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Thermocapillary-actuated contact-line motion of immiscible binary fluids over substrates
with patterned wettability in narrow confinement
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We investigate thermocapillary-driven contact-line dynamics of two immiscible fluids in a narrow fluidic
confinement comprising substrates with patterned wettability variations. Our study, based on phase field
formalism, demonstrates that the velocity of the contact line is a strong function of the combined consequences
of the applied thermal gradient and the substrate wetting characteristics. Finally, we evaluate different energy
transfer rates and show that the dissipation due to fluid slip over the solid surface plays a dominating role in
transferring energy into the contact-line motion. Our analysis, in effect, provides an elegant way of controlling
the capillary filling rate in a narrow fluidic confinement by tailoring the applied temperature gradient and the
substrate wettability in tandem.
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I. INTRODUCTION

Flows of binary fluid systems over solid surfaces are
omnipresent in many natural phenomena and in many en-
gineering processes such as inkjet printing, coating of solids
with liquid films, polymers processing, enhanced oil recovery,
textile manufacturing, and fabrication of photographic films
and disk drives, to name a few [1–5]. The ubiquities of the
contact-line motion, relevant to many applications of these
types, have attracted several researchers to concentrate on
the underlying dynamical interactions over interfacial scales
[5–9]. Furthermore, in recent years, the growing demand
of miniaturization has necessitated the transport of small
volumes of fluids in different physical processes, particularly,
in chip cooling systems, on-chip biomedical analysis, drug
delivery, and space technology. Systematic interrogation of the
transport processes through microfluidic systems, therefore, is
essential to unveil the underlying flow physics, which leads
to far ranging consequences as far as the effectiveness of
those devices and systems is concerned. In these miniaturized
platforms, progressively new research issues have emerged
all over the globe, including nontrivialities on contact-line
dynamics over miniaturized scales [4,10–14].

Contact-line dynamics of immiscible binary fluids over
microfluidic substrates has most commonly been studied under
pressure-driven flow conditions [11,13,15–20]. However, of
late, there has been an ever-increasing interest to study the
interfacial dynamics of two immiscible fluids in microfluidic
substrates as the consequence of an imposed wettability
gradient [21,22]. In many of the concerned applications,
applied temperature or concentration gradient acts as a source
for generating the necessary wettability gradient, thereby
giving rise to a net interfacial force [23–28], and a consequent
transport known as Marangoni flow [29,30].

Over recent years, researchers have made extensive studies
on thermocapillary-driven microchannel flows, [31–37] as
well as microfluidic transport over chemically patterned sur-
faces [24,38,39]. Considering these effects acting in tandem,
researchers, in recent times, have studied the effect of applied
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temperature gradient on the flow of single phase fluid over
chemically patterned surfaces [24,40]. The underlying issues,
however, may become significantly more nontrivial in case
the flow system consists of two immiscible phases instead of
a single phase, leading to possible nonintuitive interplay of
interfacial forces over the relevant spatiotemporal scales. This
may be attributed to the fact that the thermocapillary driving
force, acting across the interface, varies continuously as the
capillary progresses along the channel. This spatiotemporal
variation leads to interesting flow features which are unique
to thermocapillary actuation. More work concentrating the
thermocapillary flow–driven contact-line motion of immisci-
ble binary fluids needs to be done, including a systematic
interrogation of different attributes that affect the interfacial
dynamics of contact-line motion and its ultimate influence on
the filling dynamics.

Here, we attempt to investigate the contact-line dynamics
of two immiscible fluids under simultaneous actions of
a patterned wettability gradient and an externally applied
temperature gradient, based on a free energy based order
parameter (phase field) formalism. We demonstrate that the
contact line experiences stick-slip (pinning-depinning) motion
over the patched section of the channel, and its velocity can
be delicately controlled by altering the interactions between
the surface wettability gradients and the thermocapillary body
force, as modulated by the applied temperature gradient and
the rate of change of interfacial tension with temperature.

II. MATHEMATICAL FORMULATION

A. Outline

Here, we use the phase field method to capture the
thermofluidic transport. Among the other different methods
available in the domain of multiphase flow modeling, the
phase field model is a very popular one and is widely used
in the theoretical research community [13,15,22,32,41–45].
The widespread applicability of the phase field method is
primarily attributed to a number of important features such as
the existence of a thermodynamic basis, the implicit interface
tracking capability, and riddance of stress singularity by
introduction of slip at the fluid-solid interface. Below, we
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discuss the simulation setup and the mathematical framework
for the present study.

