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Vorticity generation by the instantaneous release of energy near a reflective boundary
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The instantaneous release of energy in a localized area of a gas results in the formation of a low-density
region and a series of shock and expansion waves. If this process occurs near a boundary, the shock reflections
can interact with the density inhomogeneity, leading to the baroclinic generation of vorticity and the subsequent
organization of the flow into several structures, including a vortex ring. By means of numerical simulations we
illustrate the qualitative changes that occur in the pressure wave patterns and vorticity distribution as the distance
from the area of energy release to the boundary is varied. Those changes are shown to be related to the combined
effect of the shock waves that, respectively, initially move away and towards the center of the low-density region.
In particular, we describe how for small enough offset distances the shocks internal to the inhomogeneity can
make a substantial contribution to the vorticity field, influencing the circulation and characteristics of the resulting

flow structures.

DOI: 10.1103/PhysRevE.90.023002

I. INTRODUCTION

Processes such as the laser-induced ignition of combustible
mixtures [1], intense explosions [2], lightning [3], and the
plasma produced by particle or laser beams in the atmo-
sphere [4,5] are often described as the instantaneous release of
energy in a localized region of a gas. In some of those cases
the initial conditions can be approximated by an isothermal
sphere with the same density as the surrounding fluid but at
a higher pressure and temperature [1,6]. The discontinuity
in pressure at the surface of the sphere then generates an
expanding primary shock wave and an inward propagating
expansion and leads to the formation of a region of low density,
or bubble, centered around the original perturbation [2,7].
The configuration considered here also contains a boundary
[Fig. 1(a)], from which the primary shock generates a reflected
shock that propagates in the direction of the inhomogeneity
and interacts with it [Fig. 1(b)]. As described below, this
interaction and the presence of additional shock waves internal
to the inhomogeneity have a dominant effect on the vorticity
generated in the flow, which later determines the number and
characteristics of the flow structures that are formed.

The problem of the interaction of a shock wave with a
localized density inhomogeneity has received ample attention
because it has applications in shock-accelerated inhomo-
geneous flows and is relevant to numerous configurations
such as in supersonic combustion [8], inertial confinement
fusion [9], and most generally to those cases where shock-
induced instability plays a central role in the generation of
turbulence and mixing (see [10] for a review). The problem
considered here presents peculiar characteristics because of the
mechanisms generating the bubble and shock. The main shock
interacting with the bubble originates in the inhomogeneity
itself and shares with it its spherical geometry. This introduces
a dependence for the shock strength and its angle of incidence
at the time of the interaction that is different from the more
widely studied case of planar shock waves. Also, shortly after
the appearance of the primary shock, a second shock is formed
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between the contact surface marking the boundary of the
bubble and the tail of the internal expansion [11]. This shock
wave first propagates inward, increasing rapidly in strength as
it converges and reflects at the center of the bubble. When it
later reaches the density interface, it is refracted and generates
a third shock, which propagates towards the bubble center,
and a transmitted shock wave moving in the same direction as
the primary shock. The successive repetition of this process
results in a series of ancillary shocks of decreasing intensity
that emanate from the bubble. The presence of these waves
makes the density and entropy distributions inside the bubble
nonuniform and time dependent, differing from what we will
call the standard shock-bubble interaction problem. In that
case the inhomogeneities initially have uniform temperature
and density and are in thermal and mechanical equilibrium
with the surrounding gas [10]. In our case the combined effect
of the reflected and ancillary shocks results in a flow circulation
that depends on the distance to the boundary [denoted by H
in Fig. 1(a)] in a nonmonotonic way, even though the strength
of the reflected shock interacting with the bubble continuously
increases as H is reduced. Although the effects of the ancillary
shocks on the vorticity field have been considered in the past,
it was mainly for configurations where their contribution was
relatively small [12]. Our intention in this work is to illustrate
that the outcome can be substantially different if boundaries
are present in the proximity of the point where the energy is
released.

The analysis presented is based on the numerical calcula-
tions obtained with the scheme briefly described in Sec. II,
where we also give further details of the configuration and
approximations involved. Results will be shown for four values
of H that were found to be representative of the changes
that occur as the distance to the boundary is varied. The
wave patterns arising from the interaction of the shock waves
with the reflective boundary and bubble are described in
Sec. III. It is shown that the mutual effects of the reflected and
ancillary shocks can result in reflection and refraction patterns
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FIG. 1. (a) Cross section of the initial configuration. (b) Schematic representation of the primary and reflected shock waves.

that are sensitive to the value of H. In Sec. IV we present
the development of the bubble into several flow structures,
including vortex rings, and we discuss the variation in their
dimensions and motion. The calculated vorticity fields are
shown in Sec. V and are interpreted in terms of the interaction
of the bubble with the different shock waves, allowing us to
explain the differences in flow evolution as H is varied.

