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Mach-like capillary-gravity wakes
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We determine experimentally the angle o of maximum wave amplitude in the far-field wake behind a vertical
surface-piercing cylinder translated at constant velocity U for Bond numbers Bop = D/A. ranging between
0.1 and 4.2, where D is the cylinder diameter and A, the capillary length. In all cases the wake angle is found
to follow a Mach-like law at large velocity, @ ~ U~!, but with different prefactors depending on the value
of Bop. For small Bop (large capillary effects), the wake angle approximately follows the law o > ¢ min/ U,
where ¢g min is the minimum group velocity of capillary-gravity waves. For larger Bop (weak capillary effects),
we recover a law a ~ /gD/U similar to that found for ship wakes at large velocity [Rabaud and Moisy,
Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic
wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose
a simple model that describes the transition between these two Mach-like regimes as the Bond number is
varied. We show that the new capillary law o« >~ ¢, nin /U originates from the presence of a capillary cusp angle
(distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates
for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface
elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental

measurements.
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I. INTRODUCTION

A ship moving on calm water generates gravity waves
presenting a characteristic V-shaped pattern. Lord Kelvin
[1], in 1887, was the first to describe the structure of this
pattern, using a stationary phase argument [2-7]. The key
result of Kelvin’s analysis is that the energy radiated by
the disturbance remains confined in a wedge of half-angle
given by sin~!(1/3) ~ 19.47°, independent of its size and
velocity. Interestingly, although the geometry of the crest lines
is universal, different regions of the pattern may be visible
or hidden depending on which wave numbers are effectively
radiated by the disturbance or how excited waves produce
constructive or destructive interferences [4,6,8,9]. The full
Kelvin pattern is visible only if all wavelengths are equally
radiated by the disturbance, but in general only a finite range
of wavelengths is visible, which affects the overall shape of
the pattern.

To account for the large variety of wakes observed behind
ships of different size and velocities, the details of the
ship geometry and the nature of the flow around it must
be considered. However, focusing on the far-field angle
of maximum wave amplitude produced by a disturbance
characterized by a single length scale L, the wake can be
described solely by the Froude number Fr = U/ /gL, with U
the velocity and g the gravitational acceleration, provided that
the capillary effects can be neglected [4,6]. The dependence
of the angle with Fr, and the physical origin of this dependence,
have recently received much attention [10-17]. Note that
considering a finite water depth H introduces another Froude
number, Fry = U/./gH, which has also a strong influence
on the geometry of the wake pattern but which we shall not
consider in this paper.

In order to describe the far-field wake angle, we used in
Refs. [10,14] the key property of dispersive waves that the
waves of maximum amplitude generated by a disturbance of
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size L are of wavelength of order of L. This is the main
result of the Cauchy-Poisson initial value problem [2-6],
which describes the evolution of the free surface elevation
originating from an initial disturbance: The wave packet
emitted by a disturbance of size L propagates at the group
velocity cg(kys) = %Jg/ ky, where the local wave number
k; at the maximum of the wave packet is of order of L'
Wavelengths much larger or much smaller than L are found
far from the maximum of the wave packet and are therefore
of weak amplitude. As a consequence, among the range
of wavelengths necessary to build the full Kelvin pattern
(between 0 and A, =27U 2/g), only those of order of L
have significant amplitude, yielding an angle of maximum
wave amplitude smaller than the Kelvin angle when L < A,
(i.e., when Fr >> 1/4/27 ~ 0.4). In this case the far-field wake
angle is simply obtained by considering the superposition of
wave packets emitted along the disturbance trajectory and
propagating at constant group velocity cg(ky), which plays
the role of an effective sound velocity as in a nondispersive
medium. The wake angle is therefore given by a Mach-like law
o~ sin’l(cg(kf)/ U) [18], yielding at large Froude number

a

o —
~ —,
Fr

ey
with a >~ O(1). This scaling has been confirmed analytically
by Darmon et al. [11] for an axisymmetric Gaussian pressure
disturbance. Equation (1) does not apply at moderate Froude
number, when L is of order or larger than A,, for which
most of the energy radiated by the disturbance concentrates
along the cusp lines at the Kelvin angle. The value of a in
Eq. (1) depends on the shape of the disturbance, which sets
the relation between its characteristic size L and the dominant
wave number & y emitted in the wave packet. The simple choice
ky =2m/L proposed in Ref. [10] yields a = 1/(2v2m) ~
0.20, which turns out to provide a reasonable agreement
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with the wake angles measured from airborne images of ship
wakes.

The case of nonaxisymmetric pressure disturbance, recently
discussed in Moisy and Rabaud [14] and Benzaquen et al. [16],
suggests that Eq. (1) remains asymptotically valid provided
that the Froude number is based on the width of the disturbance.
Elongated pressure disturbances actually show a transition
between an intermediate scaling & ~ Fr™2 and the asymptotic
scaling o ~ Fr~! [14]. This intermediate scaling o ~ Fr~2
has been first proposed by Noblesse et al. [13] by considering
the interference between the Kelvin wakes emitted by two
point sources separated by a distance L, aiming to model
the bow and stern waves of a ship. In the range of Froude
numbers for which ships are usually designed (Fr < 2), both
laws o ~ Fr~! and Fr™2 are actually compatible with the
available data. Larger Froude numbers, up to 5 or 10, may
be encountered for offshore powerboats (or “go-fast boats”),
although no wake angle measurements are available in this
regime to our knowledge.