B. Simulation setup

1. Problem geometry

Our primary goal of the present study is to model the
thermocapillary flow of immiscible binary fluids A and B
through a narrow fluidic channel as shown in Fig. 1, in
the presence of a substrate having predesigned wettability
variations. The length and height of the channel are L and
2H , respectively, while the origin of the coordinate system
is attached to the left center of the channel. We consider that
the width of the channel is sufficiently larger than its height,
which, in essence, allows us to carry out two-dimensional flow
analysis. It is to be mentioned here that without sacrificing the
generality of the problem and considering the symmetrical
nature of the problem, we have considered only the upper half
of the channel for our numerical simulations, where the x axis
and y axis are taken to span along the length and height of
the channel, respectively. We consider that fluid A initially
resides at the left portion of the channel and fluid B initially
occupies the remaining portion of the channel. In the present
study, we assume the walls of the channel to be decorated with
two different kinds of chemical patches, placed periodically
along the length of the channel. The chemical patches are
prespecified with different wettabilities, expressed in terms of
the static contact angle θs . The periodicity of the chemical
patches starts from a distance L1 from the left of the domain,
and extends up to L2 = 2nPw, where n = (1,2, . . . ,N) is the
number of patches of a single kind and Pw is the width of
each patch. The characteristics of the patches are defined by
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FIG. 1. (Color online) Schematic depicting the solution domain
along with the physical dimensions. The solution domain is the
symmetric upper half of the channel and the origin is placed at the
center of the left end of the channel. Fluids A and B initially reside in
the left and right side of the channel, respectively. The channel walls
are chemically patched so as to provide a designed wettability. The
fluid temperatures at the inlet and outlet of the channel are maintained
at TH and TC , respectively. Initial temperatures of both the fluids
are Tr . An external temperature gradient [∇T = (TH − TC) /L] acts
on the system, which, in conjunction with the substrate wettability,
dictates the contact-line dynamics.

specifying the static contact angles as

θs =
{
θA∀2 (n − 1) Pw � x ′ � (2n − 1) Pw

θB∀ (2n − 1) Pw � x ′ � 2nPw
,

where x ′ = (x − L1) and the subscripts A, B are used to
describe the properties of fluids A and B, respectively. In
addition to the patterned section of the channel, we also
consider θs = θA∀0 � x � L1, and θs = θB∀L1 + L2 � x �
L. We specify a temperature gradient, (TH − TC) /L, across
the channel by specifying temperatures at the inlet (TH ) and
the outlet (TC) of the channel, respectively. The transport in
the capillary is actuated by thermocapillarity. As mentioned
before, we use the phase field method to explore the interfacial
dynamics of two immiscible fluids, which is discussed in the
subsequent section.

2. Phase field model

In compliance with the phase field theory, we introduce
a phase field variable φ, which is also known as the order
parameter function, to characterize two immiscible fluids in a
binary flow configuration. Here, we define the order parameter
φ as φ = (n1 − n2)/(n1 + n2), where n1 and n2 are the number
density of molecules of fluid A and fluid B, respectively.
Therefore, in the present study, we use φ = 1 to indicate fluid
A, while φ = −1 is used to identify fluid B (see Fig. 1). The
interface separating two bulk phases has a nonzero but finite
thickness, where the order parameter function varies smoothly
between φ = −1 and φ = 1. However, φ = 0 essentially rep-
resents a single isoline and indicates the nominal location of the
interface of the binary fluid system. We use the following free
energy functional to describe the thermodynamical behavior
of the binary fluid system [7,12,18,22,41–43,46,47]:

F =
∫

�

[ψ(φ) + 0.5k|∇φ|2]d�, (1)

where � is the fluid domain, F is the total energy, and k is
the coefficient which determines the interfacial tension. The
first term ψ(φ) in the above equation is the bulk free energy
density and can be cast in the form of a double well potential
as given by [41,42]

ψ(φ) = σ

ξ
(φ2 − 1)2. (2)

Note that the two minima of the phase field variable φ

correspond to the two stable phases i.e., fluid A and fluid B,
respectively. In Eq. (2), σ is related to the interfacial tension by
σ =

√
2k
3 , and ξ is the diffuse interface thickness. The second

term, 0.5k |∇φ|2, on the other hand, takes care of the excess
of the free energy owing to the presence of an interface in a
binary fluid system.

The variational derivative of the free energy functional with
respect to the order parameter φ gives rise to the chemical
potential of the system and takes the following form:

G = δF

δφ
= ψ ′(φ) − k∇2φ. (3)

It is to be noted here that the phase field variable is advected in
the flow domain owing to the presence of a velocity field, while
the chemical potential gradient allows the order parameter to
diffuse in the flow field as well. Below, we write the evolution
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equation of the phase field variable, which is also known as the
much celebrated Cahn-Hilliard (CH) equation [42,43,48–50].

∂tφ + u · ∇φ = ∇ · (M∇G). (4)

Note that u in the above equation is the velocity field, and the
parameter M (M > 0) is a constant and termed as the mobility
of the order parameter. The term ∂tφ is the partial derivative of
order parameter function with time t . The mobility M controls
the diffusion across the interface and has a direct bearing on
the stability and convergence of the solution. In the present
study, we consider a constant mobility, the value of which
is obtained from the Molecular Dynamics (MD) simulation
results of Qian et al. [11].

The boundary conditions for Eq. (4) at the wall are given
by [20]

n · ∇G = 0,
(5)

n · ∇φ = −tan
(π

2
− θs

)
|∇φ − (n · ∇φ) n| ,

where n is the outward pointing normal to the solid wall. The
first boundary condition of Eq. (5) indicates no flux through
the solid surface, while the second boundary condition locally
adjusts the order parameter profile close to the boundary so
as to maintain the value of contact angle θs imposed at the
solid substrate and the order parameter to be constant along
the tangent to the interface.

