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Trapping of diffusive particles by rough absorbing surfaces: Boundary smoothing approach
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We present analytical results for the first-passage statistics of Brownian particles near a comblike absorbing
boundary. Our approach is based on the method of boundary homogenization (or boundary smoothing) when
an equivalent flat boundary is introduced to maintain the same diffusion flux as the original rough boundary.
By using the conformal invariance of the Laplace equation we derive an analytic expression for the position of
an equivalent boundary in terms of its spatial period and amplitude. The main analytical results being initially
obtained for the steady state system provide important insights into the statistical characteristics of diffusive
transport near rough boundaries (high order moments of the trapping time statistics).
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I. INTRODUCTION

Diffusive transport in the presence of irregular interfaces
is an essential ingredient of many natural phenomena and
industrial processes. Illustrative examples include diffusion-
controlled kinetics [1–10], transport properties of porous
materials [11,12], and tracer dispersion in global geophysi-
cal systems (atmosphere, ocean, geological media [13,14]).
Recently, these problems have drawn significant attention
in relation to microfluidic devices [15,16,18]. In all these
phenomena the interfacial complexity strongly influences the
dynamics of the Brownian particles and often determines the
overall properties of the diffusive transport in the system.

There is a vast amount of literature devoted to this subject
(see Refs. [1–24], and references therein). The analytical
approaches that are usually employed for these studies share
an overarching mathematical goal, viz., to find a solution of the
underlying diffusion equation in domains with complex (and
often irregular) boundaries. As a result, a number of advanced
analytical methods have been developed to find such solutions.
These methods vary significantly in complexity and fidelity
ranging from simple engineering estimations to accurate
predictions of the high order moments of the first-passage
statistics of diffusive particles [1,2,7,14,15,17,19].

One of the simplest conceivable settings for studying the
effect of surface complexity on diffusion transport is to analyze
particle diffusion in a semi-infinite space lying on a complex
boundary. In this case the boundary is kept at the constant
concentration and the transport is driven by a concentration
gradient imposed far from the boundary (or by the presence
of another surface at which a constant concentration is held;
see below). The aim of this analysis is to find the influence of
surface irregularities on the transport properties of this system.

It is revealing initially to consider the diffusion transport in
a 2D horizontal strip. In complex coordinates z = x + iy this
strip can be defined as 0 < Im(z) < d, where d is the thickness
of strip. In the steady state, the particle concentration obeys
the Laplace equation:

∂2C

∂x2
+ ∂2C

∂y2
= 0. (1)
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If the lower boundary is absorbing and concentration at
the top boundary is kept constant, the boundary condition
can be written in the form C(x,0) = 0,C(x,d) = C0. In this
case the solution of the solution of the Laplace equation is
straightforward, C = (J0/D)y, where D is diffusivity and
J0 = DC0/d is the concentration flux.

Consider gradual deformation of the flat boundary that
transforms it to a rough surface with period W and amplitude H

(Fig. 1). Our ultimate goal is to establish a relationship between
the diffusion flux in this system J and the parameters H

and W . Further simplification (used in the present study) can
be achieved by imposing the limit d → ∞ while keeping J0

constant. This simplification translates the initial settings for
the diffusion in the horizontal strip to the particle diffusion
in the semi-infinite space where a boundary condition is
formulated as a constant gradient of concentration far from
the boundary.

A conventional way to characterize the effect of the surface
irregularities on the diffusion transport is to introduce a
so-called displacement length � [8,9,19,21]. This length is
an offset of the flat absorbing boundary from the initial
position at y = 0 that provides the same concentration flux as
the absorbing boundary with irregularities. For any complex
interface this length completely characterizes the change of
diffusive flux in the system J , since for d � �

J = J0

(1 − �/d)
, (2)

irrespective of the morphology of the interface and possible
nontrivial distribution of concentration due to interface irreg-
ularities. Here J0 is the diffusion flux in the system with plane
boundaries, and the factor 1/(1 − �/d) describes an increase
or decrease of the diffusion flux in the system (depending
on the sign of �). The displacement length � is determined
by purely geometric parameters of the system, � ≡ �(H,W )
and obeys two apparent limiting conditions, �(0,W ) = 0 and
� → H as H → ∞.

