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Energy spectrum of buoyancy-driven turbulence
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Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux �u, we
demonstrate that, for stably stratified flows, the kinetic energy spectrum Eu(k) ∼ k−11/5, the potential energy
spectrum Eθ (k) ∼ k−7/5, and �u(k) ∼ k−4/5 are consistent with the Bolgiano-Obukhov scaling. This scaling
arises due to the conversion of kinetic energy to the potential energy by buoyancy. For weaker buoyancy, this
conversion is weak, hence Eu(k) follows Kolmogorov’s spectrum with a constant energy flux. For Rayleigh-
Bénard convection, we show that the energy supply rate by buoyancy is positive, which leads to an increasing
�u(k) with k, thus ruling out Bolgiano-Obukhov scaling for the convective turbulence. Our numerical results
show that convective turbulence for unit Prandt number exhibits a constant �u(k) and Eu(k) ∼ k−5/3 for a narrow
band of wave numbers.
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I. INTRODUCTION

Buoyancy or density gradients drive flows in the atmosphere
and interiors of planets and stars, as well as in electronic
devices and industrial appliances like heat exchangers, boilers,
and so on. Accordingly, scientists (including geo-, astro-,
atmospheric-, and solar physicists) and engineers have been
studying buoyancy-driven flows for more than a century. An
important unsolved problem in this field is how to quantify the
spectra and fluxes of kinetic energy and entropy or potential
energy (u2/2 and θ2/2, respectively, where u and θ are the
velocity and temperature fluctuations) of buoyancy-driven
flows [1,2]. In this paper, we will study these quantities and
respective nonlinear fluxes using direct numerical simulations
and show that the kinetic energy (KE) spectrum differs from
Kolmogorov’s theory when buoyancy is strong.

Flows driven by buoyancy can be classified in two cate-
gories: (a) convective flows in which hotter and lighter fluid at
the bottom rises, while colder and heavier fluid at the top comes
down, and (b) stably stratified flows in which lighter fluid rests
above heavier fluid. The convective flows are unstable, but the
stably stratified flows are stable, hence their fluctuations vanish
over time. Therefore, a steady state of a stably stratified flow
is achieved only when it is driven by an external force. Even
though both types of flows are driven by density gradients, the
properties of such flows differ substantially, which we decipher
using quantitative analysis of energy flux and energy supply
rate by buoyancy.

For a stably stratified flow, Bolgiano [3] and Obukhov [4]
first proposed a phenomenology according to which the KE
flux �u of a stably stratified flow is depleted at different length
scales due to a conversion of the KE to the potential energy
via buoyancy (uzθ ). As a result, �u(k) decreases with wave
number, and the KE spectrum is steeper than that predicted
by Kolmogorov theory [Eu(k) ∼ k−5/3, where k is the wave
number]; we refer to the above as BO phenomenology or
scaling. According to this phenomenology, for k < kB , where
kB is the Bolgiano wave number [3], the KE spectrum Eu(k),
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entropy spectrum Eθ (k), �u, and entropy flux �θ are as
follows:

Eu(k) = c1(α2g2εθ )2/5k−11/5, (1)

Eθ (k) = c2(αg)−2/5ε
4/5
θ k−7/5, (2)

�θ (k) = εθ = const, (3)

�u(k) = c3(α2g2εθ )3/5k−4/5, (4)

where α, g, and εθ are the thermal expansion coefficient,
acceleration due to gravity, and the entropy dissipation rate,
respectively, and ci’s are constants. For the wave numbers in
the range kB < k < kd , Eu(k),Eθ (k) ∼ k−5/3, and �u ≈ εu,
where εu is the KE dissipation rate, and kd is the wave
number after which dissipation starts. We remark that many
researchers describe the stably stratified flows in terms of
density fluctuation ρ ′, which leads to an equivalent description
since ρ ′ ∝ −θ . In convective turbulence, θ2/2 is referred to as
the entropy, but in stably stratified turbulence, it is called the
potential energy.

Several research groups studied the properties of stably
stratified flows using numerical simulations. Kimura and
Herring [5] observed BO scaling in a narrow band of wave
numbers in their 1283 decaying buoyancy-dominated simula-
tion. In 2012, using 10243 simulations, Kimura and Herring [6]
showed that waves and vortex exhibit k−5/3 energy spectra at
large wave numbers, but for sufficiently strong stratification,
the corresponding spectra are k−2

⊥ and k−3
⊥ , respectively, at

small wave numbers.
The terrestrial atmosphere exhibits k−3 energy spectrum

for k < 1/500 km−1 and k−5/3 spectrum for k > 1/500 km−1.
Lindborg [7,8] and Brethouwer et al. [9] attempted to explain
this observation by studying quasi-two-dimensional stratified
flow (horizontal distance � vertical distance). They performed
a series of periodic box simulations and showed that the
horizontal kinetic and potential energy spectra follow k

−5/3
⊥

scaling, while the kinetic energy spectrum of the vertical
velocity and the potential energy spectrum follow k−3

‖ scaling.
Vallgren et al. [10] and Bartello and Tobias [11] observed
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similar scaling in their numerical simulations. It is important
to note that all these work are under the regime of strong
stratification.

