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Origin of the imbalance between energy cascade and dissipation in turbulence
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It is shown in direct numerical simulations of homogeneous isotropic non-stationary turbulence that there is
a systematic and significant imbalance between the non-linear energy cascade to fine scales and its dissipation.
This imbalance stems from the power required to induce or annihilate fine-scale motions in order to change the
level of dissipation. The imbalance is present regardless of transfer time-lags and is applicable to a wide range
of Reynolds numbers.

DOI: 10.1103/PhysRevE.90.023003 PACS number(s): 47.27.W−, 47.27.E−

Turbulence is nature’s way of speeding up molecular trans-
port in fluids and plasmas by generating multiscale random
motions, and is crucial for a diverse range of phenomena,
including rain initiation [1], the formation of planets [2],
and predator-prey or mating interactions [3]. It is widely
accepted that the induced motions are fed by a continuous
range of larger-scale motions—the energy cascade [4]—and
are always sufficiently fine-scale to make molecular transport
efficient—sometimes referred to as dissipation anomaly [4,5].
An essential ingredient underlying turbulence models and
theories is that these fine-scale turbulent motions are very fast-
paced and thus instantaneously adjust to dissipate whatever
energy they are fed. This concept became popularised as
Kolmogorov’s four-fifth’s law in its isotropic form [4,6].

However, this near-instantaneous adjustment between the
cascade flux � and the dissipation ε, which is trivial for
stationary flows, is yet to be observed in non-stationary
turbulent flows [7]. One viewpoint is that for non-stationary
flows the balance � ≈ ε is only valid for very large Taylor
microscale Reynolds numbers, Reλ = O(105), which turns
out to be one order of magnitude larger than the Reynolds
numbers characteristic of turbulence in the atmosphere,
Reλ = O(103−4) [8]. This range of Reynolds numbers is far
beyond what is presently achievable in either simulations or
experiments of non-stationary turbulence [Reλ = O(103)], and
therefore these have failed to provide more than a few data
points supporting this belief [9]. An alternative viewpoint is
that there is a time-lag in the energy transfer mechanism as the
energy is cascaded through the inertial-range down to the finest
scales and therefore � �= ε for non-stationary flows [10].

We report further evidence of an instantaneous global
imbalance between � and ε in direct numerical simula-
tions (DNS) of non-stationary homogeneous turbulence with
(i) a time varying external power input [10,11] and (ii) freely
decaying in the absence of external forcing. We show that in
these flows the non-linear flux � follows closely the temporal
variations of the kinetic energy K and integral length-scale
� with virtually no delay, i.e., � ∼ K3/2/�, whereas the
dissipation strongly departs from this classical scaling, similar
to what has been observed in recent experiments [12,13].
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Based on our DNS data, we propose that there is a basic
underlying mechanism driving the imbalance between � and
ε, which is present regardless of energy transfer time-lags.
Specifically, our data indicate that the power required to change
the kinetic energy of the fine scales (and thus the level of
dissipation) is non-negligible and is supplied by the difference
between the power injected into the dissipative scales, i.e.,
�, and the power dissipated, ε. Therefore, our data, together
with the experimental evidence of non-negligible imbalances
between � and ε in decaying flows up to Reλ = O(104)
[9], conspires to the conclusion that at least for Reynolds
numbers of practical use for engineering and geophysics it
is not possible to change the level of dissipation without
having a transient imbalance between � and ε. With this
mechanism we are also able to explain discrepancies between
the numerical values of the normalised energy dissipation
rates in stationary and non-stationary turbulent flows [14], and
support the examples of non-equilibrium dissipative behavior
observed in recent experiments [12,13].