Very large Froude numbers up to 10 are more commonly
encountered for small objects, such as submarine periscopes,
water skis, or hydrofoils. In these cases, the object size
(10- to 20-cm diameter for a periscope and 3 cm x 30 cm
cross section for a small sailboat hydrofoil) is comparable to
the capillary length, A, = 27 (y/pg)'/? >~ 1.5 cm, suggesting
significant influence of the capillary effects (o is the fluid
density and y the surface tension). The geometry of the
capillary-gravity crest lines has been described in detail in
Refs. [3,19-22]. To account for the finite-size effects of the
disturbance, two nondimensional numbers must be introduced:
In addition to the Froude number Fr, capillary-gravity wakes
are also characterized by a Bond number, Bo = L /X, or,
equivalently, by the velocity ratio U = U/cpin, Where cyin =
(4gy/p)'/* ~ 22 cm s~! is the minimum phase velocity (the
three nondimensional numbers are related by &/ = Frv/7Bo).
Capillary-gravity wakes have been mostly investigated in
connection with the wave resistance problem, in particular
with the nature of the drag onset as the disturbance velocity
Crosses Cmin [23-28]. On the other hand, the effect of the finite
size of the disturbance on the far-field wake angle at small
Bond number (strong capillary effect) has not been described.

The aim of this paper is to characterize the wake behind a
moving disturbance of size of order of the capillary length A,
focusing on the far-field angle of maximum wave amplitude.
A series of experiments has been performed using surface-
piercing vertical cylinders (periscopes) of various diameters
and large immersion depth translated at constant velocity.
Using a two-dimensional geometry for the disturbance elim-
inates the dependence with respect to the immersion depth,
which would have varied with velocity for a three-dimensional
partially immersed body. The wake angle here is therefore
uniquely determined by the Froude and Bond numbers based
on the cylinder diameter.

Our observations suggest that the most remarkable effect
of capillarity on the wake geometry is the presence of a
capillary-gravity cusp angle (distinct from the usual gravity
cusp angle at ax >~ 19.47°), which is related to the minimum
of the group velocity at ¢g min 22 0.77¢min (17 cm s~! for the
air-water interface). We find that, for Bond number of order
unity, the angle of maximum wave amplitude is governed by
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this capillary-gravity cusp angle, yielding at large velocity

~ Cg, min

o= = (2)
This law is similar to Eq. (1), although here the effective “sound
velocity” ¢, has a different physical content. This is because
if this disturbance size is not too far from the wavelength
of the capillary cusp (=~ 2.54A, >~ 4 cm), then the energy
radiated by the disturbance accumulates along this capillary
cusp angle. On the other hand, for larger disturbance the wake
angle is governed by the pure gravity waves and the law (1) is
recovered.

The two simple scaling laws (1) and (2) are derived under
the strong assumption that the disturbance is characterized
by a single length scale, as is the case for a moving Gaussian
pressure disturbance of prescribed size. In the case of a moving
solid body the relation between the disturbance size and the
resulting pressure distribution depends on the shape of the
body and also on various flow phenomena such as detached
boundary layers, wave breaking, vortex shedding, and so on.
In spite of these limitations, the present measurements are well
described by Egs. (1) and (2), provided that the effective size
of the pressure disturbance is chosen of order of a few cylinder
diameters. This is in contrast with streamlined bodies such
as ships, for which the effective pressure disturbance at large
velocity has essentially the size of the ship.

II. EXPERIMENTS

A. Experimental setups

The experiments consists in translating a vertical cylinder,
partially immersed in water, at constant velocity, and imaging
the resulting wake to measure the angle of maximum wave
amplitude. Two series of experiments have been carried out:
one in a small-scale towing tank for small cylinder diameters
(Fig. 1) and the other in a swimming pool for larger diameters
(Fig. 2).

The small-scale towing tank is 2 m long and 0.4 m wide
and filled to a depth of 0.2 m of tap water. The cylinders
are 30-cm-long stainless steel rods, of diameter D = 1.5 and
5 mm, with at least 10 cm immersed under the water surface.
They are hung on a horizontal translation stage driven by a
servocontrol constant current motor. For each cylinder, a series
of typically 20 runs at different translation velocities have been
performed, with U ranging from cpin to 3 m s™ U = U/cmin
between 1 and 13). The acceleration of the translation stage is
set between 1 and 10 m s=2 depending on the desired cylinder
velocity, so the acceleration length is less than 25% of the tank
length even at the largest velocity.

The swimming pool is 25 m long, 12.5 m wide, and 2 m
deep. The cylinders are hollow plastic tubes, 60 cm long, to
at least 20 cm of immersion depth, and diameters D = 10,
30, and 62 mm. The cylinder is mounted on a carriage with
pulley wheels, which is translated along a stainless steel wire
rope stretched across the pool. The carriage is pulled by a
thread winded on a spool driven by a motor at one end of
the pool. While the cylinders remained strictly vertical in the
small-scale towing tank, they were slightly sloped backward
at high velocities in the swimming-pool experiments because
of the strong drag (for the largest diameter the angle relative to
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FIG. 1. (Color online) Wake patterns in the small-scale towing
tank experiments, for a cylinder of diameter D = 1.5 mm (Bond
number Bop = 0.10), at velocity U = 0.60,0.80, and 1.80 m s~!.
The tank is 2 m long, and only the last 0.85 m are shown. The waves
are visualized by shadowgraphy on the bottom of the water tank.

the vertical remains less than 5° up to 2 m s~ !, but it reaches
20° at3ms™).