II. NUMERICAL SCHEME

In the computations presented here the effects of molecular
dissociation and ionization were not considered. We also
neglected thermal conduction and radiation, as in most
applications the associated time scales will be much larger
than those corresponding to the processes described here. The
system studied consisted of a one-component ideal gas with a
ratio of specific heats of 1.4, which was taken to be constant.
We also have assumed that the time scales involved were so
short that viscous and gravitational effects could be ignored.
Although these assumptions are likely to be invalid in many
practical cases, we believe the quantitative differences they
introduce do not affect significantly the characteristics of the
flow we describe here, as previous numerical and experimental
studies of similar configurations indicate [6,13]. The problem
was formulated in terms of the compressible Euler equations
and written in conservative form for the mass, momentum,
and energy in the gas [14]. Solutions to these equations
were obtained by means of the one-dimensional monotonic
upstream-centered scheme for conservation laws—Hancock
finite-volume scheme [15], using a Harten—Lax—van Leer—
contact Riemann solver and a monotonized central limiter [14].
This approach, which gives second-order accuracy in space
and time and good resolution of shock waves with low
numerical dissipation, was extended to three dimensions using
Strang splitting [16].

The initial configuration resulting from the instantaneous
release of energy was taken to be in the form of a uniform
spherical region with higher pressure and temperature than
the surrounding gas [Fig. 1(a)]. The equations of motion
were nondimensionalized using the radius of the sphere r,
the pressure Py, and density py of the unperturbed gas,
whose speed of sound ¢y was used to express the unit of
time as ry/co. Simulations were set in three dimensions, as
numerical studies [12,17] have shown that important features

are not captured in two-dimensional calculations. A uniform
Cartesian grid was used and zeroth-order transmissibility
boundary conditions were implemented on the surface of the
domain, except along the reflective boundary where infinite
acoustic impedance and free-slip conditions were applied. The
representation of the initial spherical bubble in a Cartesian
grid introduces asymmetric grid-scale perturbations, which
can later be amplified by instabilities in the flow, making it
three dimensional. The computational domain used measured
20r¢ in each direction, with the sphere centered in the plane
parallel to the boundary.

The spatial resolution of the results presented here was
chosen based on the requirement that the large-scale features of
the flow relevant to this work did not show substantial variation
with further refinement of the numerical grid. We have taken
into account both the number of flow structures and their
dimensions as points of comparison. As an example of this,
Fig. 2 shows two important parameters for the flow evolution:
the time required for the bubble to roll up into a vortex ring
(cf. Sec. IV) and the distance along the axis & between the
upstream and downstream portions of the density interface [see
Fig. 1(a) for the adopted upstream-downstream directions] at a
given nondimensional time t (equal to 27 in this case). These
results correspond to H = 2, which, among the parameter
values considered, shows the most variety in flow structures
during the roll-up of the bubble. The spatial resolution in Fig. 2
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FIG. 2. Variation of roll-up time and bubble length (in the
upstream-downstream direction) as a function of the grid resolution
for H=2and v = 27.
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FIG. 3. Examples of the radial distributions of (a) pressure and (b) temperature centered around the bubble, in the absence of the solid

boundary. Different curves correspond to different times.

is given in units of 7y and the measured values are normalized
with respect to those for a 0.01r, resolution. From these and
similar quantitative results, it was decided that a resolution
of 0.02r¢ was an adequate balance between numerical costs
and accuracy of the solutions given the available computational
resources and it has been used for the results presented here. As
it has been previously described [18], there are indications that
the solution of the initial-value problem for the compressible
Euler equations in the presence of vortex sheets will not
converge when obtained with the numerical methods used here.
It can then be expected that the small-scale features resulting
from the shock-bubble interaction will continue changing
as the resolution is increased. Nevertheless, we believe that
those variations will not qualitatively change the functional
dependence of the flow characteristics with H, which are the
subject of this work.

Initially the gas was defined as quiescent and inside the
sphere the density was considered to be uniform and equal to
po, while the pressure was defined as P; = 35 Py. This pressure
ratio is an independent parameter in this configuration and
different values will change the scalings in the problem and
the values of H at which transitions to different regimes are
observed. Results are presented below for four values of H,
namely, 4, 3, 2.4, and 2, which were found to be representative
of the principal changes in the flow pattern and vorticity
distribution as H is varied.

III. EVOLUTION OF SHOCK WAVES AND THEIR
INTERACTION WITH THE BUBBLE

As the primary shock wave moves ahead of the bubble
surface, a rarefaction expands towards its center and leads
to the formation of a region of low density around the
original perturbation. For this type of configuration it has been
shown [19,20] that in spherical and cylindrical geometries the
dependence of the volume differential on the radius results in
a pressure at the tail of the rarefaction that is lower than that
behind the expanding shock, leading to a pressure discontinuity
and the formation of an extra shock. This second shock is the
first in a series of ancillary shocks that have been observed
in numerical simulations, for example, of detonation of high
explosives [21], the development of “hot channels” [12], and
experimentally in the sudden release of high-pressure gas
spheres [22,23]. Since the characteristics of the reflection of

the primary shock along the boundary have been described
in the past [24,25], the main focus here is going to be on
the interaction of the reflected shock with the bubble and the
contribution of the ancillary shocks to the wave patterns.