Our data are obtained by integrating the Navier-Stokes
equations in a periodic box of size 2π with a standard
pseudo-spectral scheme, de-aliased with the 2/3 rule, and
a third-order Runge-Kutta in time [15]. A transient state
is induced by a time-varying power input P (t) supplied
by an external isotropic forcing f (k,t) δ-correlated in time
[16] following a square-wave protocol [11] (see Fig. 1).
An additional simulation is performed where the forcing
is switched off to mimic freely decaying turbulence (see
Fig. 2). For the square-wave power input cases, the external
force injects energy within the first four wave numbers so
that the integral-scale �(t) [�(t) ≡ π/(2K(t))

∫ ∞
0 E(k,t)/k dk,

where K(t) ≡ ∫ ∞
0 E(k,t) dk is the turbulent kinetic energy and

E(k,t) the power spectrum of velocity fluctuations] is at least
9 times smaller than the size of the periodic box throughout
the simulation. For the statistically steady simulation used
as an initial condition for the freely decaying DNS the first
five wave numbers are forced such that � is 1/15 of the
box size to avoid confinement effects [17] (see Table I). The
statistics are obtained by averaging over the whole domain
for a given snapshot which provides c.a. 1000 uncorrelated
samples (based on the ratio between the box size and the
integral scale) and allows to track statistical quantities in time.
Prior to introducing the square-wave varying power input
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FIG. 1. (Color online) The imbalance between � and ε in a
DNS of non-stationary turbulence with varying power input P (t)
(dataset 1). The difference between the two energy fluxes, � − ε,
increases/decreases the kinetic energy of the fine scales at the rate∫ ∞

kc
∂E(k)/∂t dk [see Eq. (2)]. �, ε and P are normalized with the

mean and amplitude of the square-wave power input cycle (Pm and
	P ) so that they vary around ±50%. The abscissa is normalised by
the average turnover time Tm.

FIG. 2. (Color online) The increasing imbalance between � and
ε in a DNS of freely decaying turbulence and the corresponding
increasing kinetic energy loss rate of the fine scales,

∫ ∞
kc

∂E(k)/∂t dk

[see Eq. (2)]. For t/T0 � 4 an equilibrium period is reached where
�/ε ≈ 1/2. The small, but increasing difference between � − ε

and
∫ ∞

kc
∂E(k)/∂t dk is due to differences between ε and ε′ as

the Reynolds number decreases. In the inset, the decay of kinetic
energy K is fitted with a power-law K/K0 ∼ (t + t0)−n yielding
n = 3.5 and n = 1.4 for the non-equilibrium and equilibrium periods,
respectively. The data (excluding the first five data points) are
fitted with the non-linear method discussed in Ref. [18]. P0, K0,
and T0 = �0/

√
K0 are the initial power input, kinetic energy, and

turnover time, respectively, and t
neq
0 is the virtual time origin for the

non-equilibrium power-law fit.

TABLE I. Overview of our DNSs with square-wave power input
(datasets 1 and 2) and freely decaying (dataset 3). Note that N and
η ≡ (ν3/ε)1/4 are, respectively, the number of colocation points and
the Kolmogorov length-scale. Re0 is a reference Reynolds number
defined in the caption of Fig. 3.

# N P |max
min ν Re0|max

min Reλ|max
min (2π/�)|max

min (kη)|max
min

1 512 30/6 0.008 107/82 147/72 11/9 3.0/1.9
2 1024 30/6 0.0027 191/146 261/138 11/9 2.6/1.7
3 512 96/0 0.008 115/- 115/45 15/10 3.5/1.4

(or switching off the forcing) the simulation is allowed to
run for several turnover times, �/

√
K , until a statistical steady

state is ensured and the turbulence is fully developed.
The strong imbalance between � and ε in both non-

stationary situations can be appreciated in Figs. 1 and 2
where our data indicates that �/ε can be as large as 2 and
as small as 0.5 (with and without forcing, respectively) and
appears as a ‘delay’ between � and ε when the two quantities
are plotted in time. It is worth noting that the imbalance
observed here is obtained in strong turbulence characterised
by moderately large Reynolds numbers, up to Reλ = 260,
where Reλ ≡ √

2K/3 λ/ν and λ ≡ √
10νK/ε is the Taylor

microscale (see Table I).
To show the origin of this imbalance we use the power

balance equation in wave number space for homogeneous
turbulence [4],

∂E(k,t)