In the small-scale experiment, the surface tension of water
has been estimated in situ from the measured wavelengths
using the following procedure. The cylinder is towed at a
constant velocity U chosen just above the minimum velocity
cmin Of wake onset, for which the gravity wave behind and
the capillary wave before the cylinder have nearly the same
wavelength. From the measurement of these two wavelengths,
the velocity ratio U = U /cpin can be computed [using Eq. (4),
see next section], from which we deduce the minimum phase
velocity cpin. We found cpin = 21.6 0.2 cm s~!, which
corresponds to a surface tension y ~ 5542 mN m~! and
a capillary length A. = 27 (y/pg)"/? = 14.9 £ 0.3 mm. The
surface tension of water in the swimming pool has been
measured using a Wilhelmy plate tensiometer, yielding y =~
66+3 mN m~! and hence cpin =22.6+0.3 cm s~ and
Ae = 16.3 £ 0.4 mm. For the range of cylinder diameters used
here, the Bond number Bop = D/A. ranges from 0.1 to 4.2,
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(a) U=0.63m/s

FIG. 2. (Color online) Wake patterns in the swimming pool
experiments, for a cylinder of diameter D = 16 mm (Bond number
Bop = 1.0), at velocity U = 0.63 and 2.5 m s~!. The wake angle is
determined from the intersection (shown by the vertical arrow) of the
dashed line, going through the waves of maximum amplitude, to the
back edge of the pool.

with a precision of 5%. The maximum wavelength excited by
the disturbance being of order of the cylinder diameter, which
is comfortably smaller than the water depth in both setups,
the wakes can be considered in the deep water regime. The
Reynolds number Re = U D /v covers a wide range, from 350
to 180000, for which the hydrodynamic wake is unstationary
to fully turbulent.

During each run movies were taken using a digital camera.
The camera was located above the tank for the small-scale
experiments, and at one end of the wire rope at a height of 3 m
above the water surface for the swimming-pool experiments.
The images are analyzed in the second half of the cylinder
course, well after the acceleration phase, so the wake is well
developed. For each image, the wake arms are defined from
the most visible waves, i.e., from the waves showing the
most contrasted light pattern. For the small-scale experiments,
the waves appear in the form of dark and bright stripes on
the bottom of the water tank (shadowgraphy), while for the
swimming-pool experiments they are visualized by reflection
of natural light. The biases introduced by the different
visualization methods are discussed in the appendix. For the
swimming-pool experiments, the wake angle is determined by
drawing lines going through the waves of larger amplitude
and extended to the back edge of the pool (see dashed lines in
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FIG. 3. (Color online) Wake angle as a function of the cylinder
velocity U, normalized by cp;, in (a) and by /gD in (b). Open
symbols (blue): Small-scale experiments; filled symbols (red):
swimming-pool experiments. The solid lines show best fits of the
data at large velocity: (a) & = 0.85 ¢pin/ U for Bop = 0.10 and 0.34
and (b) o = 0.5/Frp for Bop = 2.0 and 4.2 (numerical values are
given for « in radians).

Fig. 2). The uncertainty is =1° for the small-scale experiments
and £2° for the swimming-pool experiments.

B. Experimental wake angles

The wake angles measured in the two setups for the various
cylinder diameters, plotted in Fig. 3, display a systematic
decrease as U~ at large velocity. In order to discriminate
the wakes dominated by capillary or gravity effects, two
normalizations are used: U = U/cp, in Fig. 3(a) and Frp =
U/+/gD in Fig. 3(b).

The normalization U = U /cpin in Fig. 3(a) provides a good
collapse of the wake angles at small Bond numbers, essentially
for the two data sets from the small-scale experiments (Bop =
0.10 and 0.34) but also to some extent for the smaller cylinder
diameter in the swimming-pool experiments (Bop = 0.67).
No evidence of Kelvin wake angle ax = 19.47° is found for
the smaller Bond numbers but rather a continuous decrease
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from o =~ 30° to ~4°. A best fit of the first two data sets gives
o >~ 0.85 cpyin/ U (the prefactor is given for « in radians).

The normalization Frp = U/+/gD in Fig. 3(b) provides a
better collapse at larger Bond numbers, essentially for the two
largest cylinder diameters in the swimming-pool experiments
(Bop = 2.0 and 4.2). Here a clear transition is found between
the Kelvin angle, for Frp < 1.5, and a Mach-like regime
consistent with o >~ a/Frp at larger Froude number. A best
fit of the last two data sets for Frp > 2 gives a >~ 0.5 = 0.1.

Interestingly, the value a =~ 0.5 is significantly larger than
the one found for ship wakes, a ~ 0.2. According to the
analysis of Ref. [10], this prefactor is expected to scale as
(Ap/D)"?, where A, is the dominant wavelength excited
by the disturbance. Its value depends on the shape of the
disturbance and on the detail of the flow around it. The
detached flow around bluff bodies such as cylinders implies
a disturbed region significantly larger than the body and
hence a value of a larger than for streamlined bodies such
as ships. Comparing the values of a for ships and cylinders
suggests that a ship of length L primarily excites waves
of wavelength A, ~ L, whereas we have A; >~ (6 £2)D
here, yieldinga ~ 0.2(% s/D)"/? ~ 0.5. Consistently, the tran-
sition Froude number between the Kelvin and the Mach
regimes is also shifted: one has Fr; ~ 0.6 for ships and
Frp >~ 0.6(As/D)"/? >~ 1.5 here.

III. CAPILLARY-GRAVITY CREST LINES

In order to model the far-field wake angle of a disturbance
of finite size, it is necessary to describe first the geometry of the
crest lines, which provides the skeleton of the capillary-gravity
wake pattern, without specifying at this point where energy
radiated by the disturbance is actually located on this skeleton.
The reader is referred to Refs. [3,19-22] for a complete
description of the capillary-gravity crest line pattern, which
we briefly summarize here for convenience. We give special
emphasis on the gravity and capillary cusp angles, which are
of first importance when examining the effects of the finite
size of the disturbance (Sec. IV).