3. Interfacial hydrodynamics and its coupling
with the phase field theory

In this subsection, we look at the relevant governing
equations for interfacial hydrodynamics coupled with the
phase field variable and recall the necessary interfacial
jump conditions. The relevant transport equations for the
incompressible fluid flow are governed by the Navier-Stokes
system of equations. On the other hand, the temperature
distribution in the flow field is of essential importance for
the thermocapillary-driven flows, which in effect, demand for
the solution of the energy balance equation. We do mention
here that the present analysis does not consider the variation
of density and viscosity of the phases with temperature. Also,
different phase change phenomena such as evaporation and
condensation are excluded in the present analysis. Below we
write the required set of governing transport equations for the
mass, momentum, and thermal energy, pertinent to the problem
taken up in the present analysis [51,52].

Continuity (for incompressible flow):

∇ · u = 0. (6)

Momentum conservation:

∂t (ρu) + ∇ · (ρu ⊗ u) = −∇p + ∇ · [μ(∇u + ∇uT )] +Fe.

(7)

Energy conservation:
The temperature distribution in the flow field in the absence

of phase change, dissipative work, and compression work
done by pressure is governed by the equation as given below
[25,37,43,53]:

∂t (ρcP T ) + ∇ · (ρcP uT ) = ∇ · (kT ∇T ). (8)

The parameters ρ, μ, cP , and kT in the above set of equations
are the fluid density, viscosity, specific heat capacity, and the
thermal conductivity, respectively. We assume that the material
properties ρ, μ, cP , and kT are constant in each phase.

It is important to mention here that term Fe in Eq. (7)
takes care of the interfacial stress jump accounting the surface
tension force owing to local curvature effect of the interface
and the Marangoni stress that arises because of thermocapillary
effect. The term Fe, which essentially indicates the volume
distributed force acting over the interface, is given by [37,43]

Fe = 3
√

2

4
k1/2∇ · [σ (T )(|∇φ|2I − ∇φ ⊗ ∇φ)]. (9)

Note that the term σ (T ) in Eq. (9) is the interfacial tension,
which for a thermocapillary flow essentially becomes a
function of the temperature. However, in the present study we
consider a linear relationship between the interfacial tension
and the temperature for ease of analysis which is given by
[25,54]

∂σ

∂T
= σT = σ (T ) − σr

T − Tr

= constant. (10a)

Using Eq. (10a), we can write interfacial tension as

σ (T ) = σr + ∂σ

∂T
(T − Tr ). (10b)

It is to be mentioned here that the rate of change of interfacial
tension with temperature is defined by the term ∂σ

∂T
and the term

σr indicates the interfacial tension at reference temperature Tr .
The above set of governing transport equations [Eqs. (4) and

(6)–(8)] can be cast in nondimensional form as given below:

∂t̄ φ̄ + ū · ∇̄φ̄ = 1

Pe
∇̄ · (M̄∇̄Ḡ), (11)

∇̄ · ū = 0, (12)

Re ρ̄[∂t̄ (ū)+∇̄ · (ū ⊗ ū)]

= −∇̄p̄ + ∇̄ · [μ̄(∇̄ū+∇̄ūT )] + F̄e, (13)

ρ̄c̄P [∂t̄ (T̄ ) + ∇̄ · (ūT̄ )] = k̄T

Ma
∇̄ · (∇̄T̄ ). (14)

We consider the properties to be phase dependent and
related to the order parameter as [7,41,43,55]

ρ̄ = 0.5(1 − ρr )φ + 0.5(1 + ρr ),

μ̄ = 0.5(1 − μr )φ + 0.5(1 + μr ),
(15)

c̄P = 0.5(1 − cP r )φ + 0.5(1 + cP r ),

k̄T = 0.5(1 − kT r )φ + 0.5(1 + kT r ),

where ρr = ρB/ρA, μr = μB/μA, cP r = cP B/cP A, and kT r =
kT B/kT A are the density, viscosity, specific heat, and thermal
conductivity ratio of the two fluids, respectively.

Next, we enlist the important pertinent nondimensional
parameters that influence the interfacial dynamics described by
the above systems of equations. These parameters are given as
follows: Péclet number, Pe = ucξ

2

Mcσ
; Marangoni number, Ma =

ρAcP Aξuc

kT A
; capillary number, Ca = ucμA

σr
; Reynolds number,
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Re = ρAucξ

μA
. In addition to the above dimensionless parameters,

ratios of different fluid properties such as the density ratio
ρr = ρB

ρA
, the viscosity ratio μr = μB

μA
, the specific heat capacity

ratio, cP r = cP B
cP A

, and the thermal conductivity ratio kT r = kT B
kT A

do also have an important role to play in the interfacial
dynamics. We use the macroscopic properties of fluid A as
the reference properties in the present study, while uc is the
velocity scale of the system under consideration. We calculate
the characteristic velocity by balancing the thermocapillary
force with the viscous drag acting over the interface, which
gives uc�10−5 m/s. In the present study, we consider the
ratios of fluid properties as [13,43] ρr = 1, μr = 1, kT r = 1,
cP r = 1. Furthermore, the characteristic scales (velocity and
the length scales) chosen in the present study along with the
values of different fluid properties give the values of different
dimensionless parameters Re, Ca, Pe, and Ma, which are of
the O(0.01) or at most O(0.1).