∂t
= T (k,t) − 2νk2E(k,t) + f (k,t), (1)

where E, 2νk2E, T , and f are, respectively, the spectra of
kinetic energy of velocity fluctuations, energy dissipation,
energy transfer, and power input (which integrate to K ,
ε, 0, and P ) and k and ν are the wave number and the
kinematic viscosity of the fluid, respectively. For homoge-
neous turbulence with a prescribed power input, the transfer
spectrum T (k,t) has a single zero crossing (at k = kc) as
long as ν �= 0 (see [19] and Appendix A). This single zero
crossing is the location of the maximum non-linear energy
flux � ≡ − ∫ kc

0 T (k,t) dk = ∫ ∞
kc

T (k,t) dk and therefore it is
convenient to use kc as a reference to distinguish between
the wave numbers k < kc which on net loose kinetic energy
via non-linear interactions, from the wave numbers k � kc

which on net receive it. The wave numbers k � kc include
the inertial range, which according to Kolmogorov’s phe-
nomenology would lead to a dissipation spectrum following
2νk2E(k,t) ∼ νε2/3k1/3 prior to rolling off exponentially in
the deep dissipative range [4]. Therefore it follows that the
inertial range has a non-negligible contribution to the overall
dissipation, even at very high Reynolds numbers as can be
readily confirmed by a model spectrum (see Appendix A). We
therefore denote the wave numbers k < kc as large-scales and
the wave numbers k � kc as dissipative scales. Naturally, the
choice of the cutoff to separate between large and dissipative
scales is not unique. Nevertheless, our particular choice makes
the following analyses precise and allows to directly relate
quantities to the maximum energy transfer.
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By integrating Eq. (1) within kc � k < ∞ it follows that the
power being fed into the kinetic energy of dissipative scales
[≡ ∫ ∞

kc
∂E(k,t)/∂t dk] is exactly the difference between the

maximum energy cascade flux � and the dissipation within
these scales ε′(≡ 2ν

∫ ∞
kc

k2 E(k,t) dk), i.e.,
∫ ∞

kc

∂E(k,t)

∂t
dk = �(t) − ε′(t). (2)

Note that for the Reynolds number of our simulations the
dissipation within large scales (k < kc) is negligible and thus
ε′ ≈ ε (although less so in the freely decay simulation for
large times due to low Reλ, see Fig. 2). Furthermore, because
we treat the dissipative scales (including those within the
inertial range) as a whole, any cascade transfer lag delaying
the arrival of the maximum energy flux � at kc to any given
wave number k > kc is averaged out, isolating the fact that
imbalances between � and ε′ are only linked to changes in
the kinetic energy of the dissipative scales, viz. Eq. (2). In
other words, since � ≡ ∫ ∞

kc
T (k,t) dk, the actual shape of the

transfer spectrum T (k,t) as well as cascade time-lag effects
do not come into play. This demonstrates the inability of
the cascade time-lag hypothesis in explaining the imbalance
between � and ε observed in our data (Figs. 1 and 2).

In contrast, our data strongly suggest that imbalances
between � and ε′ are the root cause for the changes in the
level of dissipation. To see this, notice that changes in the
level of dissipation require changes in the kinetic energy of
the dissipative scales [since their spectra are proportional,
cf. Eq. (1)] and that the power required to change their
kinetic energy can only be supplied by � − ε′ as shown
by Eq. (2). This can also be seen within Kolmogorov’s
phenomenology [4] by noticing that changes in the level of
dissipation (	ε) require changes in the kinetic energy of fine
scales (	Kη) and thus demand a non-negligible power of the
order of 	Kη/τη ∼ 	ε (where Kη ∼ √

εν and τη ∼ √
ν/ε

are Kolmogorov’s estimates for fine-scale kinetic energy and
time-scale; note that 	Kη = ∂Kη/∂ε 	ε ∼ √

ν/ε 	ε).
It can also be shown that imbalances between � and ε′ are

directly caused by the rate of change of �, and not by the rate
of change of ε as previously thought [10]. This can be shown
by expanding T (k,t) and E(k,t) with a Taylor series around
t0, corresponding to an instant where the forcing is switched
off, and introducing it in Eq. (1) to conclude that to a leading
order,

