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Photoacoustic radiation force on a microbubble
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We investigate the radiation force on a microbubble due to the photoacoustic wave which is generated by using a
pulsed laser. In particular, we focus on the dependence of pulsed laser parameters on the radiation force. In order to
do so, we first obtain a new and comprehensive analytical solution to the photoacoustic wave equation based on the
Fourier transform for various absorption profiles. Then, we write an expression of the radiation force containing
explicit laser parameters, pulse duration, and beamwidth of the laser. Furthermore, we calculate the primary
radiation force acting on a microbubble. We show that laser parameters and the position of the microbubble
relative to a photoacoustic source have a considerable effect on the primary radiation force. By means of recent
developments in laser technologies that render tunability of pulse duration and repetition frequency possible, an
adjustable radiation force can be applied to microbubbles. High spatial control of applied force is ensured on
account of smaller focal spots achievable by focused optics. In this context, conventional piezoelectric acoustic
source applications could be surpassed. In addition, it is possible to increase the radiation force by making source
wavelength with the absorption peak of absorber concurrent. The application of photoacoustic radiation force
can open a cache of opportunities such as manipulation of microbubbles used as contrast agents and as carrier
vehicles for drugs and genes with a desired force along with in vivo applications.
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I. INTRODUCTION

In recent years, photoacoustic imaging (PI) has
evolved parallel to the drastic advances in lasers and ultrasonic
transducers [1–14]. Photoacoustic imaging, which may be
employed either as tomographic or microscopic imaging, uses
absorption of the photon energy to produce contrast between
absorbing and nonabsorbing media [15]. A short laser pulse is
sent to an imaging sample, and thermal expansion occurs in the
focal point of the laser. As a result of the thermal expansion, a
pressure wave is generated and propagates through the medium
to be received by ultrasonic transducers. Here pulse duration
of the laser is required to be sufficiently short to ensure thermal
confinement and stress confinement conditions [12].

Photoacoustic imaging has various applications from mate-
rial characterization to biomedical sciences [16–21]. PI takes
the advantage of high optical contrast and high ultrasonic
resolution [22]. Besides, PI is safe for in vivo tissue imaging
since it has a nonionizing absorption mechanism. Considering
these particular advantages, PI is a promising technique for
biomedical optics [23,24].

Resolution and contrast of PI depend primarily on laser
parameters. Thus, developing a model that reveals the depen-
dency of the photoacoustic signal on laser parameters will lead
researchers to achieve optimal values for different applications.

Many authors have been working on the generation of
photoacoustic signals. For example, Sigrist and Kneubühl [25]
developed a model for Gaussian radial profiles; however, their
model does not contain explicit pulse duration dependency. Lai
and Young [26] presented a theory of the pulsed photoacoustic
method for a weakly absorbing liquid. They studied the analyti-
cal and numerical results for laser beams with Gaussian shaped
temporal and radial profiles using the far-field approximation.
Their results are derived for cylindrical acoustic waves stimu-
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lated by a pulsed laser. In addition, Hoelen et al. [2] developed
Sigrist and Kneubühl’s models [25] and obtained pressure
distribution depending on radius for a Gaussian spatiotemporal
source formation. They used spherical, cylindrical, and planar
absorption distributions. Their approach is to convolve the
solution of photoacoustic wave equation for Dirac delta exci-
tation with a pulsed signal of finite duration in time domain.
For low frequencies, Diebold et al. [27] derived theorems in
one, two, and three dimensions for short pulse excitation of
fluid bodies and obtained the photoacoustic wave as a mapping
of the spatial distribution of heat generated by the excitation.
Moreover, Inkov et al. [28] studied the acoustic problem of
thermo-optical sound excitation in an inhomogeneous medium
for a one-dimensional case taking into consideration that
the photoacoustic effect is in the linear regime. Applying
boundary conditions, they solved the photoacoustic wave
equation utilizing the integral of the distribution of heat sources
of an absorbing particle in a liquid. Kozhushko et al. [29]
presented a theory of the excitation of a photoacoustic transient
by an object with a Gaussian distribution of photoacoustic
sources approximating the temporal profile by the Dirac δ

distribution. They also investigated a single array element
response coming from an arbitrarily located point source
experimentally. Diebold and Westervelt [30] examined the
photoacoustic effect generated by a spherical droplet in a fluid.
They obtained frequency domain and time domain pressure
wave solutions to a boundary-value problem for a light pulse
represented by the Dirac δ function. Calasso et al. [31] obtained
the far-field d’Alembert solution to the photoacoustic wave
equation for a nonlinear source term using Laplace transform.
Wang [12,24] also studied the photoacoustic equation for
Dirac δ point distributions of the spatiotemporal profiles.
Anastasio et al. [32] studied the photoacoustic tomography
image reconstruction problem using the Fourier transform
and time-harmonic inverse source concepts. They obtained
a mathematical expression giving a relation between the pho-
toacoustic pressure wave-field data and the three-dimensional
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Fourier transform of the optical absorption distribution. They
also derived exact and approximate analytic reconstruction
formulas.