It is important to mention here that since we neglect any
phase change, the explicit coupling of the energy equation with
phase field equation is absent and the variation of temperature
in the flow field is implicitly linked with the evolution of
phase field variable through the property relationship as given
by Eq. (15). Since we consider the ratios of different fluid
properties to be unity in the present study, the energy equation
gets decoupled from the phase field variation. However, we
do mention here that a change in the interfacial tension with
the change in temperature, which we assumed in the present
study to be varied following an equation of state as given by
Eq. (10b), eventually leads to the local change in the topology
of the interface. The local change in the interface curvature
arising because of the variation of temperature gives rise to an
additional term in the momentum balance equation, which is
known as Marangoni force, as given by the first term of the
right-hand side of Eq. (9).

We next discuss the boundary conditions for the governing
transport equations mentioned above. It is important to
mention here that the mathematical modeling of the problems
related to contact-line dynamics comes across a fundamental
difficulty of nonintegrable stress singularities [56,57]. In order
to obviate the problem of stress singularity, attempts have been
taken to employ the Navier-slip boundary condition in the
macroscopic model to address the physics of the contact-line
dynamics [58,59]. In this regard, the diffuse interface models
have gained tremendous popularity owing to their inherent
advantages associated to their mathematical framework, viz.,
the removal of stress singularity by introduction of slip at
the fluid-solid interface [20,60–62]. We do mention in this
context here that researchers have pointed out the inherent
potential of the phase field method, to be precise the diffuse
interface method, which introduces slip at the contact line
thereby averting the adverse effect of the stress singularity
problem [6,8,63,64]. However, in the present study, we use
the Navier-slip boundary condition (ū‖ = ls1,2∂yū‖) on the
walls of the channel for the momentum equation, and the
slip length specified on each stripe corresponds to those
given in Ref. [13]. We consider one set of slip lengths
given by ls1 = 3.8, ls2 = 10, where ls1 is used to specify
slip length for the same type of fluid and patch combination
and ls2 is used for an unmatched fluid-patch combination. We

assumed that both the fluids were initially at rest, so the initial
velocity of the fluid over the entire domain ū(x̄,ȳ,0) = 0∀x̄,ȳ.
Moreover, no penetration boundary condition (v̄⊥ = 0) is
applied at the walls of the channel. We further consider the
inlet (p̄in) and outlet gauge pressure (p̄out) to be zero for
our simulations. The solution of the thermal energy equation
necessitates the boundary condition for temperature at the
system boundaries. We consider that both the walls of the
channel are insulated [−n · (−k̄T ∇̄T̄ ) = 0], while we specify
constant and uniform dimensionless temperatures T̄H and T̄C

at the inlet and the outlet of the channel, respectively. For
the sake of completeness, we schematically show, in Fig. 2,
the computational domain including the governing transport
equations and the appropriate boundary conditions in their
nondimensional form.

C. Numerical implementation and model validation

In the present study, we have used the finite element multi-
physics framework of COMSOL for solving the coupled phase
field–Navier-Stokes-energy conservation system of equations
as given by Eqs. (11)–(14). We have specified tolerance levels
of 10−6 for all the numerical simulations. We have used
the PARDISO solver and the generalized-α scheme for the
time stepping method of COMSOL MULTIPHYSICS. In order to
capture the flow physics of contact-line motion formed at the
fluid-fluid-solid interface, we have used x = y = 0.2ξ and
used relatively finer mesh very close to the wall of the channel.
It is to be mentioned here that although we use ξ as the length
scale in the present study, the value of the effective Cahn
number is 0.005 which gives a grid resolution sufficient to
attain a sharp interface limit [8].

It is important to mention in this context here that before
applying the temperature gradient to actuate bulk fluid motion,
we initialize the phase field variable to form the interface
of the two coexisting bulk phases (φ = ±1). Initialization of
the phase field variable, in essence, leads to an equilibrium
interface profile following the solution of the equation:

G (φ) = 0. (16)

The equilibrium order parameter profile normal to the plane
interface is given by [41]

φ(z) = tanh

(
z√
2ξ

)
, (17)

where z is the coordinate direction normal to the plane
interface.

We further mention that from here onwards we will drop
the bar signs from the variable symbols used to represent
nondimensional quantities for the ease of presentation.

1. Model benchmarking and grid independence study

The modeling framework of the present study has exten-
sively been benchmarked. We have primarily followed a dual
benchmarking strategy delineated below.

Benchmark 1: Contact-line dynamics. We have bench-
marked the phase field model for the moving contact-line
problems using results reported in Wang et al. [13], whose
model and numerical framework are in turn benchmarked
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FIG. 2. (Color online) Schematic of the solution domain showing the governing transport equations and the appropriate boundary
conditions. The channel wall is chemically patched, characterized by predefined contact angle θs . There is an externally applied temperature
gradient, which actuates the fluid motion into the channel. The velocities v̄‖ and v̄⊥ are the components along the parallel and perpendicular to
the surface.

against molecular dynamic simulations [11]. In Fig. 3(a)
below, we show the variation of the contact-line velocity with
distance along the channel. The results show extremely good
agreement with those reported in Ref. [13].

Benchmark 2: Complete model including thermocapillarity.
We have benchmarked our numerical model coupled with
thermocapillarity with the experimental results reported in
Ref. [40]. In Fig. 3(b), we show the variation of temperature
difference along the length of the channel [T (x) − Tc]. One can
see a good agreement between the simulation results obtained
from the present study with the corresponding experimental
observations reported in Ref. [40].