In the absence of the external boundary, the spherical
symmetry of the initial configuration would be preserved at
early time and examples of the calculated radial distributions
of pressure and temperature as a function of time are shown in
Fig. 3. For T = 0.3 the primary shock can be seen moving
away from the bubble, while the second shock converges
towards its center. At time 7 = (.7 the second shock has
already reflected off the center, leaving around it a region
of high temperature or core. In Fig. 3(b) the large temperature
gradients at the bubble surface and core can be seen. The
inward propagating third shock and the diverging second
and primary shocks are shown in Fig. 3(a) for t = 1.3. The
refraction of the third shock at the bubble surface occurs at
7 = 1.9 and thereafter a fourth compression wave appears
that can be seen propagating towards the center of the bubble
for r = 2.4. The high temperature at the core shows maxima
of decreasing amplitude with the passage of the successive
ancillary shocks. For all the values of H considered, steep
temperature and density gradients remained in that region
during the time of the interaction between the reflected shock
and the bubble. The presence of the core is one of the distinctive
features of the problem considered here in comparison with
the standard shock-bubble interaction and it will be shown
in Sec. IV that it leads to the formation at later time of an
additional vortex ring. The radial positions in time of the
primary and ancillary shock waves, as well as that of the
contact surface, are shown for the free-space configuration in
Fig. 4, where it is easy to visualize the successive generation
of the ancillary waves following their refraction at the bubble
surface. When the release of energy occurs near a reflective
boundary, eventually the reflected shock will interact with the
surface of the bubble. There it will be refracted because of
the mismatch in acoustic impedances on both sides of the
interface, resulting in the formation of a transmitted shock
and complex pattern of additional waves and contact surfaces.
From this time onward the bubble loses its spherical symmetry
and the development of the ancillary shocks and the interface
will depart from that presented in Fig. 4.

The initial refraction of the reflected shock at the bubble
surface is of the slow-fast type, with the wave transmitted
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FIG. 4. Radial position with time of the contact surface and the
primary and ancillary shocks.

into the bubble moving at higher speed than the incident
wave [17,26]. The parameters that affect the refraction of
a shock at an interface are the angle of incidence, the
strength of the shock, and the material properties [27,28]. The
equations describing the refraction process present singular
behavior at certain parameter values that mark the transition
between different patterns [27]. We can then expect that
variations in the initial location of the bubble with respect
to the boundary, and the effect this has on those parameters,
will result in important changes in the observed charac-
teristics of the refraction process and the subsequent flow
evolution.

Several studies have been concerned with the interaction
of planar shock waves with planar material interfaces. They
have looked at the refraction patterns for a discrete number
of shock strengths and angles of incidence, as well as various
material configurations [26,29]. It has been shown that for
small angles of incidence «;, the configuration corresponds to
a regular refraction, where the incident i, transmitted 7, and
reflected r waves meet at a point on the interface [Fig. 5(a)].
In the slow-fast configuration, ¢ is a shock and r an expansion
and with increasing ¢;, a critical value is reached where the
regular refraction configuration ceases to be compatible with
the boundary conditions at the waves and interface and an
irregular refraction pattern takes its place. In fact, for larger
o; several critical angles can be determined that describe
transitions between different irregular configurations [29]. The

(a)

Interface

PHYSICAL REVIEW E 90, 023002 (2014)

order in which these occur and the angular ranges for which
they are valid depend on the characteristics of the media
involved and the strength of the incident shock. Although
several irregular wave configurations have been identified for
slow-fast interfaces, in simplified form they can be classified
on the basis of the strength of the incident shock as the
weak or strong type (Fig. 5) because of the parallels they
present with the classification of irregular patterns in shock
reflections [26,29,30]. In our case, the interface and the shock
front are curved and the angle of incidence and consequently
the nature of the refraction process change as the reflected
shock expands and the contact point moves along the surface
of the bubble.

