influences the performance in the lower part of
this frequency band, and even at the top of the L band.

3. Sign of asymmetry

For fixed amplitude of the pump wave packets, the ampli-
tude of displacement in the nonlinearly emitted demodulated
wave is proportional to the nonlinear acoustic parameter and
the length of the parametric antenna, A ∝ εL [38,39,43,50].
When the length of the parametric antenna, i.e., the length
of effective amplification of low frequencies by the high
acoustic frequencies, is controlled by the synchronism length,
L ∝ Lsyn, which weakly depends on pressure through the weak
influence of pressure on the linear acoustic velocities, the
pressure influences the parametric emission mostly through
its influence on the nonlinear acoustic parameter. Thus,
the experimental detection of the larger amplitudes of the
demodulated waves emitted by ↓-propagating wave packet
rather than by ↑-propagating wave packet, A↓(�) > A↑(�),
can mostly be attributed to the dependence of the nonlinear
acoustic parameter ε on pressure. The granular crystal in
the gravity field is more nonlinear near its top than near its
bottom, because the nonlinearity increases with diminishing
pressure. We conclude this subsection with the statement that
the negative sign in Fig. 6 of the directional asymmetry for the
demodulation in the rotational band, A↑(�) − A↓(�) < 0, is
not surprising but is rather expectable.

C. Directional asymmetry of parametric emission without
mode conversion

The interpretation of the experimental observations in
the case of the pump waves belonging to the lower part of
the L band should include an explanation of the change of the
sign in the directional asymmetry of the parametric emission,
A↑(�) − A↓(�) > 0, relative to the observations in the RT

band, A↑(�) − A↓(�) < 0, explained above.

1. Without mode conversion

In the L band, the longitudinal waves can propagate.
In the lower part of this propagating band, considering the
propagation of longitudinal waves, the synchronism condition
is closer to fulfillment than in the above analyzed case of pump
waves belonging to the RT band. The transverse-rotational
mode T R of the L band propagates with a group velocity
close to the one of the rotational-transverse mode RT of
the RT band [18]. Therefore, the demodulation process with
transverse pump waves is importantly asynchronous as in
the case of pump waves belonging to the RT band. The
cumulative character of the nonlinear processes is possible
in the L band because of the synchronism between the
longitudinal pump waves and the longitudinal demodulated
pump wave. The contribution of the transverse-rotational
waves to the nonlinear processes is assumed to be negligible.
Thus, we interpret the nonlinear processes observed in the
lower part of the L band as being mostly the processes
involving the interaction of the longitudinal waves only, i.e.,
without mode conversion. This hypothesis is also supported
by the experimental evaluation of the amplitude dependence
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FIG. 8. (Color online) Dependence of the amplitude of the de-
modulated wave on the excitation amplitude with a central pump
frequency of 60 kHz and a static loading of 20 mN per contact. The
central frequency of the pump wave belongs to the L band.

of the demodulated wave on the wave packet amplitude. In
the current experiments in granular crystals, the amplitude
growth of the demodulated wave, emitted by wave packets
with pump frequencies sufficiently lower than the cutoff
frequency of the longitudinal mode, is proportional to the
power 3/2 of the excitation amplitude under the majority
of experimental conditions. Thus, the nonlinearity related to
clapping-tapping regime of Hertzian contacts between the
spherical grains [16,24,25] is predominantly observed. As an
illustrative example, we present in Fig. 8 the measurements
conducted in the case of 20 mN static loading per contact at
a pump frequency of 60 kHz, which is in the L-band. This
type of nonlinear behavior has been earlier mostly observed
for the interactions between longitudinal acoustic waves (see
Refs. [16,24] and the reference therein).

2. Clapping nonlinearity

The clapping nonlinearity of contacts is a strong nonan-
alytic nonlinearity, which exists when the amplitude of the
acoustic wave is sufficient to overcome the local static loading
of the contact and to drive the contact periodically between the
open and the closed states. The 3/2 power dependence of the
three-wave-mixing process is characteristic to the clapping
of classic Hertzian contacts [16,24,29]. For the expected
acoustic displacement amplitudes of the order of 0.5–5 nm,
the acoustic strain η at a typical frequency of 60 kHz in
the lower part of the first propagating frequency band is
estimated to be of the order of η ∝ 10−7–10−6. This order of
magnitude is insufficient to open the intergrain contacts in the
granular crystal, which are estimated to be statically preloaded
in our experiments in average by the strain of η0 ∝ 10−5.
This estimate is done for the Hertzian contacts, for which
η0 ≈ K−2/3(a/2)−4/3N

2/3
0 , where K ≡ (4/3)[E/(1 − ν2)] de-

notes the effective modulus [29,33]. Thus, the observation
of 3/2 power law in our nonlinear acoustic experiments in

three-dimensional granular crystal demonstrates that, in or-
dered granular assemblies, similarly to the documented ob-
servations for disordered granular media (see [24] and the
reference therein), there is an important fraction of weak
contacts, which are statically preloaded much weaker than
in average. In compensation, a fraction of contacts, which are
loaded stronger than the average and are forming force chains,
is also expected in granular media [24,45–49].