�(t) − ε′(t) = (∂�(t)/∂t)t=t0 t + O(t2), (3)

(see Appendix B for the derivation).
Owing to the dissipation anomaly it is customary to con-

sider an inviscid estimate of the level of dissipation and energy
cascade flux based solely on large scale turbulence quantities.
In particular, it is commonly assumed that the dissipation ε

is proportional to the kinetic energy K over a large-scale
eddy turnover time �/

√
K , i.e., ε ∝ CεK

3/2/�, where Cε is a
constant [4,10]. The same inviscid estimate applies to �, i.e.,
C� ∝ ��/K3/2 ≈ constant [20]. We test these two scalings
separately and observe that the scaling C� ≈ constant is a
good approximation, even when the imbalance between � and
ε is large (see Fig. 3 and note that C� = 0.55 ± 0.07 covers
both free decay and the transients induced by the power input

FIG. 3. (Color online) Normalized energy dissipation Cε ≡
(3/2)5/2ε �/K3/2 and energy cascade flux C� ≡ (3/2)5/2� �/K3/2

versus normalized local Reynolds number Reλ/Re0. Re0 is a
reference Reynolds defined as Re0 ≡ √

15 C−2/3
ε [P |max]1/6�2/3ν−1/2

corresponding to Reλ in a statistically steady-state. The factor of
(3/2)5/2 allows for a direct comparison with experimentally measured
surrogates.

cycles). On the other hand, the classical scaling Cε ≈ constant
breaks down during the transients induced by the power input
cycles. Instead Cε varies substantially with the local Reynolds
number, approximately following a power-law (see Fig. 3).
This strongly indicates that the non-linear energy flux �

follows closely the evolution of the large-scale quantities (K
and �) whereas ε does not, due to the imbalance between
the two. A similar behavior was recently demonstrated
experimentally in non-equilibrium regions of grid-generated
decaying turbulence [12,13]. Indeed, our freely decaying data
allow to qualitatively recover three main results of these
recent wind-tunnel experiments, namely, (i) the existence of
a non-equilibrium region with Cε ∼ Re−α

λ [12] prior to the
classical equilibrium state where Cε ≈ constant (see Fig. 3
and Refs. [12,14,21]), (ii) the different regions lead to kinetic
energy decay power-laws, K ∼ (t + t0)−n, with a significantly
larger exponent during the non-equilibrium (see Figs. 2 and
Ref. [18]) and (iii) C� ≈ constant is a good approximation
throughout both regions of the decay (see Fig. 3 and Ref. [13]).

Note that the values spanned by our DNSs, 45 � Reλ �
260, are comparable with the wind-tunnel experiments [12,13].
Also note that we define the statistical quantities so that they
can be directly compared with the experimentally measured
surrogates.

Furthermore our data hint to a different interpretation of
the equilibrium behavior (i.e., Cε ≈ constant) observed in
freely decaying turbulence for large times after the start of the
decay (e.g., far downstream from the turbulence generating
grids in a wind tunnel). The increasing difference between �

and ε observed throughout the non-equilibrium (c.f. Fig. 2)
implies that the fine-scale kinetic energy loss-rate [i.e.,∫ ∞
kc

∂E(k,t)/∂t dk] is an increasing fraction of the dissipation.
Our data further suggests that a new equilibrium is reached
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when the kinetic-energy loss-rate of the fine scales saturates
at about half of the dissipation (see Fig. 2). This is non-trivial
and implies that in equilibrium decaying turbulence the rate of
kinetic energy loss for large (k < kc) and small scales (k � kc)
is roughly the same, i.e.,

ε =
∫ ∞

0
−∂E(k,t)/∂t dk =

≈ ε/2︷ ︸︸ ︷∫ kc

0
−∂E(k,t)/∂t dk

+
∫ ∞

kc

−∂E(k,t)/∂t dk

︸ ︷︷ ︸
≈ ε/2

(4)

[note that −ε = ∫ ∞
0 ∂E(k,t)/∂t dk is a corollary of Eq. (1)].