Using theoretical arguments, Procaccia and Zeitak [12],
L’vov [13], L’vov and Falkovich [14], and Rubinstein [15]
proposed that the BO scaling would also be applicable
to Rayleigh-Bénard convection (RBC). The numerical and
experimental results of RBC, however, have been largely
inconclusive. Based on simulations with periodic boundary
conditions, Borue and Orszag [16] and Škandera et al.
[17] reported Kolmogorov-Obukhov (KO) scaling, in which
�u ≈ const and Eu(k),Eθ (k) ∼ k−5/3. Mishra and Verma [18]
reported the KO scaling for zero- and low-Prandtl-number
flows. Using numerical simulations, Verzicco and Camussi
[19,20], however, reported the BO scaling for the frequency
spectrum, which was computed using the data collected by real
space probes. Calzavarini et al. [21] reported the BO scaling
in the boundary layer and the KO scaling in the bulk. The
experimental results [22–30] are more divergent with some
reporting the BO scaling and some others reporting the KO
scaling.

In this paper we simulate the stably stratified and RBC
turbulence and analyze the spectra and fluxes of the KE as
well as the entropy (or potential energy). We show that for
the stratified flow, the KE flux and spectrum follow the BO
scaling [Eqs. (1)–(4)] when buoyancy is strong, but they follow
the KO scaling for weak buoyancy. The KE flux in RBC,
however, increases at small wave numbers, but remains flat for
a narrow wave-number band in the intermediate regime where
the energy spectrum follows the KO scaling.

The outline of the paper is as follows. In Sec. II, we describe
the parameters and equations used, as well as our assumptions.
In Sec. III, we discuss the numerical method of our simulations.
Results of our numerical simulations are discussed in Sec. IV.
We present our conclusions in Sec. V.

II. ENERGY FLUX AND SPECTRUM IN
BUOYANCY-DRIVEN FLOWS

A. Governing equations and assumptions

The dynamical equations that describe the buoyancy-driven
flows under the Boussinesq approximation are

∂u
∂t

+ (u · ∇)u = −∇σ

ρ0
+ αgθẑ + ν∇2u + fu, (5)

∂θ

∂t
+ (u · ∇)θ = S




d
uz + κ∇2θ, (6)

∇ · u = 0, (7)

where u is the velocity field; θ and σ are the temperature
and pressure fluctuations, respectively, with reference to the
conduction state; ẑ is the buoyancy direction; fu is the external
force field; 
 is the temperature difference between two
layers kept apart by a vertical distance d; and ρ0, ν, and κ

are the fluid’s mean density, kinematic viscosity, and thermal
diffusivity, respectively. For RBC, the temperature of the top
plate is lower than that of bottom one, hence S = +1, but
for the stably stratified flows, the gradient is opposite, i.e.,
S = −1.

It is easy to verify that Eqs. (5) and (6) conserve the volume
integral

∫
(u2 − Sαgdθ2/
)dx in the limit when ν = κ = 0

and fu = 0. When S = −1 (stably stratified case), the above
integral is

∫
(u2 + αgdθ2/
)dx. When we make an analogy

of gravity waves with a spring-mass system, the θ2 term is
analogous to the potential energy of the spring. This is the
reason why θ2/2 is called the potential energy in the stably
stratified flow. This analogy breaks down for RBC, where∫

(u2 − αgdθ2/
)dx is conserved; here θ2/2 is called entropy.
Note that θ2/2 is not the thermodynamic entropy that quantifies
the randomness at the microscopic scales.

For RBC, the temperature gradient provides energy to
the system, and a steady state is reached after some time
(approximately after a thermal diffusive time); for such flows
we can take fu = 0. However, stably stratified flows are stable,
and the fluctuations die out if fu = 0. Therefore, for obtaining a
steady state in a stably stratified flow, we force the flow at small
wave numbers with random forcing prescribed by Kimura and
Herring [6].

In this paper, we contrast the scaling relations of stably
stratified flow and RBC in a single formalism. For the same,
we use temperature fluctuations θ as a variable. However, this
scheme is equivalent to usage of ρ ′, the density fluctuations
from the linear density profile ρ̄; the variable ρ ′ is often used
for stably stratified flows. We can rewrite Eqs. (5)–(7) in terms
of ρ ′ using the following relations:

ρ ′

ρ0
= −αθ ;

dρ̄

dz
= −ρ0α


d
, (8)

thus, the two sets of equations are equivalent.
It is convenient to work with nondimensionalized equations,

which is achieved by using d as the length scale,
√

αg
d as
the velocity scale, and 
 as the temperature scale. Therefore,
u = u′√αg
d , θ = θ ′
, x = x′d, and t = (d/

√
αg
d)t ′,

where primed variables represent their nondimensionalized
counterparts. When we use the density gradient dρ̄/dz,
the velocity scale is d