Grid independence study. We have also performed a grid
independence study. In Figs. 3(c) and 3(d) we show the grid
convergence results where we clearly depict the variation of
the contact-line velocity as a function of distance along the
channel for different grid resolutions and time step variations.
The different parameters used in the grid independence study
have clearly been mentioned in the figure caption. It is
clearly evident that the variation of velocity with alteration
in time step size is negligible. However, with change in
grid size, we observe some variation in the contact-line
velocity, which attenuates as the grid size is reduced below
x,y = 0.1ξ, 0.2ξ . Accordingly, we have used grid size
x,y = 0.2ξ in all our subsequent studies.

III. RESULTS AND DISCUSSIONS

The thermocapillary flow–driven contact-line motion and
the resulting capillary filling dynamics of immiscible binary
fluids are likely to be influenced by a number of key
parameters: (a) {TH ,Tr,TC}, the inlet, reference, and outlet
temperature of the fluid respectively; (b) B = ∂σ/∂T

σr
, the ratio

of the rate of change of interfacial stress with temperature
to the interfacial stress at reference temperature; (c) Pw, the
period of the surface patches; (d) the ratios of the different fluid
properties, and (e) r = θA/θB, the contrast in the wettability
over the patches. Since the interfacial stress at any reference
temperature is always positive, a decreasing nature of the
interfacial tension with increasing temperature makes the
term B to be always negative. Accordingly, two different
values of B (B = −0.02 and −0.04) have been considered
in the present study to determine the contact-line motion in
a thermocapillary flow environment. In the present study we
have considered the values of the contact angles to be [13]
θA = 77.6◦ and θB = 102.4◦ for most of the cases, which
essentially leads to r = 0.7578. Moreover, in order to show
the effect of wettability contrasts on the contact-line motion,
we also consider four different values of r as [13] r =
0.6453,0.48,0.40, and 0.3373. The domain dimensions used
in the present study (see Fig. 1) are L= 100, L1 = 36, and L2 =
24. The dimensionless half channel height has been taken to be
H = 20 throughout the analysis. It is important to mention here
that the typical values of dimensionless parameters considered
in the present simulations are [43] Re = 0.01, Ca = 0.01,
Ma ≈ 0.01, and Pe = 0.02 unless otherwise mentioned.

A. Contact-line dynamics

Thermocapillary motion of the contact line of two immis-
cible fluids is an outcome of the alteration in the surface
tension force acting over the fluid-fluid and fluid-fluid-solid
interface owing to the temperature gradient applied along
the channel. The surface tension gradient results in a force
on the contact line, which eventually creates a tangential
motion of the interface. Note that the alteration in the
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FIG. 3. (Color online) Model benchmarking: (a) Contact-line velocity shown as a function of distance along the capillary. (b) Temperature
distribution along the length of the channel. The simulations results using the present model are represented by the solid lines and the square
markers are used to represent the results reported in Refs. [13] and [40], respectively. The results of the present numerical framework show
fairly accurate match with the reported numerical and experimental results. Grid independence study: Contact-line velocity as a function of
the location along the channel for (c) three different values of grid sizes and (d) three different time step values. For (c) and (d) the different
parameters considered are patch width Pw = 1.5, {TH ,Tr ,TC} = {32,16,0}, Re = 0.01, Ca = 0.01, Ma = 0.01, Pe = 0.02, and B = −0.04.

surface tension force is a strong function of the temperature
distribution in the flow field and is governed by Eq. (10b).
Since the temperature distribution in the flow field dynamically
changes with time, the net surface tension force acting over
the interface, which is a strong function of the tempera-
ture distribution in the flow field, will also spontaneously
change as the interface moves along the channel. Therefore,
a unique feature of the present study is essentially the
driving force of the flow actuating mechanism that changes
continuously with time as the interface progresses along the
channel.

Figure 4 shows the variation of contact-line velocities with
surface wettabilities. In Fig. 4(a), we show the contact-line
velocity along the length of the channel considering a constant
contact angle. In order to do so, we consider two different
values of the contact angle θs = 70.6° and 77.6°, respectively.
The different parameters considered in the present study
have been mentioned in the beginning of the Results and
Discussions section, which are in tune with those considered
in Ref. [43].

One can see from Fig. 4(a) that the contact-line velocity
increases gradually as the interface moves along the channel,
and reaches a maximum. Further downstream of the channel,

as the driving force acting over the interface decreases
progressively, it drops to zero. In Figs. 4(b) and 4(c), we show
the contact-line velocity (vcl) as a function of position along
the channel for three different patch widths (Pw = 0.75, 1.5,
and 3.0) and two different thermal actuation scenarios. The
contact-line velocity (vcl) shows a stick-slip behavior as the
interface moves over the patches, which is inherent to typical
wettability-gradient surfaces.