Since, by virtue of Eq. (1), the large-scale kinetic energy loss
rate is equal to the energy transferred to fine scales, the em-
pirical relation (4) suggests that � = − ∫ kc

0 ∂E(k,t)/∂t dk ≈
− ∫ ∞

kc
∂E(k,t)/∂t dk ≈ ε/2, or simply 2� ≈ ε and thus

2C� ≈ Cε. Interestingly, this may elucidate why Cε assessed
in statistically stationary turbulence up to Reλ = O(103) is
typically Cε ≈ 0.5 [14,22] (consistent with our stationary data
where Cε ≈ C� ≈ 0.5, see Fig. 3) which is in stark contrast
with freely decaying turbulence data where Cε ≈ 1.0–1.4
also up to Reλ = O(103) [13,14,21] (also consistent with our
equilibrium decay data where Cε ≈ 2C� ≈ 1.2, see Fig. 3).

Note that our findings do not invalidate the existence of
a time-lag caused by the downscale energy transfer and, in
fact, the change in the shape of the energy transfer spectrum
throughout the transient may be a signature of that time-lag
[see Figs. 4(a),(b)].

Finally we note in passing that the cascade flux/dissipation
imbalance is also reflected in an imbalance between vortex
stretching, ωiωj sij and enstrophy destruction, 2ν∇ωi∇ωi (ωi

is the vorticity, sij the strain rate tensor and ωiωi is the
enstrophy; we refer to quantities averaged over the whole com-
putational domain). The imbalance [ωiωj sij /(2ν∇ωi∇ωi) −
1] varies between −15% to +25% in the power input cycles
and for the decay it grows throughout the non-equilibrium
period until it saturates at about −25% when the equilibrium
period is reached (not shown here).

The present findings highlight the importance of distin-
guishing � and ε as two separate quantities which instanta-
neously can differ not only locally [23] but also globally, as
our data show. It thus questions the use of ε as the scalar
statistical quantity characterizing the inertial-range statistics
in detriment of the actual energy cascade flux [23]. Our results
together with the data available in the literature suggest that
the imbalance between � and ε occurs for a wide range of
Reynolds numbers, at least up to Reλ = O(104). Whether
the balance is recovered for even higher Reynolds number
can only be asserted by massive computer simulations and
high Reynolds number facilities. This strongly suggests that
the constitutive relations Cε ≈ constant and � = ε, which
are heavily used in state-of-the-art turbulence models, need
to be replaced by the more robust empirical relations such
as C� ≈ constant and a transport equation relating � and ε

analogous to Eq. (2). The related imbalance between vortex
stretching and destruction also has direct implications in the
modeling strategy of the dissipation equation.

FIG. 4. (Color online) Throughout the power input cycle the
energy transfer flux spectrum �k(k) ≡ ∫ k

0 T (k′,t) dk′ is deformed
even though the maximum normalized energy cascade flux C� ≡
max[�k(k)]�/K3/2 is roughly constant (see insets). Note that the
�k deforms differently for transients caused by (a) a power input
increase or (b) a power input decrease. The thick solid blue (dark
gray) and green (light gray) lines, represent �k(k) for quasi-stationary
turbulence at the lower and higher power input states of the cycle (also
marked with thick symbols in the insets). The dashed blue (dark gray)
and green (light gray) lines represent the �k(k) for a few snapshots
while Reλ is decreasing or increasing, respectively—see also inset
where the arrows indicate the time evolution of Cε and C� versus
Reλ throughout one square wave cycle.
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APPENDIX A: ZERO-CROSSING OF THE TRANSFER
SPECTRUM AND THE INERTIAL-RANGE

CONTRIBUTION TO DISSIPATION

In this appendix we summarize the evidence of a single
zero-crossing of the transfer spectrum for any finite value of
the viscosity. We also illustrate the non-negligible dissipation
within the inertial-range for any Reynolds number, which
motivate our definition of dissipative scales.