3. Sign of asymmetry

Following the discussion in Sec. IV B, the explanation of
the particular directional asymmetry A↑(�) − A↓(�) > 0 in
parametric emission in the lower part of the L band cannot
be based on the inequality ε(z = 0) > ε(z = H ). Thus, an
important role in the documented asymmetry is played by
the change in the effective length of the parametric antenna
when the direction of the pump propagation changes. For the
quasisynchronous processes of demodulation without mode
conversion, the length of synchronism importantly exceeds
the crystal thickness and cannot be the scale which limits
the effective length of parametric emission. The characteristic
diffraction length Ldiff(ω) ∝ D2/λ(ω) of the wave packets
also importantly exceeds the crystal thickness. At a typical
frequency of 60 kHz, we have estimated that Ldiff(ω) � 3H ,
for instance. Under these circumstances, the length of the
parametric antenna will be controlled by the attenuation length
Latt(ω) of the high frequency carrier waves [38,42].

As follows from the above discussion, a rather broad
spectrum of contact static loadings could be expected and,
thus, the attenuation of the wave packets can be caused both
by their absorption and their scattering due to the residual
disorder persisting in the granular crystal even under external
loading. Neglecting the possible contribution to the parametric
emission from scattered high frequency waves, i.e., accounting
only for the parametric emission by ballistic waves [42],
the condition, which is necessary for the realization of the
observed directional asymmetry, can be qualitatively written
in the form Latt(ω,z = 0)ε(z = 0) < Latt(ω,z = H )ε(z = H ).
Qualitatively speaking, if the decrease of the acoustic nonlin-
earity is overcompensated by the increase in the high frequency
attenuation length, the demodulated acoustic signal emitted by
the ↑-propagating wave packets will be larger in amplitude
than the one emitted by the ↓-propagating wave packets.
Speaking differently, the positive sign in the directional
asymmetry of the parametric emission in the lower part of the
L band is a manifestation of higher spatial inhomogeneity of
the acoustic attenuation in comparison with inhomogeneity of
the nonlinear parameter. The fact that both acoustic absorption
and scattering diminish with increasing pressure that reduces
the portion of mobilized or sliding contacts and also reduces
disorder, is well known. However, the evaluation of the possi-
ble functional dependence of the absorption and scattering on
static pressure remains an open question and is far beyond the
scope of the present paper. A bit more elaborate theory of the
parametric emission, which, in contrast to the proposed above
inequality Latt(ω,z = 0)ε(z = 0) < Latt(ω,z = H )ε(z = H ),
accounts for the spatial distribution of the acoustic absorption
and nonlinearity between the top and the bottom of the crystal,
is presented in the next section.
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V. ADVANCED THEORETICAL MODEL

A. Model description

In this section, assuming the one-dimensional propagation
of a wave in a granular medium, the following model can
be considered to evaluate the amplitude of the nonlinear de-
modulated wave as a function of the direction of propagation.
The two parameters involved in the amplitude of the acoustic
waves are the in-depth dependence of the nonlinear parameter
ε(z) and the in-depth distribution of the attenuation α(z). The
amplitude of the pump wave A(ω) can be written as

A(ω,z) = A(ω,0)e− ∫ z

0 α(z′)dz′
. (2)

Considering, for a compact illustration of the physical princi-
ple, the demodulated wave as consequence of the quadratic
nonlinear elastic behavior of the medium and using the
successive approximation method, the pump wave is the source
of the demodulated wave. Therefore, the amplitude A(�) of
the demodulated wave grows as

∂A(�)

∂z
∼ [A(ω,0)]2ε(z)e−2

∫ z

0 α(z′)dz′
. (3)

Because the amplitudes of the wave packets emitted from the
top and the bottom of the crystal are equal (see Sec. IV A),
then the dependence on the wave amplitude in Eq. (3) can
be omitted for the evaluation of the directional asymmetry of
the parametric emission. The amplitude of the demodulated
wave when the propagation is in the direction of gravity (from
the top to the bottom) can be written as