In order to study the influence of applied temperature
gradient on the contact-line motion, we consider two different
thermal actuation scenarios for each of the patch widths con-
sidered: (a) {TH ,Tr,TC} = {32,16,0} and (b) {TH ,Tr,TC} =
{20,10,4}. It is clear from Fig. 4 that the variation of
the contact-line velocity obtained under different thermal
actuations makes no qualitative difference. The magnitude of
the contact-line velocity in case (b), however, appears to be less
than that in (a). Relatively lower magnitude of the contact-line
velocity in case (b), for all the patch widths considered, is
essentially attributed to the lower magnitude of driving force
acting over the interface because of the reduced thermocapil-
lary body force owing to lower temperature gradient imposed
along the channel. Interestingly, for the largest patch width
Pw = 3.0 considered in the present study, the interface cannot
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FIG. 4. (Color online) Contact-line velocity vcl vs x: (a) for constant surface wettability θs = 70.6◦, 77.6◦ and {TH ,Tr ,TC} = {32,16,0}.
For three different patch widths Pw = 0.75, 1.5, and 3: (b) {TH ,Tr ,TC} = {32,16,0} and (c) {TH ,Tr ,TC} = {20,10,4}. The other parameters
are Re = 0.01, Ca = 0.01, Ma = 0.01, Pe = 0.02, and B = −0.04 in case (b) and −0.02 in case (c). For the constant wettability case, the
contact-line velocity increases initially, reaches maximum, and finally becomes zero. The contact-line velocity shows oscillation as it moves
over the chemically patterned surface, solely attributable to the (de)pinning mechanism of the contact line. The velocity of the contact line
decreases gradually as the interface moves along the channel. For the smaller patch width Pw = 0.75 and 1.5, the interface traverses the
patterned section completely. For the larger patch width Pw = 3.0, retreating of contact-line velocity following the reverse movement of the
interface initiates as the interface comes over the unfavorable patch (B-like patch) before it crosses the entire patterned section of the channel.

traverse the entire patterned (patched) section; rather it gets
pinned over an unfavorable patch (i.e., on a B-like patch)
before it crosses the patterned surface, as can be seen from
Fig. 4. The physical explanation of this kind of behavior
of contact-line velocity essentially stems from the fact that
the driving thermocapillary force acting over the interface

continuously decreases as the interface progresses along the
channel.

In Fig. 5, we show the variation of the magnitude of the
temperature gradient acting across the contact line (|∇T |cl) as
it moves along the channel for different patch widths [Fig. 5(a)]
and for different thermal actuation strengths [Fig. 5(b)]. The
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FIG. 5. (Color online) Temperature gradient acting across the
contact line as a function of x with variation of (a) patch width
for {TH ,Tr ,TC} = {32,16,0} and (b) thermal actuation strength for
Pw = 3.0. It is important to note that as the interface progress, the
temperature gradient acting across the contact line, which is the
primary driving force, decreases monotonically. When the magnitude
of the temperature gradient decreases below a threshold, the actuating
force is not strong enough to drive the interface along and we observe
interface pinning.

patch width considered for Fig. 5(b) is Pw = 3.0, while
{TH ,Tr,TC} = {32,16,0} are considered for Fig. 5(a).

It is clear from Fig. 5 that as the interface progresses, the
temperature gradient acting across the contact line decreases
monotonically. When the temperature gradient falls below a
threshold value (shown by dotted green circles), the Marangoni
forces are no longer strong enough in dragging the interface
along and we observe interface pinning. When the interface
comes over the unfavorable patch further downstream from its
commencement, a weak temperature gradient fails to weaken
the oppositely acting interfacial surface tension originating
from the wettability pattern, which, in essence, allows the
interface to move back instead of having its forward move-
ment. This phenomenon is consistently reflected in Figs. 4 and
6, where the contact-line velocity for the larger patch width
becomes negative, following the movement of the interface in
the reverse direction. For the larger patch widths, since the
magnitudes of the maximum and the minimum contact-line
velocity vary markedly, zones of variation of the temperature

FIG. 6. (Color online) Time sequence of the interface profiles
for patch width Pw = 1.5 and 3.0 for (a) {TH ,Tr ,TC} = {32,16,0}
and (b) {TH ,Tr ,TC} = {20,10,4}. The crowding zone of the interface
profiles as seen is essentially because of the pinning mechanism of the
interface over unfavorable patches [B-like patches; shown by green
color (light patch)]. With the progression of the interface along the
channel, the net driving force acting over the interface decreases and
the crowding zone of the interface profiles becomes relatively denser
as indicated by I, II. A deep crowding zone of the interface profiles
for Pw = 3.0 is due to the reverse motion of the interface following
the retreating of the contact-line velocity. The reverse motion of
the interface starts at the time when the interface comes over the
unfavorable patch [B-like patches; shown by green color (light patch)]
and the net driving force reduces substantially. For a relatively lower
applied temperature gradient along the channel, the deep crowding
zone appears earlier in the process owing to smaller magnitude of net
driving force acting over the interface.

gradient are clear. Accordingly, we find distinct signatures
of slip-stick behavior manifested as relatively flatter plateaus
(shown by dotted red circles) in regions of contact-line slip
and relatively steeper variation of the temperature gradient in
regions of stick. Also, the retreating of contact-line velocity,
as seen for the case of the largest patch width, Pw = 3.0,
initiates earlier as the applied temperature gradient in the flow
field decreases at a faster rate. With a decrease in the applied
temperature gradient across the channel, the pinning states
following the retreating motion of the contact line occur at a
much earlier location (see Figs. 4 and 6). This is because the
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FIG. 7. (Color online) Contact-line velocity vcl vs x for (a)
{TH ,Tr ,TC} = {32,16,0} for patch width Pw = 1.5 for different
values of contrast in wettability r = 0.7578, 0.6453, 0.48, 0.40,
0.3373. The other parameters are Re = 0.01, Ca = 0.01, Ma =
0.01, Pe = 0.02, and B = −0.04. The contact-line velocity shows
oscillation as it moves over the chemically patterned surface. For
the smallest contrast in wettability r = 0.3373, the amplitude of
oscillations becomes higher and the amplitude of oscillations in
contact-line velocity keeps on decreasing with increasing value of r .
For all the values of r considered, the interface traverses the patterned
section completely, albeit the retreating of the contact-line velocity
follows the reverse movement of the interface initiates earlier as r

decreases (see inset B).

temperature gradient decreases below the threshold value at a
much earlier location. This is clearly evident from Fig. 5(b).