√
g(dρ̄/dz)/ρ0, and the time scale

is 1/
√

g(dρ̄/dz)/ρ0. In terms of the nondimensionalized
variables, the equations are

∂u′

∂t ′
+ (u′ · ∇′)u′ = −∇′σ ′ + θ ′ẑ +

√
Pr

Ra
∇′2u′ + f′u, (9)

∂θ ′

∂t ′
+ (u′ · ∇′)θ ′ = Su′

z + 1√
RaPr

∇′2θ ′, (10)

∇′ · u′ = 0, (11)

where the Prandtl number is defined as

Pr = ν

κ
(12)

and the Rayleigh number is defined as

Ra1 = αg
d3

νκ
; Ra2 = d4g

νκρ0

∣∣∣∣dρ̄

dz

∣∣∣∣ = N2d4

νκ
, (13)

where Ra1 is the usual definition taken from RBC, but Ra2, a
modified form of Ra1, is in terms of density gradient.

023016-2



ENERGY SPECTRUM OF BUOYANCY-DRIVEN TURBULENCE PHYSICAL REVIEW E 90, 023016 (2014)

The Brunt Väisälä frequency, defined as

N =
√

g

ρ0

∣∣∣∣dρ̄

dz

∣∣∣∣, (14)

is the frequency of the gravity waves in a stably stratified
flow in the linearized limit. It is important to note that larger
Ra2 or N implies stronger stability for a stably stratified flow,
but larger Ra1 implies stronger instability for RBC. Also, it
has been shown that the “available potential energy” (APE),∫

(ρ ′gz)dx, matches with
∫

(ρ0b
′2/2)dx, where b′ = ρ ′g/ρ0N

[31,32].
The other important nondimensional numbers are as fol-

lows. The Reynolds number is defined as

Re = urmsd

ν
= u′

rmsd
2√g(dρ̄/dz)/ρ0

ν
, (15)

= u′
rmsNd2

ν
= u′

rms

√
Ra

Pr
, (16)

where urms is the rms velocity of the flow, computed as the
volume average of the magnitude of the velocity field, and
u′

rms is the corresponding quantity in dimensionless form. The
Richardson number, which is a ratio of the buoyancy and the
nonlinear term (u · ∇)u, is defined as

Ri = αg
d

u2
rms

= 1

u
′2
rms

. (17)

The Froude number, Fr, which is the ratio of the characteristic
fluid velocity and gravitational wave velocity, is defined as

Fr = urms

dN
= u′

rms

√
gd2(dρ̄/dz)/ρ0

d
√

(g/ρ0)dρ̄/dz
= u′

rms. (18)

Thus, the Froude number is the rms velocity of the fluid
in the dimensionless form. Note that the Froude number is
meaningful only for stably stratified flows. Also, small Fr
implies strongly stratified flow, while strong Ri indicates strong
buoyancy. Note that in a later discussion we will focus on
Eqs. (9)–(11). For convenience, we drop the primes from the
variables in our subsequent discussions.

In some of the earlier studies on strongly stratified flows,
e.g., Lindborg [7,8], Brethouwer et al. [9], and Bartello and
Tobias [11], the equations have been written for horizontal and
vertical components of the velocity field in terms of the Froude
number and Reynolds number (see Appendix A). However, we
use Eqs. (9)–(11) for our analysis since they help us contrast
the stably stratified flows and the RBC in a single formalism.
In the following we contrast our assumptions and equations
with those used for strongly stratified flows (see Appendix A):

(a) A large number of earlier work, e.g., that of Lindborg
[7,8], Brethouwer et al. [9], and Bartello and Tobias [11],
focuses on strongly stratified flows. A signature of such flows
is that their Froude number is much less than unity. Our focus is
on moderately stratified flows, which is achieved by setting the
Froude number to unity or higher or u′

rms � 1 [see Eq. (18)].
However, Ri � 1 for such flows [see Eq. (17)]. In Sec. IV A we
will show that, for Ri = O(1), a buoyancy-dominated flow, we
obtain the BO scaling. However for Ri � 1, a weakly buoyant

flow, we obtain the KO scaling since the nonlinearity is weak
for these cases.

(b) The strongly stratified flows (Fr � 1) are quasi-two-
dimensional and strongly anisotropic, hence they are simulated
in a box with Lz � Lx,Ly (here Lx,Ly,Lz are the lengths
of the box along the x, y, and z directions, respectively)
[7–9,11]. These flows are expected to model the atmosphere
of the Earth. Our flows, however, are three dimensional
and weakly anisotropic since Fr � 1. Therefore, we simulate
the flows in geometries where Lx ≈ Ly ≈ Lz. The latter
configurations are suitable for testing Bolgiano-Obukhov
scaling, which is formulated as an isotropic spectrum.

(c) For the nondimensionalized Eqs. (9)–(11), the Brunt-
Väisälä frequency N is unity, implying that the time scale of
the gravity waves is of the same order as the eddy turnover
time of the large eddies.