We consider the stationary phase wake pattern generated by
a disturbance moving at constant velocity U in the x direction
(Fig. 4). For any wave vector k emitted from point M at time
—t, the condition of stationarity with respect to the disturbance
in O implies

U cos@ = c,(k), (3)

where 6 is the angle betweenk and U and ¢, (k) = w(k)/ k is the
phase velocity. Equation (3) is the statement that the relative
frequency in the moving frame, Q(k) = w(k) — U - k, is zero.
The frequency is given by the dispersion relation for capillary-
gravity waves in deep water, w(k) = (gk + yk>/p)'/?, with
p the density, y the surface tension, and g the gravity. The
phase velocity (plotted in Fig. 5) has a minimum, equal
to cmin = (4gy/p)'/4, at the capillary-gravity wave number
k = (pg/y)"/?. The stationary condition (3) therefore can
be satisfied only for U > cyin. For a given velocity ratio
U = U/cmin > 1, there is arange of wave numbers k € [k;,k;]
satisfying Eq. (3), such that

k
(VA e 4
K
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FIG. 4. Construction of the stationary wake pattern. The distur-
bance is at point O at time 0, and we consider a wave vector k emitted
at point M at time —¢. In the frame of the disturbance, its energy
propagates along the radiation angle «(k). This is the direction of the
relative group velocity c; (k) = c,(k) — U.

For U4 >~ 1, one has k; >~ k, >~ k. On the other hand, for U/ >
1, k; tends to the pure gravity wave number k, = g/U?, and
k> tends to the pure capillary wave number k. = pU?/y, so
the range of wave numbers satisfying (3) rapidly grows as
kz / kl ~ 4U 4.

Each wave number k € [k,k;] contributing to the stationary
pattern is associated to a radiation angle a(k), i.e., an angle at
which the energy radiated from the disturbance propagates.
This is the angle between —U and the group velocity in
the moving frame, given by c; = ViQ =¢, — U, where
¢, = Vo is the group velocity in the frame of the liquid
at rest and Vi denotes the gradient in the Fourier space. The
general derivation of « (k) for arbitrary dispersion relation can
be found in Refs. [29,30]. We briefly recall here this derivation,
following the geometrical approach of Crawford [31] extended
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FIG. 5. Phase velocity ¢, and group velocity c¢,, normalized by
the minimum phase velocity cy;,, as a function of the normalized
wave number k/x, with k = (pg/y)"/?. The minimum group velocity
iS Cgmin/Cmin = 0.77, at k/k =~ 0.39. A disturbance velocity U =
U/cmin > 1 selects a range [k;,k,] such that the stationary condition
(3) is satisfied.
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FIG. 6. (Color online) Radiation angle «(k) as a function of the
wave number k normalized by the minimum wave number k; given by
Eq. (4). The bold curve shows the pure gravity case (({ — ©0), and the
thin curves show capillary-gravity cases for I/ between 1 and 8. The
dashed lines show the locus of the upper and lower extrema of «(k),
corresponding to the gravity and capillary cusp angles, og"? (——,
red) and a{*P (— - —, blue). o: Onset of existence of the two cusps for
U* =1.938, at o* >~ 22.06°. J: Asymptotic gravity cusp angle for
U > 1, which corresponds to the Kelvin angle sin~!(1/3) ~ 19.47°.

to the case of capillary-gravity waves (see Carusotto and
Rousseaux [9] and Doyle and McKenzie [22] for a similar
derivation in the Fourier space).

We consider in Fig. 4 a wave of wave number k emitted
from a point M at time —7 satisfying the stationary condition
(3). At time 0, the phase of the wave reaches the point I, with
MI = ¢,t, such that MI L OI. Denoting ¢ the angle between
OM and O, one has tan ¢ = MI/OI = ¢, /v U?* — ¢, . Since
the energy emitted from M at time —¢ travels at the group
velocity ¢, = dw/dk, it reaches the point H, with MH = ¢, .
For k < « (gravity waves), one has ¢, < ¢, so the wave packet
in H does not reach the point I, whereas for k > « (capillary
waves) the wave packet travels beyond 1. In the limit case of
pure gravity waves, one has ¢, = ¢, /2, so H is the middle of
MIL

The direction OH defines the radiation angle «(k) at
which the energy of a given wave number k emitted from
all points between M and O and satisfying the stationary
condition is located. Using the relation tan(¢ — o) = HI/OI

= (¢, — ¢g)/v'U? — c,, finally yields the following [29,30]:

co(k), /U — (k)

U? — co(k)cy (k)

tana(k) = (5)
This angle is plotted in Fig. 6 for different ratios U = U /cpin-
It is defined for k in the interval [ki,k;] allowed by the
disturbance velocity . It satisfies «(k;) = 0, corresponding to
the transverse gravity waves radiated behind the disturbance,
and a(ky) = 180°, corresponding to the transverse capillary
waves radiated in the front of the disturbance.
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FIG. 7. (Color online) Patterns of isophase lines (e.g., crest lines)
for six velocity ratios U. For each velocity, only two crest lines are
shown, corresponding to the capillary branch (long dashed line) and
the gravity branch (continuous line). Note that a phase shift of 7 /2
appears at each cusp point. The filled circles (red) show the gravity
cusp and the empty circles (blue) show the capillary cusp, present for
U > U* = 1.938 [the two cusps merge at U{* (b)]. The short dashed
lines show the cusp angles o"™P (red) and o ™P (blue), along which
the energy radiated from the source accumulates.