It can be seen that in such an approach the problem of
calculation of the modified diffusion flux is translated to a
calculation of the displacement length �. In spite of its clear
definition and a variety of methods for the analytical treatment
of confined diffusion, the problem of calculation of the
displacement length for a given interface is still a challenging
task even for simple geometries (for numerical calculations

1539-3755/2014/90(2)/023202(5) 023202-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.023202


A. SKVORTSOV AND A. WALKER PHYSICAL REVIEW E 90, 023202 (2014)

FIG. 1. Comblike model of a rough absorbing boundary.

see Refs. [8,9,19,21], and references therein). For smooth and
small-amplitude boundary irregularities perturbation methods
usually provide consistent estimations (as a small correction
to the zero-order solution corresponding to the position of
the unperturbed interface) [15,21]. The task of finding the
displacement length becomes more challenging for nonsmooth
boundaries and smooth boundaries with nontrivial morphology
(e.g, trapping zones, profound dead ends, small openings, etc.).

One of the common features of these boundaries is that
they have complex (and even intermittent) distribution of
diffusion fluxes and strongly nonuniform accessibility of the
boundary to the diffusive particles. A transport process near
such boundaries can exhibit a variety of new phenomena
such as distinctive active zones, surface screening, trapping
entrances, etc. [6,8,9,14,19,21]. Consequently, a conventional
perturbation analysis is not applicable to these cases, and any
zero-order approximation for the position of an equivalent
boundary may be completely misleading. This necessitates a
development of some alternative analytical methods for finding
the position of the equivalent smooth boundary (e.g., confor-
mal mapping, mixed boundary conditions) [2,9,14,18,19,22].
A wealth of computational techniques have also been proposed
for numerical simulation of these phenomena [6,8,9].

II. MAIN RESULTS

In this paper we present analytical results for diffusion
transport towards a 2D comblike absorbing boundary (see
Fig. 1), which can be considered as quite a general model
of an extremely rough interface (i.e., when rough interface can
be characterized by two parameters, viz., by its period W and
the amplitude of inhomogeneities H ). As the main result of our
study we deduce that for particles that are released sufficiently
far from this comblike boundary it is equivalent to a flat
absorbing boundary positioned at y = l, where l = H − �,
� = δW and the nondimensional parameter δ is given by the
simple expression

δ = 1

π
ln

[
2

1 + exp(−2πh)

]
, h = H/W. (3)

For h � 1, δ � h, and for h � 1, δ exponentially ap-
proaches to its saturation value δ � (ln 2)/π (see Fig. 2). The
first limit is intuitively clear: in the limit of small irregularities
the absorbing boundary simply works as an unperturbed flat

FIG. 2. Position of the effective boundary: δ = �/H , as function
of the ratio h = H/W . The solid line is the theoretical prediction,
Eq. (3). Symbols (◦) are the results of the Brownian dynamics
simulations. Dashed lines are asymptotic behavior δ = h for h � 1
and δ = (ln 2)/π and for h � 1.

boundary, which coincides with the bottom of the comb
structure. In the opposite limit, h � 1 (i.e., sharp irregularities
of large amplitude), the comblike boundary also behaves like
a flat interface, but now with some offset from its top. This
offset is independent of the amplitude of the boundary spikes
(since particles never reach the bottom of the structure) and is
proportional to the boundary period with a universal prefactor
[which is according to Eq. (3) given by a surprisingly simple
formula δ = (ln 2)/π ]. It is noteworthy that the value of this
prefactor happens to be rather small (≈0.22), and this implies
that in the limit of spiky and dense irregularities most particles
will be trapped near the very top of the comblike structure. In
other words, the expression [(ln 2)/π ]W gives an estimation
for the length-scale of the so-called “active zones” of particle
trapping [24], which can be difficult (or even impossible) to
deduce by other means. Equation (3) provides an insightful
description of the transition from a sparse to dense profile
of the comblike boundary and predicts an associated position
of an equivalent smooth boundary. We argue that this simple
model reveals some universal properties of particle diffusion
and trapping near rough surfaces (see discussion at the end
of the paper). The theoretical conjecture (3) is supported by
Brownian particle simulations.

III. THEORETICAL FRAMEWORK

In order to make analytical progress on the problem of
diffusion transport near a comblike absorbing boundary we
employ the well-known property of conformal invariance of
the underlying Laplace equation and the associated boundary
conditions [2,15,17,25].

In the context of the present study it means that since C =
J0Im(z) is a solution for the half-space, then C = J0Im[ω(z)]
is a solution for the comblike boundary, where Im(·) denotes
the imaginary part of its argument and ω(z) is a conformal
map between the two domains.