(d) Our flows are turbulent, i.e., Re � 1.
(e) A large number of stably stratified flow simulations

(e.g., Lindborg [7,8], Brethouwer et al. [9], Vallgren et al.
[10], Kimura and Herring [6], and Bartello and Tobias [11])
employ periodic boundary condition; this is to simulate the
bulk flow away from the boundaries. Also, the Bolgiano and
Obukhov scaling, as well as Kolmogorov phenomenology, are
strictly applicable for homogeneous and isotropic turbulence,
for which a periodic box is a good geometrical configuration.
Keeping these aspects in mind, we employ the periodic
boundary condition for simulating stably stratified flows.

Boundary walls and thermal plates play an important role
in the flow dynamics of RBC. In our present study, at the top
and bottom plates, we employ the free-slip boundary condition
for the velocity field, and the conducting boundary condition
for the temperature field. We apply the periodic boundary
condition at the side walls.

We simulate the stably stratified flow and RBC by solving
Eqs. (9)–(11) numerically for the aforementioned boundary
conditions. After that we study the kinetic energy spectrum and
flux, as well as other diagnostics tools like energy supply rate
by buoyancy; we will discuss these tools in the next section.

B. Energy flux and other diagnostics

In Fourier space, the equation for the kinetic energy is
derived using Eq. (9) as [13,33,34]

∂Eu(k)

∂t
= Tu(k) + F (k) − D(k), (19)

where Eu(k) is the kinetic energy of the wave-number shell
of radius k, Tu(k) is the energy transfer rate to the shell k due
to nonlinear interactions, and F (k) is the total energy supply
rate to the shell from the forcing functions, both buoyancy and
external forcing fu,

F (k) =
∑
|k|=k

Re(〈uz(k)θ∗(k)〉) +
∑
|k|=k

Re(〈u(k) · f∗(k)〉),

(20)

where the first term is due to buoyancy, while the second term is
due to the external random forcing. The term D(k) of Eq. (19)
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is the viscous dissipation rate and is given by

D(k) =
∑
|k|=k

2

√
Pr

Ra
k2Eu(k), (21)

which is always positive.
The nonlinear interaction term Tu(k) is related to the kinetic

energy flux �u(k) as

�u(k) = −
∫ k

0
Tu(k) dk, (22)

which is computed using the following formula [35]:

�u(k0) =
∑
k�k0

∑
p<k0

δk,p+qIm([k · u(q)][u∗(k) · u(p)]). (23)

The energy flux �u(k0) is interpreted as the kinetic energy
leaving a wave number sphere of radius k0.

Using Eqs. (19) and (22), we deduce that

d

dk
�u(k) = −Tu(k) = −∂Eu(k)

∂t
+ F (k) − D(k). (24)

Under a steady state [∂Eu(k)/∂t = 0], we obtain

d

dk
�u(k) = F (k) − D(k) (25)

or

�u(k + 
k) = �u(k) + [F (k) − D(k)]
k. (26)

Equation (26) is obvious, but it provides us important clues on
the energy spectrum and flux of the buoyancy-driven flows.
Here we list three possibilities for the inertial range (kf <

k < kd ), where kf is the forcing wave number and kd is the
dissipation wave number:

(1) For the inertial range of fluid turbulence, F (k) = 0 and
D(k) → 0, hence �u(k + 
k) ≈ �u(k) and Eu(k) ∼ k−5/3,
which is the prediction of Kolmogorov’s theory.

(2) For the stably stratified flows [S = −1 in Eq. (10)], as
argued by Bolgiano and Obukhov, the buoyancy converts the
kinetic energy of the flow to the potential energy, i.e., F (k) =
Re(〈uz(k)θ∗(k)〉) < 0 for kf < k < kB . Therefore, Eq. (26)
predicts that �u(k) will decrease with k in this wave-number
range, as shown in Fig. 1(a). In the wave-number range kB <

k < kd , buoyancy becomes weaker, hence �u(k) ∼ const, and
Kolmogorov’s spectrum is expected. In the present paper, using
numerical simulation, we demonstrate BO scaling in the kf <

k < kB regime; the demonstration of Eu(k) ∼ k−5/3 for kB <

k < kd requires a larger resolution than that used in this paper.
(3) For RBC [S = 1 in Eq. (10)], buoyancy feeds energy

to the kinetic energy, hence F (k) = Re(〈uz(k)θ∗(k)〉) > 0.
Therefore, the sign of d�u(k)/dk depends crucially on D(k).
First, for k < kt , d�u(k)/dk > 0 since F (k) > D(k), then for
the intermediate wave numbers kt < k < kd , where F (k) ≈
D(k), we expect d�u(k)/dk ≈ 0. Finally, in the dissipative
range (k > kd ), d�u(k)/dk < 0 since F (k) < D(k). Here kt is
the transition wave number shown in Fig. 1(b). Consequently,
as shown in Fig. 1(b), the flux �u(k) first increases, then
flattens, and, finally, decreases, in the three wave-number
bands discussed above. In the intermediate band, kt < k < kd ,