For U — oo, the pure gravity radiation angle is recovered
[10]: One has ¢, = ¢, /2, and Eq. (5) reduces to

kg — 1

tana(k) = Y6
el = e 1

(6)
withk, = k; = g/ U?Z. This law, plotted as bold line in Fig. 6,
shows a single extremum at ag = sin~!'(1/3) = 19.47°: this
is the classical Kelvin angle, at which the pattern of crest lines
show a cusp. For finite ¢/ > 1, the radiation angle curve is
more complicated, and it is instructive to examine its behavior
inrelation to the shape of the crest lines, which we plotin Fig. 7
[3,19,20]. At small disturbance velocity, a(k) is a monotonous
function of k, increasing from 0° to 180° in the interval [k;,k,],
indicating that energy is smoothly radiated all around the
disturbance (this radiation tends to be isotropic in the limit
U — 1). The resulting smooth and slightly curved capillary
ripples in front of the disturbance are known as Poncelet ripples
[7,32] [Fig. 7(a)]. As the velocity is increased, a(k) is no longer
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FIG. 8. (Color online) (a) Gravity and capillary cusp angles ;P
and o."*P and (b) normalized cusp wave numbers k;"*P /k and k**P /«k,
as a function of the normalized velocity /. The circle indicates the
onset of the cusp at U* >~ 1.938 (o* ~ 22.06° and k*/k =~ 0.275).
The line — - — shows the cusp precursor (angle such that do/dk is
minimum), where a preferential accumulation of energy may take
place even before the apparition of the cusps.

monotonous and shows two local extrema. In the vicinity of
these extrema, there exists a small range of wave numbers for
which a(k) is locally constant, indicating the formation of two
cusps in the crest lines, both located behind the disturbance
(see the dashed lines in Fig. 7). We call them gravity (ag,usr’)
and capillary (ag" ") cusp angles—although the second one
actually results from mixed gravity and capillary effects. The
locus (kg " g ") and (ko"F e ) are shown as dashed curves
in Fig. 6. These two cusp angles play a major role in the shape
of the far-field wake when the finite size of the disturbance is
considered (Sec. IV): In the presence of such cusps, the energy
of the disturbance is no longer radiated smoothly around the
disturbance but rather concentrates along the cusps.

The two cusp angles and the corresponding wave numbers
are plotted in Fig. 8 as a function of the velocity ratio /. They
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appear through a saddle-node bifurcation at the velocity U* =~
1.938, as first noticed by Binnie [20] (see also Refs. [21,22]).
Note that the angle corresponding to the minimum of do/dk
is also of interest: The energy of the disturbance may already
accumulate near this cusp precursor even for U < U*. At the
onset, g " and " are both equal to a* ~ 22.06° (marked
by asymbol o in Figs. 6 and 8), which is slightly larger than the
Kelvin angle 19.47° for pure gravity waves. At this point the
crest lines [Fig. 7(b)] show only a weak change of curvature.
As the disturbance velocity is increased, ag " tends rapidly
towards the classical Kelvin angle, shown by a symbol [J in
Fig. 6, with a departure from the Kelvin angle decreasing as
U~*. On the other hand, the capillary cusp angle o © is a
decreasing function of /. In the limit &/ >> 1, since the wave
numbers k in the vicinity of the minimum of «a(k) satisfy
cg(k) < U and ¢, (k) < U, Eq. (5) can be approximated by

alk) = =

The capillary cusp angle P is therefore found at the wave
number k. satisfying do/dk = U~'dc,/9k = 0, i.e., at the
minimum group velocity ¢y min (see Fig. 5). The capillary cusp
angle is therefore given by

oo e _ A o

¢ U u

where A = g min/Cmin = %33/8(ﬁ -2 - \/g)—l/ét ~
0.768. Figure 8(a) shows that the law (7) turns out to hold even
very close to the onset of the cusp /*. The wave number of this
minimum group velocity, kc""/k = V2/+/3 — 1 ~ 0.393, is
in the gravity branch of the dispersion relation, indicating that
capillary effects may be important even for disturbance of
size significantly larger than the capillary length (in practice
for size 2.54)\. ~ 40 mm for the air-water interface).

IV. ANGLE OF MAXIMUM WAVE AMPLITUDE
A. Modeling of the finite-size effects of the disturbance

We now consider the influence of the disturbance size on
the angular distribution of energy in the far-field wake, with
the assumption that the waves remain linear in this problem.
Although the pattern of crest lines itself is not affected by
the disturbance size, different regions of the pattern receive
different amounts of energy depending on the spectrum of the
disturbance, which has a strong impact on the overall shape of
the surface elevation pattern.

We model in the following the disturbance as a pressure
distribution and make use of the key result of the Cauchy-
Poisson initial value problem [2-6]: The waves of larger
amplitude generated by an initial pressure disturbance of
characteristic size L are contained in a wave packet traveling
at the group velocity selected by the size L. For instance, in the
case of pure gravity waves [of group velocity c, (k) = %«/ g/kl,
although wavelengths much larger than L may be excited by
the disturbance, they travel much faster than the wavelengths
of order of L, so their energy is stretched over large distances,
and their amplitude decreases accordingly. Let us consider
the axisymmetric wave dispersion originating from an initial
surface elevation {y(r) att = 0. Using the method of stationary
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phase, the envelope of the wave train for arbitrary dispersion
relation can be written as [3]
-1/2
) ®)

[provided that dcg/dk(ko) # 0], where f(k) is the Fourier
transform of ¢y(r), and ko(r,t) is the local wave number
satisfying ¢4 (ko) = r/t. We consider here for simplicity pure
gravity waves excited by an initial Gaussian surface elevation
[33] given by ¢o(r) = h exp[—m2(r/L)?*] of Fourier transform
¢(k) oc hexp[—(kL)?/4m?]. Solving for c,(ko) = r/t yields
ko(r,t) = gt? / 4r2, from which the maximum of the wave
envelope (8) at given time 7 is found at ry,x (f) = Ct, with C =
a~/gL and a = 1/(40"/471/2) ~ 0.22. If we consider now the
wake problem as a succession of such wave trains emitted
by a moving surface elevation at velocity U, the resulting sta-
tionary pattern has maximum energy approximately at sin o >~
C/U = a/Frwith Fr = U/./gL,in agreement with Ref. [11].
The local wave number ko (r,¢) in the center of the wave packet
[at r 2 rpax(2)] is given in this case by Ay = 8ma’ll = /2L,
confirming that the wavelength of maximum amplitude in the
wave packet is of order of the disturbance size [34].