Far from the boundary [z � max(H,W )] the effect of
boundary irregularities diminishes, so here we have ω(z) ≈ z.
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The next term in the far field expansion for ω(z) is a constant,
so it can be written in the form ω(z) ≈ (z − z0). This constant
determines the offset l of the “effective” boundary from the
original flat boundary [l = Im(z0)] [9,19]. Indeed, the value of
l is boundary specific since it is determined by the conformal
map ω(z).

Now we derive the specific expression for z0 and � for
a comblike boundary as depicted in Fig. 1. The conformal
map of the half space with the flat boundary in coordinates
z = x + iy to the half space with the comblike boundary
in coordinates ω = u(x,y) + iv(x,y) can be implemented in
three consecutive steps [25]. We exploit the periodicity of
the comblike structure and consider its single period (i.e., a
semi-infinite strip −W � x � 0 and y > 0; see Fig. 1). This
periodicity implies that if we find a conformal transformation
for a single period, then under the same transformation all other
sections will be transformed to their corresponding images
(the symmetry principle [25]). For a single period of the
comb we can introduce reflective boundaries, so that it will
have absorbing boundaries between 0 < y < H and reflective
boundaries H < y < ∞. The reflective boundaries have no
effect on the vertical transport of particles.

The conformal mapping is implemented in three steps. First,
we use a constant scaling ω1(z) = π (z/W ) to ensure that the
boundary has period π . Second, we apply the transformation
ω2(z) = (cos z)/ cosh(πh) that maps the strip into the upper
half-space. The numerical prefactor 1/ cosh(πh) ensures that
the tips of the absorbing boundary maps to the correct
locations at the boundary of the half-space. Finally, we use
map ω3 = arccos[ω2(z)] to transfer the upper half-space back
to a semi-infinite strip −π � x � 0,y > 0 with the vertical
reflective boundaries and absorbing bottom. Combining three
subsequent steps we arrive at solution of the Laplace equation
in the new domain:

C(z) = J0Im[ω(z)], (4)

where ω(z) = arccos[(cos z)/ cosh(πh)].
In line with the above comments the offset from the

original flat boundary l = Im(z0) can easily be derived from
the expansion of C(z) for z → ∞ by applying the identity
arccos z = −i ln(z + i

√
1 − z2) in Eq. (4) and comparing the

limiting behavior of Eq. (4) with the asymptotic expression
C(z) = J0Im(z − z0). Then the relation � = H − l eventually
leads to Eq. (3).

IV. NUMERICAL SIMULATIONS

In order to validate the analytical conjecture (3) we ran
a Monte Carlo particle simulation, based on the numerical
algorithms described in Refs. [6,26] to model the temporal
characteristics of the diffusion process, observing the time
taken for system of Brownian particles to reach the absorbing
boundary. To ensure that the simulation converges, a flat reflec-
tive boundary, parallel to the x axis at y = L � max(W,H ),
was introduced to have convergence of the mean first passage
time of the diffusive particles (since the mean passage time in
the half space is infinite [17]). The periodicity of boundary
on the x axis allows us to introduce additional reflective
boundaries at x = ±W , and we ran simulation for only one
period of the comb structure.

Particles are released from below the upper reflective
boundary, uniformly distributed in the range −π < x < 0.
Results from simulation included the mean first passage time
to the boundary 〈T 〉, its higher statistical moments 〈T n〉, and
the probability distribution function (PDF) of the first passage
time, P (T ). The number of particles in the simulations were
gradually increased until an acceptable bound on the errors of
〈T 〉 was reached. For 106 particles a relative error of estimation
was less than 0.2% at the 95% confidence limit.

To estimate the position of the flat boundary that is
equivalent to the comblike structure we calculate the offset
of the equivalent boundary from the top of the calculation
domain: Leff = √

2D〈T 〉. Then the offset δ entering in Eq. (3)
is related to Leff by the apparent formula δ = Leff − L.

We performed numerical simulations for the different
values of L, and for each L we estimated the equivalent
boundary offset δ. For each realization of the comblike
structure (uniquely defined by parameter h = H/W ) we
calculated the saturation limit δ = (Leff − L)/W as L → ∞
and compared this limit with Eq. (3). We remark that the
very existence of this limit is an indication of the effect of
boundary smoothing. That is, an equivalence exists for the
comblike absorbing interface and the flat boundary. These
results are presented in Fig. 3. We found a consistently accurate
match between the results obtained from Brownian dynamics
simulations and the analytical prediction given by Eq. (3).