In Fig. 6 details of the shock and bubble interaction patterns
are shown for decreasing values of H. The continuous lines
are isobars in logarithmic scale, while the noncontinuous lines
are isotherms used to demarcate the surface of the bubble
(denoted by C in some of the figures). In Fig. 6(al) (H = 4)
we have indicated the primary (P) and reflected (R) shocks,
the transmitted shock (t), and the expansion (r) reflected from
the bubble surface. This configuration corresponds to a regular
shock refraction, which is also observed at the beginning of
the shock-bubble interaction for the other values of H. Also
visible are two other shocks following the primary shock,
which are the second (SS) and third (T) shocks, that have
left the bubble at times T = 0.9 and 1.8, respectively, before
the reflected shock reached the interface at T = 2.5. In the
region between the reflected shock and the boundary, several
new waves and contact surfaces appear from the interaction
between the reflected shock with the second and third shocks,
and their respective reflections from the boundary. As the
reflected shock continues its interaction with the bubble and
the angle of incidence increases, a transition to a weak type of
irregular refraction configuration occurs. The transmitted wave
now moves ahead of i and r along the interface, becoming
a precursor [Fig. 5(b)]. The fast-slow refraction of 7 at the
interface gives place to the evanescent wave s outside the
bubble. This wave interacts with i (and subsequently with r)
and forms the shock k, as shown schematically in Fig. 5(b).
This transition can be seen in Fig. 6(a2), where the different
waves are identified. The resulting configuration has similar
characteristics to the free precursor von Neumann refraction
pattern observed by Henderson et al. [26,30] for the slow-fast
refraction of weak shocks.

In the case H = 3, the reflected shock reaches the interface
at T = 1.2, after the second shock but before the third shock
has left the bubble. Now, as time progresses and because of
the higher strength of the reflected shock, the regular refraction

FIG. 5. Schematic representation of the (a) regular, (b) weak irregular, and (c) strong irregular refraction patterns.
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FIG. 6. Details of the pressure field around the bubble depicted
with isobars on a logarithmic scale. The rows (a)—(d) correspond to
H equal to 4, 3, 2.4, and 2, respectively. The time of each plot is
indicated in the lower right corner.

pattern evolves into the strong irregular configuration shown
in Figs. 6(b1) and 7, and schematically in Fig. 5(c), where the
wave s is a shock and n is a Mach stem. From the interaction
of s with n, a wave r’ appears and its reflection off the bubble
surface results in an expansion. In this configuration there
are two triple points and associated contact surfaces [C; and
C, in Fig. 5(c)] and it bears similarities to the twin Mach
reflection-refraction pattern observed by Henderson et al. [26]
for strong shocks. When the third shock leaves the bubble (t =
1.9) and later reaches this refraction pattern, it strengthens the
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FIG. 7. Detail of the irregular shock refraction pattern in
Fig. 6(b1).

different waves and makes them more inclined towards the
flow [Fig. 6(b2)]. For H = 2.4, the second shock reaches the
upstream portion of the interface after it has been deformed
by the reflected shock in a regular refraction configuration
[Fig. 6(cl)]. At later times the irregular refraction pattern
that emerges is similar to that seen for H = 3, but with
the reflected wave r having merged with the second shock
[Fig. 6(c2)]. For H = 2, the reflected shock wave reaches the
surface of the bubble at T = 0.4 and a transition to a strong
irregular refraction pattern occurs before the second shock has
gone through the interface. At a later time, the second shock
catches up with the external twin Mach reflection-refraction
configuration [Fig. 6(d2)], strengthening it and eventually (not
shown) leading to the merger of the n wave with the Mach stem
in contact with the boundary (originating from the irregular
reflection of the primary shock).

The evolution of the transmitted shock after the transition
to an irregular refraction pattern is similar in all the cases
considered. When this wave reaches the core of the bubble,
a further refraction process occurs [e.g., Fig. 6(d1)], although
the shock strengths and the magnitude of the density gradients
involved are lower. Later, when the transmitted shock arrives
at the downstream surface of the bubble, a weak shock wave
is reflected (as this is a fast-slow type of refraction), which
is focused and later diverges, propagating in the upstream
direction and producing further reflections and waves with
decaying intensity. As the third and consecutive ancillary
shocks originate in reflections from the bubble surface, they
cease to be spherical after this interface has been deformed
by the reflected shock. This loss of radial symmetry is
compounded by the changes in gas conditions inside the
bubble after the passage of the transmitted shock and the waves
derived from it. This causes different parts of these ancillary
waves to travel at different speeds and to converge as curved
fronts towards the center of the bubble, where they are also
refracted at the core. Examples of the asymmetric third shock
(labeled T) converging near the center of the bubble can be
seen in Figs. 6(c2) and 6(d2).
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IV. BUBBLE EVOLUTION

The complex pattern of shocks, expansions, and contact
surfaces described above is a general feature of the scattering
of a shock wave by a bubble [31,32]. As a consequence of
this interaction, vorticity is generated on the bubble surface by
the baroclinic mechanism, but it can also be produced in the
rest of the flow because of the curvature of the shock fronts,
the nonuniformity of conditions in the fluid, and the presence
of triple points and the associated contact discontinuities and
shear layers [33]. In our case, with a higher speed of sound and
lower acoustic impedance inside the bubble, the configuration
is usually described in the literature as the interaction of a
shock wave with a light or divergent bubble [10,31,34]. It
has been found in experimental and numerical studies of the
standard shock-bubble problem that, during its interaction with
the shock, the inhomogeneity is compressed and accelerated in
the direction of shock propagation and at least one vortex ring
is formed following the roll-up of the unstable shear layer on
the bubble surface [10]. Several approximate analytical models
have been proposed that predict the velocity and circulation
of this vortex ring with a varying degree of success [17],
but they rely on important simplifying assumptions about
the distribution of baroclinically generated vorticity on the
surface of the bubble [10,17]. As shown below, the use of
these approximations for the configuration considered here
is limited because of the more complex vorticity field and
its sensitivity to variations in the offset distance H from the
bubble to the boundary.