The generalization of this simplified approach to the
capillary-gravity case is complicated by the fact that c, (ko) =
r/t has now two solutions, one on the capillary branch and
one on the gravity branch, resulting in two superimposed
wave packets [5]. One can, however, proceed qualitatively
as follows. Since the wave packet radiated by the disturbance
of size L is composed near its maximum of wave numbers of
order of ky ~ L~!, it may be characterized by an effective
spectrum centered around k >~ ky. The wave packet being
localized in space, the typical width Ak of the energy-
containing wave number range is also of order of k. In the
frame of the disturbance, the energy of each wave number k
is radiated along the direction given by the radiation angle
a(k) shown in Fig. 6. As a consequence, the dominant wave
number k is radiated along the angle (k) and, except in
the vicinity of one of the two cusp angles, this radiation takes
place within an angular aperture A« =~ |da/dk|Ak. On the
other hand, if a significant amount of energy is radiated in the
vicinity of a cusp wave number, i.e., if either kg or ko " fall
in the energy-containing range Ak, the wake angle is given by
the corresponding cusp angle, which concentrates most of the
energy radiated by the disturbance.

~ dc
¢(r,t) ~ ¢k = ko(r,t))<r2t 8_kg(k = ko(r,1))

B. Wake regimes

The previous analysis suggests the following picture,
sketched in Fig. 9. Provided that ¢/ > U* (so the two cusp
angles are defined), the following regimes may be found
depending on where the energy-containing range of wave
numbers Ak centered on k; >~ L~ falls in the radiation angle
curve a(k):

(1) If ky ~k,"P, the energy of the disturbance feeds
the gravity cusp angle a, ", so the angle of maximum
wave amplitude is classically given by the Kelvin an-
gle. This regime assumes that Fr >~ vk /k,"" ~ O(1) and
Bo >~ k"™ ks > 1.
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FIG. 9. Radiation angle a(k) in the case U/ = 6. Regions in gray
represent the range of wave numbers centered on k; >~ L™! and of
characteristic width Ak >~ k present in the wave packet radiated by
the disturbance. See text for the definition of the regimes 1-4.

(2) If kg™? < ky < k™, most of the energy is radiated
along the angle a(k ;), so the resulting wake angle is given by
o = a/Fr: this is the first Mach-like regime governed by pure
gravity waves. This regime holds for Fr > 1, so k; > kg 7,
and Bo > 1, so that kp < kc*™".

(3) If ky =~ kP, the energy of the disturbance feeds the
capillary cusp angle, and the resulting wake angle is given
bya =ac " > cgmin/U = 0.77/U. This is the second Mach-
like regime, found for Bo >~ O(1).

@) Ifky > k¢™P, the energy is radiated at arbitrary large
angle, possibly in front of the disturbance (o > 90°). However
this pure capillary regime, which should be present in principle
for Bo « 1, is not relevant for the air-water interface because
of the strong viscous attenuation at large wave numbers.

The first three regimes are compatible with the experimental
wake angles reported in Fig. 3. The data at Bop > 2 and
Frp < 1.5 correspond to regime 1, with an angle of maximum
wave amplitude close to the Kelvin prediction. For Frp > 1.5,
the observed decrease o >~ a/Fr, with a ~ 0.5, corresponds
to regime 2, similarly to that of rapid boats. Finally, the
experiments at Bop < 2 are compatible with regime 3, with
a best fit o« >~ 0.85/U close to the prediction 0.77/U. The
present experimental data do not show evidence of increasing
wake angle at small Bond number (regime 4), and we focus
on regimes 1-3 in the following.

C. Numerical simulations

In order to characterize the transitions between the various
wake regimes, we compute the far-field angle of maximum
wave amplitude produced by an applied pressure distribution
P(r) traveling at constant velocity U. We chose an axisym-
metric Gaussian pressure distribution defined as [33]

2
P(r) = Pyexp [—7#(%) ] 9)
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FIG. 10. (Color online) Wake pattern of a Gaussian pressure
disturbance at Bond number Bo = 1, for increasing velocity U
between 1.2 and 6. The computation domain L,y is 200L, and only
a subdomain of size Ly /4 is shown here. The arrows and dashed
lines show the cusp precursor angle [panels (a) and (b) for U < U*],
and the gravity o;"*f and capillary og"® cusp angles [panels (c)—(f)].
The black contours show the isoenergy level given by 0.3 times the
maximum energy.