The estimation of the effective boundary offset l presented
above involves only the first statistical moment of the particle
trapping time T and does not elaborate on the effect of
fluctuations of T on estimation of the position of the effective
boundary. Evidently, in the case of large fluctuations this
position may not be statistically viable revealing a failure
of the boundary smoothing approach for a given rough
interface. The effect of T fluctuations can be estimated from
more accurate analysis of the trapping time statistics that
would involve the higher order statistical moments. It is also
reasonable to expect that if under some conditions the comblike
structure behaves like a flat absorbing boundary, then the PDF

FIG. 3. Universal PDF of the normalized trapping time of
the Brownian particles in the vicinity of the comblike boundary,
P (ξ ), ξ = T/τd : particle simulations (histogram) and theoretical
predictions given by Eq. (5) for the equivalent flat boundary (dashed
line): h = 0.5.
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of the first passage time of particles in the vicinity of this
structure, P (T ), should resemble that of the particles in the
one-dimensional interval with the absorbing and reflecting
boundaries separated by the distance Leff (provided boundary
smoothing does occur). The similarity between these PDFs
would immediately imply that all statistical moments of the
particle trapping time converge to those for the particles near
the flat boundary and the preceding estimation of � based on
the mean value of T is statistically viable.

An implicit formula for P (T ) for an one-dimensional
interval with absorbing and reflecting boundaries can be easily
written in terms of the inverse Laplace transform of the
well-known expression [17]

P̂ (s) = 1/[cosh(
√

sτd )], τd = L2
eff/D, Leff = L + δ.

(5)

Since τd is the only parameter of this function it leads
to the following conclusions. First, the PDFs derived for all
possible comblike boundaries (with any value of h = H/W )
can be presented in a self-similar form, i.e., in terms of one
nondimensional variable ξ = T/τd and should collapse to a
single universal curve. Second, the the shape of this curve
should be in agreement with the theoretical prediction given
by Eq. (5) irrespective of the value of H/W .

To validate these conjectures we calculated the inverse
Laplace transform of Eq. (5) numerically and then compared
it with the PDFs of the trapping times calculated from
our particle simulations. The results are depicted in Fig. 3.
We observe that the results of particle simulations are in a
reasonable agreement with the analytical predictions given by
Eqs. (3) and (5). This agreement is a convincing argument
for the particle statistics equivalence between the comblike
structure and the flat absorbing boundary positioned at y =
�, although “geometrically” these interfaces look strikingly
different.

V. CONCLUDING REMARKS

To summarize, we have presented an analytical framework
for the first-passage statistics of Brownian particles near a
rough absorbing interface (comblike structure). Our approach
is based on the method of boundary homogenization (or

boundary smoothing) when an equivalent flat boundary is
introduced to maintain the same diffusion flux as to the original
rough boundary. We present an analytical expression for the
position of the equivalent boundary in terms of its period
and amplitude of roughness. Our main result being initially
obtained for the steady state system provides important
insights into the statistical characteristics of diffusion transport
in this case (high order moments of the trapping time statistics).

Although the theoretical results presented above have been
derived for a simplified morphology of a rough boundary
we may expect that some properties of diffusion transport
reported above may be quite generic. We argue that the
statistics of particles trapped by rough absorbing boundaries
with more complex geometric irregularities should resemble
some similarities with the theoretical conjectures deduced for
the comblike boundaries. For instance, similar results should
be valid the for a comb boundary with spikes of nonzero (but
still relatively small) thickness. Moreover, according to Eq. (3)
at the large spikes limit, when h = H/W � 1) particles never
reach the bottom of the structure [since the scale of penetration
length is given by Y � (log 2)W/π � H ], so the specifics of
the boundary profile at a distance greater than � from its top
become irrelevant, and one should recover similar trapping
statistics for all spiky surfaces characterized by similar values
of parameter h. To support this conjecture and provide
specific numerical examples we compare our analytical result
(ln 2)/π ≈ 0.22 and numerical values obtained in Ref. [9] for
the periodic fractal-like interfaces at the limit h � 1: δ = 0.27
(von Koch fractal) and δ = 0.26 (Minkowski fractal). The
analytical result for the absorbing interface composed from the
equilateral triangles δ = 1 − √

3/4 + 3 log(3)/(4π ) ≈ 0.30
[9] is also in reasonable agreement.

In summary, the analytical framework presented in this
study provides a simple, but consistent and rigorous, approach
for the analytical treatment of complex phenomenology of
particle diffusion and absorbtion near complex boundaries.
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