FIG. 1. (Color online) Schematic diagrams of energy flux �u(k):
(a) In a stably stratified flow, �u(k) decreases with k due to a
negative energy supply rate Re(〈uz(k)θ∗(k)〉). (b) In Rayleigh-Bénard
convection, Re(〈uz(k)θ∗(k)〉) > 0, hence �u(k) first increases for
k < kt , where F (k) > D(k), then �u(k) ≈ const kt < k < kd , where
F (k) ≈ D(k); �u(k) decreases for k > kd where F (k) < D(k).

we observe Kolmogorov’s k−5/3 spectrum due to a constant
KE flux.

Since the flux does not decrease due to buoyancy [see
Eq. (4)], the BO scaling is not applicable to RBC turbulence,
contrary to the predictions by Procaccia and Zeitak [12], L’vov
[13], L’vov and Falkovich [14], and Rubinstein [15].

There is another useful flux called the entropy (potential
energy) flux �θ , which is defined as

�θ (k0) =
∑
k�k0

∑
p<k0

δk,p+qIm([k · u(q)][θ∗(k) · θ (p)]). (27)

Both the KO and BO phenomenologies predict a constant �θ .
In this paper we simulate stably stratified flows and RBC

and compute the spectra and fluxes of the kinetic energy and
entropy (potential energy). We also compute F (k), D(k), and
d�u(k)/dk and show that our results are in good agreement
with the arguments of items (2) and (3) discussed above. For
stably stratified flows, the BO scaling is observed when Ri =
O(1), but the Kolmogorov scaling Eu(k) ∼ k−5/3 is observed
when Ri � 1 or when buoyancy is negligible. RBC flows,
however, exhibit the Kolmogorov scaling Eu(k) ∼ k−5/3 for a
narrow band of wave numbers.

III. SIMULATION METHOD

We perform direct numerical simulation of stably stratified
flows and RBC in a three-dimensional box by solving Eqs. (9)–
(11) using pseudospectral code Tarang [36]. We employ the
fourth-order Runge-Kutta (RK4) method for time stepping,
the Courant-Freidricks-Lewey (CFL) condition for computing
time step 
t , and the 3/2 rule for dealiasing.

For the stratified flows, we employ the periodic boundary
conditions on all sides of a cubic box of size (2π )3. To obtain a
steady turbulent flow, we apply a random force to the flow in the
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TABLE I. Parameters of our numerical simulations for stably stratified flow (first three rows) and Rayleigh-Bénard convection (the last
row): grid size; Richardson number Ri; Rayleigh number Ra; Reynolds number Re; Froude number Fr; kinetic energy dissipation rate εu;
entropy or potential energy dissipation rate εθ ; anisotropy ratio E⊥/2E‖, where E⊥ = (u2

x + u2
y)/2 and E‖ = u2

z/2; kmaxη, where η is the
Kolmogorov length; Bolgiano wave number kB ; and averaged 
t . We chose Pr = 1 for all the runs.

Grid Ri Ra Re Fr εu εθ E⊥/2E‖ kmaxη kB 
t

5123 0.5 1 × 105 467 1.4 0.47 60.7 1.2 4.2 6.0 2.5 × 10−5

10243 0.01 5 × 103 649 10 114 150 1.0 6.4 8.5 3.5 × 10−6

5123 4 × 10−7 0.1 510 1.5 × 103 6.7 × 108 141 1.0 3.8 <1 2.6 × 10−6

5123 16 107 790 NA 8.8 × 10−3 1.0 × 10−3 0.41 2.6 NA 6.2 × 10−4

band 2 � k � 4 using the scheme of Kimura and Herring [6].
The parameters chosen for our simulations are Pr = 1.0 (close
to that of air) and Richardson numbers Ri = 4 × 10−7,0.01,
and 0.5. The grid resolution for Ri = 0.01 is 10243, which is
one of the largest grids for such simulations. The resolutions
for Ri = 4 × 10−7 and 0.5 are 5123 grids. The parameters of
our runs are listed in Table I. All our simulations are fully
resolved since kmaxη > 1, where kmax is the maximum wave
number of the run and η is the Kolmogorov length scale.

We simulate RBC of a fluid in a unit box with 5123 grid. The
parameters of the simulation are Pr = 1 and Rayleigh number
Ra = 107. For the horizontal plates, we employ a free-slip
boundary condition for the velocity field and a conducting
boundary condition, i.e., θ = 0, for the temperature field. For
the vertical walls, we apply a periodic boundary condition for
both fields. Simulation details of RBC simulation are listed at
the bottom of Table I.

In the next section we will compute the the spectra and
fluxes of the kinetic energy as well as that of entropy or
potential energy.

IV. NUMERICAL RESULTS

We compute the the spectra and fluxes of the kinetic energy
as well as that of entropy (potential energy) using the steady-
state data. We will also compute F (k),D(k), and d�u(k)/dk

for the flows. These results will be discussed below.