In Fig. 8 we used isothermal curves as a way of visualizing
the evolution of the bubble with time. The figures are slices
of the three-dimensional results containing the initial axis
of symmetry [marked % in Fig. 1(a)], with the reflecting
boundary located at the bottom, i.e., in a similar configuration
to that in Fig. 1. At the earliest time shown for each H (the
first column) the transmitted shock has already completed its
transit through the bubble and clearly visible are the deformed
bubble surface and core. The figures in the second column
correspond approximately to the time at which the upstream
section of the bubble surface impinged on the downstream
part of the interface. The other times in Fig. 8 were chosen
to better illustrate important changes in the characteristics
of the bubble. In the case H =4 [Fig. 8(a)], the evolution
has similar characteristics to that observed experimentally
and numerically by Ranjan er al. [35] when they studied the
interaction of a helium bubble in air with a planar shock
wave with Mach number 1.45. As described there, vorticity
is generated baroclinically over the surface of the bubble
from the interaction of the local density gradient and the
pressure gradient at the shock front, making the density
interface elongate in the direction of the shock propagation
and roll up into a kidney shape. Two main structures emerge
at later time: the one downstream [upper part of Fig. 8(a4)]
containing a minority fraction of the mass of the bubble,
the remainder of which is located upstream in a lobelike
structure [labeled L in Fig. 8(a4)]. In our case two vortex
rings with circulation of the same sign but different intensity
are contained in the downstream structure. We denote these
as primary and secondary rings, respectively, indicated by
P and S in Fig. 8(a4). For this value of H we found that
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the downstream structure propagates away from the boundary,
while the lobe remains practically stationary. In all the cases
considered here, most of the mass in the downstream structure
and the highest proportion of the vorticity generated on the
bubble surface are contained in the primary vortex ring, which
plays the same role as the main vortex ring described in the
standard shock-bubble interaction problem. On the other hand,
we found that the vorticity and mass around the core of the
bubble are responsible for the formation of the secondary
vortex ring.

For H = 3 [Fig. 8(b)], the early evolution of the interface
parallels that for H = 4, but differs at later time when the
two main distinct structures are formed. In this case the
evolution is congruent with that found in the experiments
by Ranjan et al. [35] for a shock wave with Mach number
2.08. The distribution of bubble mass is substantially altered
from the case H =4, with most of it now contained in
the downstream structure, which is connected to the lobe
by a region of bubble material or strand [shown as B in
Fig. 8(b4)]. A similar redistribution of bubble mass has been
observed in experimental studies of the standard shock-bubble
problem [35,36] for increasing Mach number of the incident
shock and in our case this is compatible with the higher strength
of the reflected shock as H is reduced. It can also be seen in
Fig. 8 that for H = 3 and lower [Figs. 8(b)-8(d)], the flow
becomes increasingly asymmetrical and the more complex
pattern of the isotherms indicates an enhanced entrainment of
the surrounding gas by the bubble. In terms of the distribution
of bubble mass, the same trend continues for H = 2.4, with
almost all of the mass now contained in the primary vortex ring,
the upstream structure having almost disappeared [Fig. 8(c4)].
Now the velocity of propagation of the primary vortex ring has
decreased substantially, which will be shown to be caused by a
marked reduction in its circulation. The velocity of propagation
of the second vortex ring is not affected in the same way, which
leads to a larger separation from the primary ring [Fig. 8(c4)].

An important change in the bubble evolution is shown in
Fig. 8(d) for H = 2. As for larger values of H, the interaction
with the reflected shock results in the initial flattening of the
upstream part of the bubble surface, but in this case this part
of the interface is seen later to protrude towards the boundary
[Fig. 8(d1)]. Eventually a region of bubble material separates
from the rest [Fig. 8(d2)] and forms a stem [marked by T in
Fig. 8(d3)]. At later time, reversing the trend seen for larger H,
there is an increase in the proportion of bubble mass contained
in the upstream structure [Fig. 8(d4)]. The secondary vortex
ring is now found to move towards the boundary, indicating a
change in the sign of its circulation, and the primary vortex ring
presents a more clearly defined core and a higher propagation
speed than in the H = 2.4 case.