Following Ref. [24], for homogeneous stationary turbu-
lence with a concentrated external forcing at low wave
numbers, such as the present one, the low wave number
transfer spectrum is approximately equal to the external
forcing spectrum,

T (k) ≈ −f (k) for 0 < k < kmax
F , (A1)

whereas for k > kmax
F the transfer spectrum T (k) must change

sign [since
∫ ∞

0 T (k,t) dk = 0] and by virtue of Eq. (1) take
the form

T (k) = 2νk2E(k) for k > kmax
F , (A2)

since f (k > kmax
F ) = 0 and ∂E/∂t = 0. A Kolmogorov-

Obukhov inertial-range spectrum E(k) = CKε2/3k−5/3 thus
leads to a transfer spectrum following T (k) = CKν ε2/3k1/3

which implies that, at finite ν, there is no actual range of scales
where T (k) = 0 [9,19,25]. Nevertheless, it will visually appear
(and may be reasonably approximated for practical purposes)
as a plateau [c.f. Fig. 5(b)], just like a parabola y = c x2

will appear to have a plateau around x = 0 as the constant
c becomes vanishingly small (see, e.g., Fig. 5 in Ref. [26] and
Fig. 4 in Ref. [27]). Nevertheless, this illustrates that there is
only a single wave number, which we denote as kc, where the
transfer spectrum is identically zero, i.e., T (kc) = 0.

We confirm this in our data for statistically stationary period
within dataset 2 (i.e., ∂E/∂t ≈ 0, see Table I) at Reλ ≈ 190
[see Fig. 5(a)]. Notice that at these Reynolds numbers the
turbulence is strong enough for the onset of a power-law
region in the velocity spectrum which is reasonably fitted with
the Kolmogorov-Obukhov prediction [4] of E = CKε2/3k−5/3

for the inertial-range scales, 4 � k � 32. Note that we have
averaged each of the terms for about two eddy turnover times
�/

√
K .

We also illustrate this behavior at larger Reynolds numbers
[see Fig. 5(b)] employing a model velocity spectrum, E(k) [4],

E(k) = CK ε2/3k−5/3

(
k�√

(k�)2 + c�

)5/3+2

× exp

(
−β

{[
(kη)4 + c4

η

]1/4

− cη

})
(A3)

with the constants CK = 1.5, c� = 6.78, cη = 0.4, β = 5.2 and
we arbitrarily set ε = � = 1 and ν = 9 × 10−7, so that Reλ =
50 000. For stationary turbulence [∂E(k,t)/∂t = 0] with a
prescribed external forcing, this model spectrum completely
determines the energy transfer spectrum T (k,t) from Eq. (1).
The external forcing spectrum we use in our DNSs is a discrete
version of a Gaussian shaped function [16],

f (k) ∼ exp

(
(k − kf )2

c

)
for k � kmax

F , (A4)

FIG. 5. (Color online) Terms of the power balance, Eq. (1), for
(a) the N = 10243 simulation data in a statistically stationary period
and (b) based on a model spectrum at Reλ = 50 000. Since the
data are plotted against the wave number in logarithmic coordinates
all the curves have been pre-multiplied by k to keep the visual
area in the plot proportional to the area of the integral. In the
inset of (a) the velocity spectrum E is plotted together with the
Kolmogorov-Obukhov inertial-range spectrum, E(k) = CKε2/3k−5/3

and the corresponding transfer spectrum, T (k) = CK ν ε2/3k1/3, is
added to the main plot. The numerical value used for the Kolmogorov
constant is CK = 1.7.

where kf and c determine the wave number of max[f (k)]
and the degree of concentration, respectively, and kmax

F is the
maximum wave number with external power input.

Our data, as well as the model spectrum, illustrate
the non-negligible contribution of the inertial range to
the overall dissipation, even though their principal role
is to transfer energy to smaller scales. An inertial-range
Kolmogorov-Obukhov spectrum leads to a dissipation
spectrum following 2 CK ν ε2/3k1/3 [Fig. 5(b)]. This also
reasonably approximates our data for 2 � k � 32 [Fig. 5(a)].
Note that for 16 � k � 32 the spectrum becomes slightly
shallower than k−5/3 prior to the viscous roll-off, which is
usually denoted as a pre-dissipative bump or bottleneck effect.
It should be clear, therefore, that the region of the dissipation
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spectrum which increases with the wave number corresponds
mostly to the inertial-range and therefore it is always
responsible for a non-negligible fraction of the dissipation,
regardless of how large the Reynolds number is. Conversely,
within the fine-scales the spectra rolls off exponentially (or
at least significantly faster than k−2) which corresponds to the
remaining contribution (about half) of the dissipation.