A. Stably stratified flow

First, we simulate stably stratified flows for Pr = 1 and Ri =
0.01 on a 10243 grid and compute the spectrum and flux using
the steady-state data. Figure 2(a) illustrates the normalized
KE spectra, Eu(k)k11/5 for the BO scaling and Eu(k)k5/3 for
the KO scaling. The numerical data fit with the BO scaling
quite well for approximately a decade, thus confirming the
phenomenology of Bolgiano and Obukhov. The normalized
potential energy spectra, Eθ (k)k7/5 (BO scaling) and Eθ (k)k5/3

(KO scaling), illustrated in Fig. 2(b), also shows that the BO
scaling is preferred for Ri = 0.01 stably stratified flow.

We cross-check our spectrum results with the KE and
potential energy fluxes, which are plotted in Fig. 3. Clearly, the
KE flux, �u(k), is positive, and it decreases with k. However
�u(k)k4/5 is almost flat, thus �u(k) ∝ k−4/5, the same as
Eq. (4). We also observe that �θ is a constant in the inertial
range [Eq. (3)]; thus flux results are consistent with the BO
predictions.

We also compute the Bolgiano wave number kB [3] using
the numerical data and find that kB ≈ 8.5. Our plots on

spectra and fluxes show that kB ≈ 8.5 is only 3 to 4 times
smaller than kd , the wave number where the dissipation range
starts. Therefore a clear-cut crossover from k−11/5 to k−5/3

is not observed in our simulations. We are in the process of
performing simulations on even higher resolution to probe the
dual spectrum (k−11/5 and k−5/3).

We also compute energy supply rate by buoyancy, F (k) =
Re(〈uz(k)θ∗(k)〉), D(k), and d�u(k)/dk using the numerical
data and plot them in Fig. 4. The figure illustrates that
F (k) < 0, as argued in item (2) of Sec. II. The negative
F (k) implies that �u(k) decreases with k even without D(k),
which is a crucial ingredient for the BO scaling. Note that the
kinetic energy flux is depleted by both F (k) and D(k), and
they satisfy the relation of Eq. (25). Interestingly, for small
k, d�u(k)/dk ∼ k−9/5 (the thickest line of Fig. 4), consistent
with �u(k) ∼ k−4/5.

FIG. 2. (Color online) For stably stratified simulation with Pr =
1 and Ri = 0.01, plots of (a) normalized KE and (b) potential energy
spectra for BO and KO scaling. BO scaling fits with the data better
than KO scaling.
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FIG. 3. (Color online) For stably stratified simulation with Pr =
1 and Ri = 0.01, plots of KE flux �u(k), normalized KE flux
�u(k)k4/5, and potential energy flux �θ (k).

We also performed 5123 grid simulations for Ri = 0.5 and
4 × 10−7 with Pr = 1. The normalized KE spectra for these
two cases are exhibited in Figs. 5(a) and 5(b), respectively.
Our results show that BO scaling is valid for Ri = 0.5, but KO
scaling [with a constant �u(k)] is valid for Ri = 4 × 10−7,
which is as expected since buoyancy is significant only for
moderate and large Ri’s.

We compute F (k), D(k), and d�u(k)/dk for Ri = 0.5 and
4 × 10−7 and plot them in Figs. 6(a) and 6(b), respectively. In
the inertial range, F (k) < 0 for both cases, just like Ri = 0.01.
The behavior of F (k), D(k), and d�u(k)/dk for Ri = 0.5 is
very similar to that of Ri = 0.01, except that F (k) for Ri = 0.5
is a bit smaller than that for Ri = 0.01. For Ri = 4 × 10−7,
buoyancy is weak, hence F (k) is much smaller than that for
Ri = 0.01, which leads to an approximately constant �u(k),
and Kolmogorov’s spectrum for the kinetic energy.

Recall that we employ the periodic boundary condition
for the stably stratified flows in the vertical direction, thus
eliminating the effects of boundary walls. In Fig. 7 we
plot the plane-averaged (over xy plane) mean temperature
profile T̄ (z) = 〈T (x,y,z)〉xy . Since T̄ (z) is linear, a constant
temperature gradient dT̄ /dz (hence buoyancy) acts in the
whole box. Therefore, BO scaling is expected everywhere.
It is important to contrast the above profile with that for

FIG. 4. (Color online) For stably stratified simulation with
Pr = 1 and Ri = 0.01, plots of −F (k),D(k),[−F (k) + D(k)],
−d�u(k)/dk, and k−9/5 line to match with −d�u(k)/dk in the
small-k regime.

FIG. 5. (Color online) For stably stratified simulation with Pr =
1, and (a) Ri = 0.5 and (b) Ri = 4 × 10−7, the plots of normalized
KE spectra for BO scaling and KO scaling.