A↓(�) ∼
∫ H

0
ε(z)e−2

∫ z

0 α(z′)dz′
dz. (4)

The amplitude of the demodulated wave when the propagation
is in the direction opposite of gravity (from the bottom to the
top) can be written

A↑(�) ∼ −
∫ 0

H

ε(z)e2
∫ z

H
α(z′)dz′

dz. (5)

Finally, the comparison of the amplitudes of the demodulated
waves from the two directions of propagation provides the
following estimate for the directional asymmetry of parametric
emission:

A↑(�) − A↓(�)

∼
∫ H

0
ε(z)[e−2

∫ H

z
α(z′)dz′ − e−2

∫ z

0 α(z′)dz′
]dz. (6)

Simple models can be used for ε(z) and α(z) using three
characteristic lengths, the length of linear attenuation Latt,
the length of inhomogeneity of the linear attenuation Linh

att ,
and the length of inhomogeneity of nonlinearity Linh

NL. The
in-depth dependence of the attenuation parameter could be
approximated by

α(z) = 1

Latt

(
1 − z

Linh
att

)
. (7)

This model assumes that Linh
att � H , and, in particular, it

assumes that Linh
att is positive, i.e., attenuation diminishes with

depth as could be expected theoretically (see Sec. IV C).
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FIG. 9. (Color online) Example of calculation of α(z), ε(z),
e− ∫ z

0 α(z′)dz′
(blue and red lines), and ε(z)e−2

∫ z
0 α(z′)dz′

(blue and red
dashed lines) over z to visualize the evolution of the functions inside
Eq. (3) following the two paths of propagation.

The in-depth dependence of the nonlinear parameter could
be approximated by

ε(z) ∝ 1 − z/Linh
NL. (8)

This assumes that Linh
NL � H and that the acoustic nonlinearity

is diminishing with depth as is known from the earlier
experiments and theoretical models (see Sec. IV B). The
evolutions with z of α(z), ε(z), e− ∫ z

0 α(z′)dz′
, and ε(z)e−2

∫ z

0 α(z′)dz′

are shown in Fig. 9. Including (7) and (8) in (6), the comparison
of the demodulated wave amplitude from the two directions of
propagation requires the evaluation of the function difference
ψ(Latt,L

inh
att ,L

inh
NL) defined with

A↑(�) − A↓(�) ∼ ψ
(
Latt,L

inh
att ,L

inh
NL

)

=
∫ H

0

(
1 − z

Linh
NL

) [
e−2(H−z+(z2−H 2)/2Linh

att )/Latt

−e−2(z−z2/2Linh
att )/Latt

]
dz. (9)

B. Results and discussion

The condition ψ = 0 is exposed in Fig. 10 as a function
of the three parameters Latt, Linh

NL, and the ratio Linh
att /L

inh
NL.

Below the surface ψ = 0, the function ψ is positive. Above
the surface ψ = 0, the function ψ is negative. Considering the
function ψ = 0 along the Latt/H axis, it can be observed that
the length of linear attenuation has an effect only if it is very
small compared to length of propagation H of the problem.
If Latt > 10−2H , the function ψ = 0 will only depend on the
values of Linh

att and Linh
NL, and more precisely, it will depend

mostly on the ratio Linh
att /L

inh
NL.

Considering the function ψ = 0 along the Linh
NL axis away

from small values of Latt, i.e., Latt > 10−2H , the function ψ

can be equal to zero when Linh
att /L

inh
NL � 1. This means that
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FIG. 10. (Color online) ψ = 0 with Latt, Linh
NL, and the ratio

Linh
att /L

inh
NL.

the function ψ can be positive if Linh
att < Linh

NL. If Latt is very
small, Latt < 10−2H , meaning that the pump waves are very
strongly attenuated at the top, the ratio Linh

att /L
inh
NL should be

very small to get ψ > 0. A ratio Linh
att /L

inh
NL 	 1 represents

an important drop of the attenuation with depth while the
nonlinear behavior remains almost constant, the pump waves
are almost evanescent at the top but can propagate at the
bottom.