1. Effects of wettability contrasts of patches on the dynamics
of the contact line

Figure 7 shows the variation of the contact-line velocity for
different contrasts in wettabilities of the patches (r = θA/θB)
placed at the walls of the channel, for a patch width of
Pw = 1.5. The other parameters considered are Re = 0.01,
Ca = 0.01, Ma = 0.01, Pe = 0.02, and B = −0.04. In tune

with the gradual decaying nature of the driving force acting
across the contact line as the interface progresses along the
channel, the contact-line velocity decreases gradually for all
the values of r considered. The lower value of r indicates
relatively stronger hydrophobicity (wetting strength of the
B-type patch with respect to the displacing fluid, i.e., Fluid
A) of the wall. Therefore, an acute pinning of the contact
line for a relatively lower value of r (see inset A) and
its ultimate consequence on the retreating of contact-line
velocity at an earlier location (see inset B) is quite obvious, as
clearly reflected in Fig. 7. Another important point to note is
that the amplitude of oscillations of the contact-line velocity
increases substantially with a decreasing value of r . This is
essentially because of the increased wetting strength of B-type
patches.

B. Capillary filing dynamics: The effects
of temperature gradient

Figure 8 shows the variation of the capillary filling distance
(x) with time (t) for different patch widths Pw = 0.75, 1.5,
and 3.0, respectively. Figures 8(a) and 8(b) depict two dif-
ferent thermocapillary actuation scenarios: (a) {TH ,Tr,TC} =
{32,16,0}, B = −0.04 and (b) {TH ,Tr,TC} = {20,10,4}, B =
−0.02. Note that L2 is the span of the chemically patched
section, which is essentially our region of interest for the
capillary filling time. The relative difference in the total filling
times with different patches as seen from the above two figures
is primarily attributable to the widths of the chemical patches
considered. Quite notably, for the largest patch width Pw = 3.0
considered in the present study, the interface cannot traverse
the patterned section completely; rather it starts retreating
before it crosses the entire patterned length along the capillary.
Having a closer look at Fig. 4 and the corresponding variation
of capillary filling time depicted in Fig. 8, one can find that all
the important features on the variation of contact-line velocity
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FIG. 8. (Color online) (a) Time (t) vs capillary filling distance (x), for different patch widths: (a) {TH ,Tr ,TC} = {32,16,0} and B = −0.04;
(b) {TH ,Tr ,TC} = {20,10,4} and B = −0.02. The other parameters are Re = 0.01, Ca = 0.01, Ma = 0.01, and Pe = 0.02. All the parameters
and boundary conditions considered here correspond to those taken in Fig. 4. For a given applied temperature gradient and other different
parameters, the filing time decreases with the decrease in patch width. For the larger patch width given by Pw = 3.0, the filing time shows
oscillation following the phenomenon of the retreating of the contact line, and the displacing phase fluid cannot traverse the entire patterned
section of the channel.
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are aptly reflected in the variations in the filling times. As the
patch width increases, the duration of pinning of the contact
line over the unfavorable patches spans for a relatively longer
period of time, leading to a larger filling time. On the other
hand, the driving force acting over the interface continuously
decreases as the meniscus progresses along the channel, owing
to reduced magnitude of temperature gradient. Moreover, the
net drag force acting over the interface gets enhanced by the
wetting characteristics of the unfavorable patch. It is to be
noted here that the magnitude of the drag force arising because
of the wetting characteristics of the unfavorable patch will
increase as we increase the patch width. Therefore, the reduced
magnitude of temperature gradient together with the effect of
higher drag over the interface at times when the interface
comes in contact with the unfavorable patches results in a
reverse motion of the contact line (see Fig. 4 for Pw = 3.0).
The reverse motion of the contact line is essentially reflected on
the capillary filling time, which we confirm by the appearance
of oscillations in the variation of t vs x plots in Fig. 8. From the
plot of capillary filling time for the patch widths Pw = 0.75
and 1.5, it is noteworthy that the contact line approaches a
stationary profile after the contact line traverses the patterned
section of the channel.