and we note Bo= L/A. and Fr = U/+/gL the Bond and
Froude numbers based on L. Assuming linear potential flow,
the surface elevation is classically obtained from the Fourier
transform of the linearized Euler equation [5,6],

o KPOP
€0 =~ I Gy [/ o — (k- U_iep® O

(10)

with P(k) «x P, exp[—(kL)?/47?] the Fourier transform of
P(r). The properties of this integral have been the subject of
a number of papers in the case of pure gravity waves [4]. This
integral is also discussed by Lamb [3] for capillary-gravity
waves but is restricted to a one-dimensional wave pattern.
Here we evaluate numerically Eq. (10) for capillary-gravity
waves on a square domain of size Ly, discretized on a grid
of N? = 81922 collocation points. We set € = 1.5 U/Lpox as
a compromise between the unphysical oscillations induced
by the divergence of the integrand for small € and a strong
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FIG. 11. (Color online) Wake pattern at constant velocity U = 6,
for increasing disturbance size: Bo = 1 to 32. Same line patterns as
in Fig. 10. As the disturbance size increases, the angle of maximum
wave amplitude drifts from the capillary cusp angle «**P (blue dashed
line) to the gravity cusp angle org"P =~ sin~!(1/3) (red dashed line).

damping for large €. Ideally, Ly, and N should be chosen
such that the mesh size Lyox/N is much larger than the
disturbance size and the smallest wavelength selected by the
disturbance velocity &, [see Eq. (4)]. Since the range of wave
numbers satisfying the stationary condition grows rapidly as
ky/ky = 4U* for large U, the full spectrum can be resolved up
toU =~ 4-5 at the resolution of N = 8192, whereas the largest
wave numbers are necessarily truncated for larger velocities.
This truncation is not a limitation here, provided that the energy
contained in these high wave numbers is low, which is the case
when the disturbance size is significantly larger than the mesh
size.

Two series of simulations are shown in Figs. 10 and 11 to
illustrate the various wake regimes. In each panel, the dashed
lines show the two cusp angles ag' " and a." T, or the cusp
precursor (minimum of do/dk) when U < U*, and the black
line shows an isoenergy contour.

In Fig. 10 we show the wake patterns for a small
disturbance, characterized by Bo = 1, at increasing velocity
U between 1.2 and 6. Although no cusp angle is defined at
U < U* = 1.938 [Fig. 10(a) and 10(b)], a significant amount
of energy concentrates in the vicinity of the cusp precursor. At
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FIG. 12. (a) Map of the isovalues of the angle of maximum
wave amplitude « in the plane (Bo,lf) for the Gaussian pressure
disturbance defined by Eq. (9). The three wake regimes are as follows:
(1) Kelvin regime, a ~ sin~!(1/3); (2) Mach regime for gravity
waves, o 2~ a/Fr; (3) Mach regime for capillary waves, & 2 ¢g min/ U
The numbers in boxes indicate the angle « in degrees. (b) Plot of «
as a function of U, for different Bond numbers Bo. The solid line is
Q@ = Cgmin/U = 0.77/U (regime 3).

U = 2 [Fig. 10(c)], slightly above the cusp onset U/*, the two
cusp angles are both almost equal to 21.6°, and this is where
the largest wave amplitude is found. As U/ is further increased
[Fig. 10(d)-10(f)], the cusp angles gradually separate, but
since Bo = 1 the most energetic wave number is close to the
capillary wave number, so the energy concentration is mostly
found around the capillary cusp (regime 3 in Fig. 9).

In Fig. 11 we show the evolution of the wake pattern at
constant velocity ¢/ = 6 for increasing disturbance size (Bo
from 1 to 32). For this particular velocity, the cusp angles
are oy ' 2~ 19.50° (i.e., almost equal to the Kelvin angle)
and a7 ~ 7.33°. The wave numbers corresponding to these
two cusps are well separated (ko' /kg © = 20), so the three
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FIG. 13. (a) Map of the isovalues of the angle of maximum wave
amplitude « in the plane (Bo, Fr). The lower border I/ = 1 is given by
Fr = 1/+/7Bo. (b) Plot of « as a function of Fr for different values
of Bo. The solid line shows the law o = 1/(40"/*5r'/2Fr) of Darmon
et al. [11] (regime 2).

regimes can be clearly identified in this case. At small Bond
number, the energy concentrates in the direction of ag "
[Figs. 11(a) and 11(b)], in agreement with regime 3. As Bo is
increased, the angle of maximum amplitude gradually shifts
from ac"F to e " [Figs. 11(c)-11(e)], as expected for regime
2, with an energy envelope not as sharp as in Figs. 11(a)
and 11(b). Finally, for the largest Bond numbers [Fig. 11(f)],
the energy concentrates around « ', and the wake pattern
resembles the classical Kelvin wake (regime 1).

The angle of maximum wave amplitude has been system-
atically measured for Bo € [0.1,60] and ¢/ € [1,100], and the
results are summarized in Figs. 12 and 13. Using the set of
parameters (Bo,Uf), the iso-« curves are independent of Bo for
Bo < 3 [Fig. 12(a)], and the decrease of o with velocity is in
excellent agreement with the law cg min/U at large velocity
[Fig. 12(b)]. At small velocity, o approximately follows the

precursor cusp angle shown in Fig. 8(a). Plotting now the
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same data in terms of the parameters (Bo,Fr), we find that the
iso-a curves are independent of Bo for Bo > 4 [Fig. 13(a)],
and the law « = a/Fr with a = 1/(40"/*7'/?Fr) of Darmon
et al. [11] for pure gravity waves is accurately recovered
[Fig. 13(b)]. Considering that the transition Bond number
corresponds to a disturbance size L equal to the wavelength of
minimum group velocity 27/ k¢ ~ 2.54). simply predicts
Bo,. >~ 2.54, which is close to the actual transition.