In conclusion, this theoretical model shows that, in the case
of synchronism between the pump waves and the demodulated
waves, the amplitude of the demodulated wave propagating
from the bottom to the top can be larger than the amplitude
of the demodulated wave propagating from the top to the
bottom if the length of inhomogeneity of attenuation Linh

att
is smaller than the length of inhomogeneity of nonlinearity
Linh

NL.
Formally, this model does not describe the case of an

asynchronism between the pump and the demodulated wave.
Nevertheless, the case where the asynchronism between the
two waves is important can be analyzed, using this model, in a
qualitative way. The first case that can be considered is the case
of evanescent pump waves on both sides of the crystal. The
central frequency of excitation is then above the highest cutoff
frequency Fc

R,RT . In this case, the linear attenuation length
tends to zero (Latt → 0) and the length of linear attenuation
inhomogeneity tends to infinity (Linh

att → +∞), indicating
that the attenuation of wave amplitude is due to the granular
crystal periodicity, which is negligibly changed in depth
under the conditions of our experiments. The nonlinear wave
is then generated at the proximity of the source and since the
medium has a larger nonlinearity at the top than at the bottom,
the amplitude of the nonlinear wave generated in downward
propagation is larger than in upward propagation, then
A↑(�) − A↓(�) < 0. This result is valid since Linh

NL < +∞.
This interpretation corresponds to the experiments when the
demodulated wave is observable above the highest cutoff
frequency.

When the synchronism length is small as in Sec. IV B, the
nonlinear generation can be considered only at the beginning
of the path of propagation, at the vicinity of the transducers.

The further nonlinear generation process along the pump wave
propagation can be neglected. This case could be modeled
considering that the length of linear attenuation Latt in the
above formulas models the role of Lsynch and is small. From
Fig. 10, the ratio Linh

att /L
inh
NL falls for small Latt to ensure that

ψ = 0. This means that Linh
att needs to be much smaller than

Linh
NL to obtain ψ > 0. However, in the considered case of

strong asynchronism, there is no inhomogeneity or asymmetry
of the asynchronism (see Sec. IV B), meaning that Linh

att � H .
As a result, the condition ψ > 0 cannot be achieved in this
case. Thus, our analysis demonstrates that A↑ − A↓ will be
always negative in the case where the pump waves and the
demodulated waves are asynchronous.

VI. CONCLUSIONS

We studied the operation of the parametric emitting antenna
in a three-dimensional noncohesive granular crystal under
gravity. The asymmetry in parametric emission in a granular
crystal is controlled by three features, the asynchronism of
the linear and nonlinear waves due to periodicity of the
structure, the nonlinearity, and the attenuation distribution in
the medium depth. In the first case, the frequencies of the
pump waves are above the highest cutoff frequency of the
bulk modes of the granular crystal. The pump waves do not
propagate, the attenuation of the pump waves is large and
does not depend on the depth. The asymmetry in parametric
emission is then controlled by the inhomogeneity of the
acoustic nonlinear parameter. In the second case, the central
frequencies of the pump wave packets belong to the second
(rotational) propagating band. The demodulation, with mode
conversion from the rotational-transverse acoustic modes into
longitudinal mode in addition to the band conversion from
the upper rotational frequency band to the lower longitudinal
frequency band, is documented. The nonlinear frequency
down-conversion process is importantly asynchronous and the
observed directional asymmetry in parametric emission, along
and opposite to the gravity direction, is attributed to the spatial
vertical inhomogeneity in the distribution of the acoustic
nonlinear parameter in the noncohesive granular crystal. In
the last case, the central frequencies of the pump wave packet
belong to the lower part of the first (longitudinal) propagating
band of the phononic crystal. The demodulation can be
attributed to nonlinear processes without mode conversion.
In this case, the directional asymmetry in the parametric
emission is of opposite sign to the asymmetry reported in
the rotational frequency band. The directional asymmetry is
then also controlled, in addition to the nonlinear parameter
inhomogeneity, by the vertical inhomogeneity of the wave
attenuation. From the theoretical predictions, the sign of the
asymmetry observed in this case means that the attenuation
falls faster than nonlinearity with increasing depth (or equiva-
lently with increasing pressure). The experimental results also
indicate that, even in ordered granular assemblies under a static
preloading, there exists an important number of intergrain con-
tacts, which are loaded much weaker than in average over the
crystal and which can play an important role in the nonlinear
acoustic phenomena. The research results reported here could
be useful in the future to guide the design of spatially inhomo-
geneous nonlinear metamaterials for asymmetric propagation
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of acoustic waves. Through their generalization to disordered
granular assemblies, they could be also useful for better
understanding of the relevant acoustic wave phenomena in
geophysics.
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216 (2001).
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056603 (2004).
[44] J. Cabaret, V. Tournat, and P. Béquin, Phys. Rev. E 86, 041305
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