Rayleigh-Bénard convection in which most of the temperature
drop takes place in the narrow thermal boundary layers at the
plates [19,37], while the bulk flow has dT̄ /dz ≈ 0. Thus we
expect BO scaling in the boundary layers and KO scaling in
the bulk, as reported by Calzavarini et al. [21].

In the next subsection we will discuss the results of
Rayleigh-Bénard convection.

B. Rayleigh-Bénard convection

Borue and Orszag [16] and Skandera et al. [17] simulated
RBC flow under the periodic boundary condition. They
observed KO scaling for both velocity and temperature fields,
consistent with the arguments presented in Sec. II. A shell
model approximates the turbulence in a periodic box quite
well; a recent shell model of RBC flow [38] also yields KO
scaling, consistent with the numerical results of Borue and
Orszag [16] and Skandera et al. [17]. In a typical RBC flow,
however, a fluid is confined between two horizontal conducting
plates that are maintained at constant temperatures, with the
bottom plate hotter than the top one. Earlier, Mishra and Verma
[18] showed that zero- and small-Prandtl-number RBC exhibit
Kolmgorov’s spectrum for the kinetic energy, but their results
were inconclusive for moderate-Prandtl-number RBC. In this
subsection, we will investigate this issue for Pr = 1.

To explore which of the two scaling (KO or BO) is
applicable for RBC turbulence with plates, we perform RBC
simulations for Pr = 1 and Ra = 107 and compute the spectra
and fluxes of the KE as well as the entropy for the steady-state

023016-6



ENERGY SPECTRUM OF BUOYANCY-DRIVEN TURBULENCE PHYSICAL REVIEW E 90, 023016 (2014)

FIG. 6. (Color online) For stably stratified simulation with Pr =
1, plots of −F (k),D(k),[−F (k) + D(k)], −d�u(k)/dk, and k−9/5

line to match with −d�u(k)/dk in the small-k regime. We follow
the same convention as Fig. 4. (a) For Ri = 0.5, the negative F (k) is
shown as the chained red curve, and positive F (k) for large k is shown
as the solid red curve. (b) For Ri = 4 × 10−7, F (k) is multiplied by
105 to fit in the same range.

data. In Fig. 8(a), we plot the normalized KE spectra for the BO
and the KO scaling. The plots indicate that the KO scaling fits

FIG. 7. (Color online) For stably stratified simulation with Pr =
1 and Ri = 0.01, the vertical variation of horizontally averaged mean
temperature T̄ (z) = 〈T (x,y,z)〉xy .

FIG. 8. (Color online) For RBC simulation with Pr = 1 and
Ra = 107, (a) plots of normalized KE spectra for BO and KO scaling;
KO scaling fits with the data better than BO scaling. (b) KE flux �u(k)
and entropy flux �θ (k). The shaded region shows the inertial range.

better than the BO scaling for a narrow band of wave numbers
(the shaded region, 15 < k < 40).

We plot the KE and entropy fluxes in Fig. 8(b). We also plot
a zoomed view of the energy flux in Fig. 9, according to which
the KE flux increases to k = 22 and then starts to decrease. In
the logarithmic scale, the KE flux is an approximate constant
for the wave numbers 15 < k < 40, a band where Eu(k) ∼
k−5/3. Thus we claim that convective turbulence exhibits
Kolmogorov’s power law for a narrow band of wave numbers.
Interestingly, the energy spectrum of RBC exhibits stronger
fluctuations than that of stably stratified turbulence; this feature
is possibly due to the “plumes” emanating from the plates. This

FIG. 9. (Color online) For RBC simulation with Pr = 1 and
Ra = 107, plots of �u(k), F (k), and D(k) for 10 � k � 50.
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FIG. 10. (Color online) For RBC simulation with Pr = 1 and
Ra = 107, plots of F (k), −D(k), F (k) − D(k), and d�u(k)/dk.
d�u(k)/dk > 0 for k < 22, but d�u(k)/dk < 0 for k > 22.

feature as well as a larger range of wave numbers exhibiting
KO scaling may be visible in a large-resolution simulation,
which is planned as a future study.

Further investigations of F (k), �u(k), and d�u(k)/dk

provide stronger evidence for the KO scaling in RBC. We
plot these quantities in Figs. 9 and 10, according to which
F (k) > 0, consistent with the discussion of Sec. II and
Fig. 1(b). In addition, for the wave-number band 7 < k < 22,
F (k) > D(k), hence, according to Eq. (25), d�u(k)/dk > 0.
Therefore, �u(k) increases in this band of wave numbers, as
illustrated in Fig. 9. But for k > 22, we find that D(k) > F (k)
leading to d�u(k)/dk < 0; therefore, �u(k) decreases with
k for this range of k. However, for a narrow band of wave
numbers 15 < k < 40, F (k) ≈ D(k), hence d�u(k)/dk ≈ 0
or �u(k) ≈ const. For 15 < k < 40, a constancy of �u(k)
yields Eu(k) ∼ k−5/3, consistent with the energy spectrum
plots of Fig. 8. Note that many simulations, including Mishra
and Verma [18], reported that �u(k) ∼ k−4/5 for moderate Pr,
but the decrease of �u(k) in their work is essentially due to
D(k) and not to buoyancy.