We can conclude that the overall behavior of the wake
angles computed numerically confirms the picture given in
Fig. 9. Of course, the agreement with the experimental
measurements of Fig. 3 remains qualitative: the complex flow
around a bluff body cannot be reduced to a simple pressure
disturbance characterized by a single scale. In particular, the
transition Bond number between regimes 1-2 and regime 3
for the pressure disturbance (Bo, =~ 4) is significantly larger
than the experimental one (Bop . 2~ 0.7). This discrepancy
is consistent with the argument proposed in Sec. I B: The
ratio between the experimental and the numerical transition
Bond number suggests that a cylinder of diameter D has
an effect comparable to a Gaussian pressure distribution of
size L ~ 6D. Another difference is the presence of sharp
jumps of « in the simulations, when the maximum wave
amplitude switches from the gravity cusp (Kelvin angle) to the
intermediate regime 2 (o« ~ 1/Fr), whereas a smooth transition
is found in the experimental data. In spite of these differences,
itis remarkable that the scaling laws for the three wake regimes
identified experimentally could be well reproduced by the
present model and simulations.

V. CONCLUSION

We have shown that the decrease with velocity of the
angle of maximum wave amplitude, found in Ref. [10] for
ship wakes in the gravity regime, is also present for the
capillary-gravity wakes generated by a disturbance of size
comparable to the capillary length. In all cases, the wake
angle is found to decrease following a law in the form ¢,/ U
at large velocity, as in the Mach cone problem, where the
“sound velocity” ¢, is the group velocity of the dominant
wave packet excited by the disturbance. At large Bond
number (weak capillary effects), ¢, corresponds to the group
velocity of the gravity waves of wavelength comparable to the
disturbance size, whereas at Bond number of order unity (large
capillary effects) it is given by the minimum group velocity of
capillary-gravity waves, g min 2 0.77¢min. Using the general
property of dispersive waves that the waves of maximum
amplitude excited by a disturbance have their wavelength of
order of the disturbance size, we provide a simple linear model
based on an applied pressure disturbance which describes the
transition between the Kelvin regime and the two Mach-like
regimes. Although the complex flow phenomena present in
the experiments (detached boundary layers, vortex shedding,
wave breaking, turbulence) cannot be accounted for by such a
pressure disturbance, it is remarkable that this simple model
reproduces with reasonable accuracy the behavior of the
far-field wake angle. Note that although the angle of maximum
wave amplitude follows a Mach-like law, the problem remains
dispersive in nature, which is illustrated by the fact that the
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crest angle (governed by the phase velocity) never coincides
with the wake angle (governed by the group velocity).

Amusingly, we note that the wake behind a duck, often used
to illustrate the universal properties of the Kelvin wake pattern,
nearly falls in the complex intermediate situation where Bo ~
o), U =~ 0(1), and Fr = O(1).
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APPENDIX: INFLUENCE OF THE WAKE
ANGLE DEFINITION

The wake angle in the model and in the numerical
simulations of Sec. IV is defined as the angle of maximum
wave amplitude. On the other hand, the visualization methods
used in the experiments of Sec. II and in the analysis of the
airborne images of ship wakes in Ref. [10] are not based on
the wave amplitude but rather on the wave slope or curvature,
which may introduce a bias. It is therefore important to check
the robustness of the results with respect to the definition used
for the wake angle.

We have simulated the wake pattern of a Gaussian pressure
disturbance in the pure gravity regime (large Bo) following the
method described in Sec. IV C and determined the wake angle
according to the following definitions:

(1) Maximum of wave amplitude ¢. This is the
reference definition, which is used in Sec. IVC and in
Refs. [10-12,14,16,17].

(2) Maximum of longitudinal wave slope 90¢/dx. This
definition is relevant to the swimming-pool experiments, in
which the wake angle is determined from reflection of natural
light (Fig. 2).

(3) Maximum of lateral wave slope 9¢/dy.

(4) Maximum of absolute wave slope |V¢].

(5) Maximum of curvature V2¢. This definition is relevant
to the shadowgraphy visualization used in the small-scale
experiments (Fig. 1).

For each definition, the measured wake angle is equal to
the Kelvin angle ax = sin~!(1/3) at small Froude number
and decreases as o =~ a/Fr at larger Fr, indicating that this
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FIG. 14. Compensated angle oFr as a function of Fr for a
Gaussian pressure disturbance using various definitions for the wake
angle. The dash-dotted curve shows the Kelvin regime axFr, with
ax = sin~'(1/3). The reference definition (x), corresponding to the
angle of maximum wave amplitude ¢, is compared to the exact
valuea = 1/(40"47'/2) ~ 0.224 (horizontal line). The four alternate
definitions, based on maximum wave slope (o, A, and [J) and
curvature (¢), give smaller values of a.

transition is not sensitive to the exact definition of the
wake angle, at least in the case of a Gaussian pressure
disturbance. However, a dependence of the prefactor a is found
depending on the definition used, as shown when plotting the
compensated angle oFr (Fig. 14). For the reference definition
1 we recover the exact value a; ~ 1/(40"/471/2) ~ 0.224 of
Ref. [11], but smaller values are found for the other definitions
as follows: a, >~ 0.207 (—8%), a3z >~ a4 >~ 0.195 (—13%), and
as 22 0.178 (—21%) (definitions 3 and 4 give essentially the
same result because at large Fr the dominant contribution to
the wave slope is in the transverse direction y). If we consider,
for instance, Fr = 2 (corresponding to a cylinder-based Froude
number Frp ~ 5), the angle of maximum wave amplitude is
6.4°, the angle of maximum slope is 5.6°, and the angle of
maximum curvature is 5.1°. These differences are comparable
to the experimental uncertainties in Fig. 3, suggesting that
the present results are not significantly affected by these
measurement biases.
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[34] Using definition P(r) = Pyexp[—27%(r/L)*] of Ref. [10] in-
stead of Eq. (9) gives exactly Ay = L and a = 1/(2\/2m).
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