APPENDIX B: LEADING ORDER RESPONSE OF
TURBULENCE TO POWER INPUT CHANGES

To find the leading order response of statistically stationary
turbulence to a change in the energy cascade flux we
approximate T (k,t), E(k,t), and f (k,t) by Taylor polynomials
around t0, corresponding to the instant where the forcing was
switched off (i.e., for t < t0 turbulence is statistically steady
and for t � t0 it is freely decaying), i.e.,

E(k,t) = E(0)(k,t0) + E(1)(k,t0) t + 1

2
E(2)(k,t0) t2 + O(t3),

T (k,t) = T (0)(k,t0) + T (1)(k,t0) t + O(t2), (B1)

f (k,t) = f (0)(k,t0) + f (1)(k,t0) t + O(t2),

where E(n)(k,t), T (n)(k,t), and f (n)(k,t) represent the nth
partial derivatives with respect to time. We consider a large
scale forcing f ∗(k) (time invariant prior to being switched off)
that does not inject energy on dissipative scales (i.e., scales
corresponding to k � kc),

f (k,t) =
⎧⎨
⎩f ∗(k) =

{�= 0 0 < k < kc

0 otherwise for t < t0

0 for t � t0.

(B2)

Introducing Eq. (B1) in Eq. (1) and gathering the terms by
their time dependence leads to

t0 : E(1)(k,t0) = T (0)(k,t0) − 2νk2E(0)(k,t0) + f (0)(k,t0),

(B3)

t1 : E(2)(k,t0) = T (1)(k,t0) − 2νk2E(1)(k,t0) + f (1)(k,t0).

(B4)

For t < t0 the turbulence is stationary and E(1)(k,t) = 0,
but at t = t0 the forcing is set to zero and the rate of loss

of kinetic energy per wave number is initially the same as
the power that was being supplied by the external forcing,
i.e.,

E(1)(k,t) =
⎧⎨
⎩

{
0 if t < t0
f ∗(k) if t = t0

for k < kc

0 for k � kc, t � t0.

(B5)

This can be introduced in Eq. (B4) to get [noticing that
f (n)(k > kc,t) = 0],

E(2)(k,t0) = T (1)(k,t0) for k > kc, (B6)

which in turn can be inserted back into Eq. (B1) to conclude
that, for k > kc

E(k,t) = E(0)(k,t0) + 1
2T (1)(k,t0) t2 + O(t3)

(B7)

T (k,t) = T (0)(k,t0) + T (1)(k,t0) t + O(t2).

Note that it is likely that T (1)(k,t0) �= 0 since the loss of
large scale kinetic energy K for t � t0 [c.f. Eq. (B5) for
k < kc] will likely have an immediate effect on the the energy
transferred to small scales, since as it is shown in the main
paper that � = ∫ kc

0 −T (k,t) dk ∼ K3/2/�, and therefore we
expect ∂�/∂t |t�t0 �= 0, which is supported by our data (see
Figs. 2 and 3).

We can multiply E(k,t) by 2νk2 to get the dissipation
spectrum and integrate Eq. (B7) over the wave numbers
kc � k < ∞, i.e.,

ε′ ≡
∫ ∞

kc

2νk2E(k,t) dk = ε′(t0) + 1

2

∂�

∂t

∣∣∣∣
t=t0

t2 + O(t3)

� ≡
∫ ∞

kc

T (k,t) dk = �(t0) + ∂�

∂t

∣∣∣∣
t=t0

t + O(t2), (B8)

which, due to the fact that �(t0) = ε′(t0), leads to the desired
result

�(t) − ε′(t) = ∂�

∂t

∣∣∣∣
t=t0

t + O(t2) for t � t0. (B9)
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