Thus, the flux and energy supply due to buoyancy reveal
that convective turbulence follows KO scaling, at least for a
narrow range of wave numbers. The BO scaling is ruled out
for RBC since F (k) > 0.

FIG. 11. (Color online) For RBC simulation with Pr = 1 and
Ra = 107, plots of the entropy spectrum that exhibits a dual branch.
The upper branch matches with k−2 quite well, while the lower part
is fluctuating.

The entropy (θ2/2) is a useful quantity in RBC. The entropy
flux, illustrated in Fig. 8(b), is constant for the narrow inertial
range (15 < k < 40). In Fig. 11, we plot the entropy spectrum
that exhibits a dual branch, with the upper branch scaling as
k−2. Mishra and Verma [18] and Pandey et al. [39] showed
that the dominant temperature modes θ (0,0,2n), which are
approximately −1/(2nπ ) where n is an integer, constitute
the k−2 branch of the entropy spectrum. They showed that
θ (0,0,2n) modes are responsible for the steep temperature
variations in the thermal boundary layers of the plates.
Interestingly, the temperature modes in both the branches of
the entropy spectrum participate to yield a constant entropy
flux in the inertial range.

V. CONCLUSIONS

We performed large resolution simulations of stably strat-
ified flows and Rayleigh-Bénard convection and studied the
spectra and fluxes of the kinetic energy and entropy (or
potential energy). We also compute the energy supply rate due
to buoyancy that provide important clues on the underlying
turbulence phenomena.

For stably stratified turbulence, we show that the kinetic
energy spectrum Eu(k) ∼ k−11/5, the energy flux �u(k) ∼
k−4/5, the potential energy spectrum Eθ (k) ∼ k−7/5, and the
potential energy flux �θ (k) ∼ const are in agreement with the
prediction of Bolgiano and Obukhov, referred to as BO scaling.
We also compute the energy supply rate by buoyancy and find
that to be negative, signaling the buoyancy-induced conversion
of the kinetic energy to the potential energy.

For the Rayleigh-Bénard convection, the energy supply
rate due to buoyancy, F (k), is positive. Hence the kinetic
energy flux �u(k) first increases with k and then flattens for a
narrow band of wave numbers and, finally, decreases with k;
the three regimes correspond to F (k) > D(k), F (k) ≈ D(k),
and F (k) < D(k), respectively, where D(k) is the dissipation
spectrum. We observe Kolmogorov’s spectrum (k−5/3) for
wave numbers where F (k) ≈ D(k) or �u(k) ≈ const. Thus,
a detailed investigation of the kinetic energy flux, the energy
supply due to buoyancy, and the dissipation spectrum provide
valuable inputs that rule out BO scaling for RBC, contrary to
the predictions of Procaccia and Zeitak [12], L’vov [13], L’vov
and Falkovich [14], and Rubinstein [15]. The entropy flux for
RBC is constant in the inertial range, but the entropy spectrum
exhibits a dual branch, whose origin is related to the thermal
boundary layer.

In summary, stably stratified flows exhibit BO scaling in the
buoyancy-dominated regime. Turbulent convection, however,
exhibits Kolmogorov’s spectrum rather than the BO spectrum.
A recent shell model of buoyancy-driven flows [38] shows
similar results. More work, especially very large resolution
simulations, are required to explore the dual spectra predicted
by Bolgiano and Obukhov.
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APPENDIX: SCALING OF THE EQUATIONS

Many researchers, e.g., Refs. [8,9], have nondimension-
alized Eqs. (5)–(7) as the following. They choose the char-
acteristic horizontal velocity U⊥ as the horizontal velocity
scale, the horizontal length l⊥, and the vertical height l‖ as the
horizontal and vertical length scales, respectively, l⊥/U⊥ as
the time scale, U⊥Fr2

⊥/α as the vertical velocity scale where
α = l‖/l⊥ is the aspect ratio, and U 2

⊥ρ0/(gl‖) as the density
scale. In terms of nondimensional variables, the equations are

D1u⊥ = −∇⊥σ + 1

Re
D2u⊥, (A1)

Fr2
⊥D1u‖ = −∂σ

∂z
− ρ + Fr2

⊥
Re

D2u‖, (A2)

D1ρ = uz + 1

RePr
D2ρ, (A3)

∇⊥ · u⊥ = −Fr2
⊥

α2

∂u‖
∂z

, (A4)

where

D1 = ∂

∂t
+ (u⊥ · ∇⊥) + Fr2

⊥
α2

uz

∂

∂z
, (A5)

D2 = 1

α2

∂2

∂z2
+ ∇2

⊥. (A6)

Here Fr⊥ = U⊥/(l⊥N) is the horizontal Froude number, and
N = √

(g/ρ0)|dρ̄/dz| is the Brunt-Väisälä frequency.
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