V. VORTICITY DISTRIBUTION

We now relate the characteristics of the vorticity field to
the bubble evolution described in Sec. IV. Figure 9 shows the
vorticity fields for the same parameter values considered in
Fig. 8. The plots show the azimuthal component of the vorticity
(in the direction perpendicular to the figures), with different
skewed scales used in each case to emphasize its positive
(light) and negative (dark) sign distributions. At the first point
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FIG. 8. Isothermal curves depicting the time evolution of the bubble. Rows (a), (b), (c), and (d) correspond to values of H equal to 4, 3,
2.4, and 2, respectively. The time of each plot is indicated at the top right corner. The size of the domain shown is the same in all cases and
corresponds to 16ry in height and 12r in width.
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FIG. 9. Component of vorticity in the direction perpendicular to the figures for different times (indicated at the top right corner). Rows (a),
(b), (c), and (d) correspond to values of the H equal to 4, 3, 2.4, and 2, respectively. The scales have been skewed to highlight the differences
in sign. Domain sizes are the same as in Fig. 8.
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of contact between the reflected shock and the interface, the
pressure and density gradients are parallel and no vorticity
is generated baroclinically. As the interaction progresses the
angle of incidence increases and after the transition to an
irregular refraction pattern, the generation of vorticity is
mainly driven by the transmitted shock [37]. The intensity of
the vorticity production then decreases as this wave weakens
and becomes increasingly normal to the interface. This results
in a vorticity distribution concentrated in the upstream part of
the density interfaces, both around the surface and the core of
the bubble and with a maximum near the point where the shock
refraction ceases to be regular. During the roll-up motion,
a secondary vorticity is generated by the vortex accelerated
vorticity deposition (VAVD) mechanism described by Peng
et al. [38] and associated with the centripetal acceleration of
the density interfaces. In the downstream hemispheres, this
vorticity has opposite sign to that produced by the reflected
and transmitted shocks and eventually overtakes it (cf. the first
column in Fig. 9).

In simple terms, during the roll-up process, the bubble is
stretched and the original upstream part of the density interface
moves downstream and takes with it part of the bubble mass,
while the downstream part of the interface is driven in the
upstream direction and forms the lobe with the rest of the
bubble material. Parts of the bubble surface stretched during
the roll-up process are found to form the strands connecting
the two structures. The resulting vorticity distribution between
the primary ring and the lobe then relates to that deposited
baroclinically, both by the shocks and the VAVD mechanism,
on the upstream and downstream regions of the bubble surface.
In our case, because of the presence of the bubble core, the
initial generation of vorticity could be depicted as resulting
from the interaction of a shock wave with a bubble inside a
bubble, making the roll-up process more complex and difficult
to describe than the more widely studied case of a uniform
inhomogeneity. However, we have been able to follow the
evolution of the patches of vorticity during this process and
found that those formed on the surface of the bubble are the
main source of vorticity for the primary vortex ring, while the
vorticity generated near the core is driven downstream by
the roll-up motion and ends up mainly in the secondary
ring. For H = 3 and lower, vorticity of opposite sign is also
generated on the two shear layers associated with the triple
points in the strong irregular refraction pattern [denoted by
C; and C; in Fig. 5(c)], as can be seen in Figs. 9(b)-9(d).
The folding of these layers around the upstream surface of
the bubble during the roll-up motion results in an arrangement
of three shear layers in close proximity and with vorticity
of alternating sign. These regions of high Kelvin-Helmholtz
instability are found to increase the entrainment of surrounding
gas by the downstream and upstream structures and the
irregular strands connecting them [cf. Figs. 8(b4) and 9(b4)].

We now consider in more detail the effect of decreasing
H on the vorticity distribution. As the bubble is initialized
closer to the boundary, it is reached by the reflected shock at
an earlier time and with a higher strength, resulting in a more
intense baroclinic deposition of vorticity at the bubble surface
and core and a higher circulation in the two downstream
vortices. This higher magnitude of vorticity is able to drive
more mass from the original bubble into the downstream

PHYSICAL REVIEW E 90, 023002 (2014)

Tf-/

FIG. 10. Distribution of the component of vorticity perpendicular
to the figures around the upstream section of the bubble surface: (a)
after the interaction with the reflected shock (z = 0.7) and (b) after
the interaction with the second shock (t = 1.2).