C. Energy budget of the moving contact line

We next analyze the total rate of energy dissipation as
the interface progresses along the channel. We compute three
different sources of energy transfer rates: the shear viscosity
dissipation in the bulk Ėviscous, the change of total kinetic
energy Ėkinetic, and energy transfer due to slip of fluid on the
solid surface Ėsurface. The total energy dissipation ĖD can be
written as

ĖD = Ėviscous + Ėsurface + Ėkinetic, (18)

where

Ėviscous =
∫

�

μ(φ)(∇u + ∇uT ) : (∇u + ∇uT )d�, (19)

Ėkinetic =
∫

�

0.5
∂ρ(φ)u2

∂t
d�, (20)

Ėsurface =
∫

�

μ

ls
u2d�. (21)

We would like to mention here that the order of the rate
of dissipation due to the phase field diffusion near the sold
surface (contact line) is negligible compared to the other
dissipations [13] and, hence, we do not consider the same while
calculating the total energy dissipation here. We next express
these parameters in a nondimensional framework. In order to
do so, we use the rate of change of surface energy σucξ , where
ξ is the interface thickness (length scale of the present study)
and uc is the reference velocity, to make the above expressions
dimensionless. The normalization, however, includes two
dimensionless numbers, i.e., the Reynolds number (Re) and
capillary number (Ca) as can be seen from the expressions
given in Eqs. (23)–(25). We would like to mention in this
context here that the typical values of Re and Ca that have been
considered in the present analysis are mostly O (0.01), and
accordingly, we consider Re = Ca = 0.01, while calculating
different energy dissipation rates in the present section. In
dimensionless terms,

ĒD = Ēviscous + Ēsurface + Ēkinetic, (22)

where

Ēviscous =
∫

�̄

Ca μ̄(φ)(∇ū + ∇ūT ) : (∇ū + ∇ūT )d�̄, (23)

Ēkinetic =
∫

�̄

0.5Re Ca
∂ρ̄(φ)ū2

∂t̄
d�̄, (24)

Ēsurface =
∫

�̄

Ca μ̄(φ)

ls
ū2d�̄. (25)
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FIG. 9. (Color online) Evolution of different energy transfer rates as a function of time: (a) {TH ,Tr ,TC} = {32,16,0} and (b) {TH ,Tr ,TC} =
{20,10,4}. The different parameters are Re = 0.01, Ma = 0.01, Ca = 0.01, and Pe = 0.02. All the parameters and boundary conditions
considered here correspond to those as taken in obtaining Fig. 4. Energy dissipation due to fluid slip at the wall is the highest among the three
different rates of energy dissipations. All the energy dissipation rates are seen to decrease over the hydrophobic patches and become zero,
while the contact line crosses the patterned section and moves towards the hydrophobic patch. The oscillation of the rate of the kinetic energy
dissipation leads to a negative value in its variation.

023011-10



THERMOCAPILLARY-ACTUATED CONTACT-LINE MOTION . . . PHYSICAL REVIEW E 90, 023011 (2014)

Figures 9(a) and 9(b) show the variations of three different
energy dissipation rates as a function of time, as the interface
proceeds along the channel. The values of the relevant
parameters have been mentioned in the figure caption. One
can find that the surface energy dominates among the three
different energy transfer terms. Note that all the energy transfer
rates exhibit oscillatory trends as the contact line moves over
the patched section of the channel. The underlying physics
behind the appearance of undulations in the different energy
transfer rates can be established from the existence of two
different wavelengths of energy owing to different wetting
strengths of the patterned substrate. The undulations in energy
transfer rates give rise to oscillations in the contact-line
velocity as one can find from Fig. 4. We can see from the above
figures that, for the value of contact angle θs > 90◦, which
corresponds to a hydrophobic case (B-like patch in the present
study), all the energy transfer rates decrease and finally become
zero as the contact line crosses the patterned section of the
channel. As such, the hydrophobic patches (i.e., B-like patch;
θs = 102.4◦) transfer markedly less energy into the motion of
contact line in comparison to that of the hydrophilic patches
(i.e., A-like patch; θs = 77.6◦), which is in good agreement
with the reported MD simulation results [22].

IV. CONCLUSIONS

In the present study, we have investigated the
thermocapillary-driven contact-line dynamics of two im-
miscible fluids through a microfluidic channel having pat-
terned substrate wettabilities. We have assumed that a
constant temperature gradient applied along the chan-
nel sets the binary fluid system in motion. We have
demonstrated that the applied temperature gradient plays a

distinctive role towards modulating the interfacial dynamics
of contact-line motion, which, in many aspects, is in sharp
contrast with the corresponding implications in a pressure-
driven flow paradigm. The main findings from our studies can
be summarized as follows:

(i) The contact-line velocity exhibits a continual decreas-
ing trend as the interface moves along the channel, for all
the patch widths considered, as attributable to a continuously
decaying thermocapillary force.

(ii) The appearance of oscillations in the variations of
contact-line velocity is the direct consequence of the stick-
slip behavior of the contact line during the course of its
motion. The velocity fluctuations keep on increasing with
increases in the patch width. The velocity becomes the highest
when the wetting strength of the chemical patch and the
thermocapillary body force aid each other (i.e., in the A-like
patch; θs = 77.6◦), and becomes the lowest when both the
forces oppose each other, essentially on the B-like patch for
θs = 102.4◦.

(iii) For the largest patch width Pw = 3.0, the contact-line
motion gets pinned on the B-like patch before the interface
traverses the entire patterned domain, resulting in meniscus
retraction. Depending on the magnitude of applied temperature
gradient, the location of the onset of the reverse movement of
the contact line changes.

The inferences drawn from the present analysis implicate
that the contact-line motion can be modulated as a combined
consequence of the intrinsic surface wettability variations (as
dictated by the chemical patches) and the imposed thermal
gradients. By exploiting this interplay, it is plausible to turn
the contact-line motion on and off at will, thereby improving
the maneuverability of capillary filling in lab-on-a-chip based
microfluidic devices.
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