It is well known that acoustic waves apply primary and
secondary forces on acoustic absorbers due to the exchange
of momentum. These forces have been investigated in the
literature extensively. An important example is the acoustic
forces on a microbubble [33–39]. These forces affect the
motion of the microbubbles considerably. The microbubbles
treated as compressible spheres are used as contrast agents
to increase the intensity of scattered echoes from blood.
The microbubble is mainly composed of gas enclosed by
albumin [34].

Leighton [33] and Dayton et al. [34] studied the effect of
the primary and the secondary radiation force on microbubbles
both theoretically and experimentally. They showed that the
displacement due to the primary force is linearly dependent on
the pulse repetition frequency and nonlinearly dependent on
the acoustic pressure wave.

Applying the primary radiation force, the flow of microbub-
bles can be manipulated to improve image quality and drug
delivery. Microbubbles are selected through the vasculature of
tumor because of their micron size, enhancement of cell mem-
brane, and vascular permeability by insonated microbubbles
is also presented. Because of those properties, they have been
proposed as carrier vehicles for drugs and genes [40,41]. Thus,
manipulation of microbubbles to the location of interest in the
body is of paramount significance. Jones and Stride showed
experimentally that ultrasound contrast agent microbubbles
can be trapped in three dimensions using optical tweezers to
confine the microbubble. They also measured the maximum
transverse drag force that is necessary to trap the microbubble
before it escapes [42].

Besides primary or secondary forces, the manipulation or
encapsulation of cells can be achieved by utilizing photoacous-
tic tweezers. Zharov et al. [43] presented a nonionizing optical
technique to control particles by using a pulsed laser. Due to the
photoacoustic pressure wave created in an absorbing medium,
the manipulation of the particle around the medium can be
provided. They presented a force expression introducing the
action of the acoustic field with time-averaged kinetic and
potential energy densities in the acoustic wave. They also
validated their results by conducting experiments.

It is important to note that in the above literature, acoustic
radiation force is generated by an ultrasound transducer.
Usually a pulser-receiver is used to generate the acoustic wave
in the range of 1 to 10 kHz. Therefore, the tunability of the
force is limited by the frequency of the transducer and the
repetition rate of the ultrasound source.

In contrast, the acoustic wave generated by a pulsed laser
offers a much wider range of tunability of the radiation force.
Adjusting the laser parameters such as beamwidth, pulse
duration, and repetition rate enables a controllable force that
can be used to manipulate micron-sized acoustic absorbers.

We establish an explicit link between the pulsed laser
parameters and the photoacoustic radiation force. In order
to accomplish this, we first solve the photoacoustic wave
equation analytically without the far-field approximation. This
solution leads to a pressure wave from which the photoacoustic
radiation force can be calculated.

It is important to note that in the literature previously, the
photoacoustic wave equation had been mostly solved for the
Dirac δ-shaped or Gaussian profiles. Even though a couple of
works dealt with the photoacoustic equation for both Gaussian
radial and temporal profiles, their solutions were based on
some approximations (such as the far-field approximation) or
for some boundary conditions.

The difference in this manuscript is twofold. The first
difference comes from the solution of the photoacoustic wave
equation without the far-field approximation. Our method
is different from the previous works in the sense that we
also use a Gaussian radial absorption profile which reveals
the effect of the laser parameters on the photoacoustic
signal. Combining this expression with the acoustic radiation
force equation [33,34] for a microbubble, we calculate the
photoacoustic radiation force for various laser parameters
(pulse duration, beamwidth, and pulse repetition frequency).
This enables the investigation of the variation of the force
with respect to the corresponding parameters. Our method
is viable if the resonant frequency of the bubble and the
center frequency of the wave are very close to each other.
Another important limitation is that the acoustic radiation
force presented by Leighton [33] and Dayton et al. [34]
is derived for the narrowband acoustic excitation. Although
the photoacoustic wave is usually broadband, if the pulse
duration is sufficiently long, then the wave is narrowband [44].
The calculated force turns out to be in the range of pi-
conewtons and nanonewtons due to the facts that (i) the
absorption spectrum of a chromophore varies for different
wavelengths and (ii) laser parameters can be adjusted. At
least forces of a few hundred piconewtons are required to
manipulate the microbubbles in biological applications [45].
In addition, viscoelastic properties of the microbubbles can be
measured applying considerably small forces (<10 pN) [46].
In contradistinction for optical tweezers, acoustic tweezers,
and piezoelectric acoustic sources, photoacoustic technique
may apply acoustic radiation force with high spatial control
on contrast agents. Hence, photoacoustic source outperforms
conventional piezoelectric acoustic source in which high
spatial control of applied force is ensured due to smaller focal
spots achievable by focused optics.

II. THEORY AND METHOD

The photoacoustic wave resulted from light absorption
obeys the following wave equation:(

∇2 − 1
v2

s

∂2

∂t2

)
p(r,t) = − β

κv2
s

∂2T (r,t)
∂t2

. (1)

The left hand side of Eq. (1) represents the wave propagation
where vs is the speed of sound, and p(r,t) is the photoacoustic
wave at position r and time t . The right hand side of
Eq. (1) describes the photoacoustic source where β is the
thermal coefficient of volume expansion, κ is the isothermal
compressibility, and T (r,t) is the increase in temperature at
position r and time t [12].