structure, which explains the differences in mass distribution
between H =4 and 3. In those two cases the second shock
leaves the bubble before it has been reached by the reflected
shock and due to the collinearity of the density and pressure
gradients, no vorticity is produced baroclinically during this
interaction. The situation is different for H = 2.4 and 2, as
now the reflected shock deforms the bubble surface before
the passage of the second shock [Figs. 6(cl) and 6(d1)] and
the interaction of the interface with these two waves results
in the generation of opposite-signed vorticity. This process can
be seen in more detail in Fig. 10 for H = 2, where we show the
vorticity field around the upstream part of the bubble surface.
Clearly visible for T = 0.7 [Fig. 10(a)] are the second (SS) and
transmitted (t) shocks inside the bubble and the distribution of
vorticity deposited by the reflected (R) and transmitted shocks
on the interface (C). For T = 1.2 [Fig. 10(b)], the second
shock is close to the boundary after being refracted at the
bubble surface, which now shows four regions of vorticity
with alternating sign. These later bind into the two spikelike
structures that can be seen in Figs. 8(cl) and 8(dl) and
Figs. 9(c1) and 9(d1). On the left hemisphere of the bubble
the vorticity generated by the reflected shock drives the bubble
surface to rotate in the counterclockwise direction, while the
vorticity generated by the second shock drives this region of
the interface towards the boundary. The relative magnitude of
these two effects determines the evolution of the surface of the
bubble, as the contrast between Figs. 8(c2) and 8(d2) shows. In
the case H = 2.4, the vorticity generated by the reflected shock
dominates and the bubble follows the same roll-up process as
for higher H. Howeyver, the primary vortex ring now contains
similar amounts of opposite-signed vorticity, which results
in low circulation and velocity of propagation. The vorticity
deposited in the core of the bubble is not affected in the same
way by the second shock and this is reflected in the difference
in circulation and the larger separation between the two vortex
rings [cf. Fig. 8(c4)]. When H is decreased to 2, the strengths
not only of the reflected but also of the second shock increase,
as the interaction of the latter with the interface occurs closer
to the bubble center. The dominant factor in determining the
vorticity distribution compared to H = 2.4 appears to be the
more pronounced deformation of the bubble surface before it
is reached by the second shock, as can be seen from Figs. 6(c1)
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and 6(d1). After this enlargement of the area of the interface
that has been flattened, the vorticity deposited on it by the
second shock has enough intensity to cause its separation from
the rest of the bubble, forming the stem. This vorticity does
not count towards the circulation in the primary vortex ring,
which now contains in its core vorticity that is mainly single
signed [Fig. 9(d3)], although its circulation is reduced with
respect to the cases H = 4 and 3.

A further characteristic that can be observed in Fig. 9(d2)
is a region between the cores of the primary ring, in which the
vorticity has opposite sign to that generated by the reflected
and transmitted shocks. We found that this is caused by the
flow pattern induced during the formation of the stem and the
associated VAVD mechanism. This vorticity is later displaced
downstream by the roll-up motion and interacts with the
secondary vortex ring, changing the sign of its circulation and
causing it to propagate towards the boundary, as described in
Sec. IV. It can also be seen in Fig. 9(d2) that in this case the
shear layers that originate in the irregular refraction pattern of
the strong type remain attached to the stem, thus reducing their
effect on the bubble during the roll-up process, and leading to a
more coherent vorticity distribution in the core of the primary
vortex ring.

To better characterize the changes in the evolution of
the bubble in terms of the vorticity field, we calculated the
circulation contained in the flow by numerically approximating
the surface integral

Iy =/a)dS, (1)

where w is the azimuthal component of the vorticity and the
integration area corresponds to half of the cross sections planes
used in the figures, i.e., the regions delimited by the ¥ axis, the
boundary, and the top and lateral limits of the computational
domain. The values of I'; were obtained for t = 80, after
the most intense shock waves had left the domain such that
their contribution could be neglected [12,39]. For each H, an
average value was obtained from measurements taken on eight
different planes around the % axis and separated by regular
angles. The computed values of I'; as a function of H are
shown in Table I normalized by their value for H = 4. It can
be seen that there is an increase in circulation between H = 4
and 3, which is compatible with the higher intensity of the
reflected shock and the enhanced production of vorticity by
the baroclinic mechanism. This is also in line with what was
found in experimental studies of the standard shock-bubble
interaction [35]. However, in contrast to that case, here this
trend is eventually reversed as H is reduced because of the

TABLE 1. Values of the circulation obtained by integration of
the vorticity field I'; and using the temporal duration of the roll-up
process I'r for each H. The measured Az, L, and W used to calculate
'y are also listed.

H T, At L w Iy
4 1 22.7 42 5 1

3 1.1 20.7 4 5 1.1
24 0.7 37.6 3.7 5 0.5
2 0.1 28.5 3.6 5 0.7
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generation of opposite-signed vorticity by the second shock,
as exemplified by the H = 2.4 and 2 cases.

The values of I'; are global in the sense that they include the
contributions of all the vortical structures in the computational
domain, including the stem in the case H = 2. To consider
only the circulation involved in the creation of the primary
vortex ring, we used an alternative approach based on the
temporal duration of the roll-up stage. We will assume here
that all the dependence on H is contained in the circulation
left in the bubble by the time the transmitted shock has
crossed the downstream interface. Then the configuration can
be described by two characteristic lengths: the bubble height L,
in the upstream-downstream direction, and its width W, after
it has been compressed by the reflected shock. It has been
shown by Yang et al. [8] that after a shock-bubble interaction,
similarity in the flow structures can be observed in terms of a
characteristic time defined by

. LW
T = —, 2
Iy
where 'y is the baroclinically deposited circulation in the
bubble. It was described and verified in that work that for
different shock strengths and density gradients, the same point
in the bubble evolution is observed at the same time, when this
is expressed in units of t*. Although in our case two vortex
rings are formed during this stage, we assume here that the
influence of the secondary ring on the roll-up of the bubble
can be neglected and that the idea of similarity is still valid.
We measured for each H the time elapsed At between
the moment the transmitted shock left the bubble to the point
when the upstream part of the bubble surface impinged on the
downstream interface. Under the assumption of similarity, the
ratio of At for two values of H should be equal to the ratio
of the corresponding t*. By using (2) and measurements of
AT, L, and W, the ratios of I'y to its value for H = 4 were
estimated and are shown in Table I. While for H = 3 and 2.4,
the behavior of I'r parallels that of I';, the increase in 'y
for H = 2 is an indication that the vorticity generated by the
second shock, which leads to a decrease in I';, does not have
the same impact on the circulation of the primary vortex ring.
As described above, this behavior is caused by the separation
of the regions containing vorticity of opposite sign during the
formation of the stem. While in the standard shock-bubble
problem the circulation in the primary vortex ring increases
monotonically with the strength of the shock [35], our results
show that for this configuration it has a substantially more
complex dependence on the distance H.

VI. CONCLUSION

We have described the early evolution of the low-density
inhomogeneity induced in a gas by an instantaneous release
of energy near a reflective boundary. We highlighted the
qualitative differences between this configuration and the
standard shock-bubble interaction problem, mainly in terms
of the presence of the ancillary shocks and the nonuniform
conditions inside the bubble. We illustrated the changes that
occur in the flow structures and vorticity distribution as the
distance to the boundary is varied and related those changes
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to the baroclinic generation of vorticity by the reflected and
second shocks at the bubble surface and core.

We showed four examples that highlight the sensitivity of
this process to changes in the offset distance H and it has been
explained how these variations relate not only to the strength
of the reflected shock but also to the time when this wave
reaches the bubble. For H =4 and 3 the interaction of the
inhomogeneity with the reflected shock bears similarities to
that observed for planar shocks and uniform bubbles, where
two main flow structures are formed, a primary vortex ring and
an upstream lobe. The amount of circulation and the share of
bubble mass contained in the former increase with the strength
of the reflected shock and the amount of vorticity it generates,
a picture that persists for the cases with H > 4 we have
looked at. However, we have shown that this trend eventually
changes as H is reduced, with the observed decrease in total
circulation attributed to the baroclinic production of vorticity
by the second shock. This can only occur if the reflected
shock deforms the bubble surface prior to its interaction with
the second shock and in the case H = 2.4 the combination
of vorticity of opposite sign originating from each of these
two waves results in a significant reduction in the circulation
contained in the primary vortex ring. It is worth noting that
for H = 3 there is a similar interplay between the surface
of the bubble and the reflected and third shocks (instead of
the second shock), but the rapid decrease in intensity with the
increasing order of the ancillary waves results in changes to the
circulation and bubble evolution that are substantially weaker.
When H is lowered further the diminution in total circulation
continues and eventually a point is reached at which the area
of the interface where vorticity is generated by the second
shock separates from the rest of the bubble, thus reducing its
effect on the primary vortex ring. While we have carried out
computations for values of H lower than 2, we have found that
as the intensities of the multiple wave reflections and ancillary
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shocks increase, their interactions with the bubble result in
very complex vorticity fields at early time. These can only
be studied with the substantially higher spatial and temporal
resolutions that are beyond the numerical capabilities used for
this work.

The existence of ancillary shock waves is a basic property
of configurations where energy is introduced in a three-
dimensional region during a time that is short relative to the
hydrodynamic time scales. In the presence of a boundary and a
reflected shock, it can be expected that similar characteristics
of the bubble evolution as described here will be observed.
In particular, the nonmonotonic variation with H of the
circulation contained in the primary vortex ring, which is
not observed in the standard shock-bubble problem, relates
to the order in which the primary and second shocks interact
with the bubble surface. As a result, this will be a generic
effect for this type of configuration, although the values of
the parameters at which the different transitions occur will
vary in each individual case. While in this study we have
focused on the early generation of the large-scale vortical
structures, at later times, when diffusion and gravitational
effects become important, the characteristics of the described
vorticity distribution, as well as its sensitivity to the value
of H, will have an effect also on the development of
small-scale motions and secondary instabilities. Consequently,
the processes presented here should be taken into account
when considering similar configurations where the amount of
circulation and mixing in the flow play an important role.
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