In photoacoustics, the laser pulse duration is less than the
acoustic confinement time. The confinement time is also less
than the thermal confinement time. For this reason, the laser
pulse is short. Hence, for a short laser pulse, the thermal
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equation becomes

ρCV

∂T (r,t)
∂t

= H (r,t), (2)

where H is the heating function, the amount of heat generated
by light absorption per unit volume and per unit time, and
ρ and CV denote density and the specific heat capacity
at constant volume, respectively [12,24]. In photoacoustics,
since absorption is dominant, H can be treated as the optical
absorption coefficient μa times the light fluence rate F

(H = μaF ).
Thus, for a short laser pulse, the photoacoustic wave holds

for the equation(
∇2 − 1

v2
s

∂2

∂t2

)
p(r,t) = − β

CP

∂H (r,t)
∂t

, (3)

where r is the radial coordinate and CP is the specific heat
capacity at constant pressure, respectively.

The solutions for the photoacoustic wave equation can
be obtained by using the Green’s function approach [12,47].
Wang solved the photoacoustic equation in the time domain
by treating the source term as a combination of spatial and
temporal profiles approximated by Dirac δ point distribu-
tions [12,24]. In this work, for a Gaussian temporal profile,
we first consider the radial part of the source term of the
photoacoustic equation as rectangular and solve the equation in
frequency domain. Hence, using the inverse Fourier transform,
we obtain the solution for the equation in time domain.

We denote the source term of the photoacoustic wave
equation (1) by S(r,t),

S(r,t) ≡ − β

CP

∂H (r,t)
∂t

. (4)

Here the temporal and the radial parts of the source term can
be decomposed as

H (r,t) = A(r)H (t). (5)

For a Gaussian temporal profile, the heating function is
expressed by

H (t) = exp
(− t2

2τ 2

)
√

2πτ 2
, (6)

where τ is the standard deviation or the pulse duration of the
laser. For a stress confinement case where laser pulse width is
much shorter than the stress relaxation time, the initial pressure
rise just after the pulse, p0(r), can be written as [12,24]

p0(r) = βT (r)

κ
. (7)

If all the absorbed electromagnetic energy is converted into
heat and nonthermal relaxation is neglected, then the increase
in temperature resulted from the laser pulse can be written as

T (r) = A(r)

ρCV

. (8)

Combining Eq. (7) with Eq. (8) and writing

κ = CP

ρv2
s CV

, (9)

we get

A(r) = p0(r)

v2
s

CP

β
. (10)

Substituting Eq. (10) into Eq. (5) leads to

S(r,t) = −p0(r)

v2
s

∂

∂t

[
exp
(− t2

2τ 2

)
√

2πτ 2

]
(11)

= 1√
2πτ 3

p0(r)

v2
s

t exp

(
− t2

2τ 2

)
. (12)

Fourier transform of S(r,t) yields

S̃(r,ω) = 1√
2πτ 3

p0(r)

v2
s

∫ ∞

−∞
t exp

(
− t2

2τ 2

)
exp(iωt)dt

(13)

= i√
2π

p0(r)

v2
s

ω exp

(
−τ 2ω2

2

)
. (14)

Using Fourier convention, p(r,t) = 1√
2π

∫∞
−∞ p̃(r,ω)

exp(−iωt)dω, the photoacoustic wave equation (1) can be
expressed in frequency domain

∇2p̃(r,ω) + ω2

v2
s

p̃(r,ω) = i
p0(r)

v2
s

ω exp

(
−τ 2ω2

2

)
. (15)

The Green’s function of Eq. (15) is given by the expression [47]

G̃(r,r′; ω) = − 1

4π |r − r′| exp

(
i
ω

vs

|r − r′|
)

, (16)

where the Green’s function is an outgoing spherical wave for
|r − r′| → ∞.

The solution in the ω domain can be found by evaluating
the following integral:

p̃(r,ω) =
∫

G̃(r,r′; ω)S̃(r′; ω)d3r ′. (17)

Substituting Eqs. (14) and (16) into Eq. (17) gives

p̃(r,ω) = − i

4π

ω

v2
s

exp

(
−τ 2ω2

2

)

×
∫

p0(r ′)
exp
(
i ω

vs
|r − r′|)

|r − r′| d3r ′. (18)

When a spherical object of radius R is excited by a short pulsed
laser beam, the initial pressure p0 is created inside the object
so that the initial pressure distribution can be written as [12,24]

p0(r) = p0θ (r)θ (−r + R), (19)

where θ is the Heaviside step function.
Writing Eq. (19) into Eq. (18) and taking r along the z axis,

we get

p̃(r,ω) = − ip0

4π

ω

v2
s

exp

(
−τ 2ω2

2

)

×
∫ 2π

0
dφ′
∫ R

0
(r ′)2dr ′

∫ 1

−1

exp
(
i ω

vs
|r − r′|)

|r − r′| dμ′,

(20)
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where μ′ = cos θ ′ and |r − r′| =
√

r2 + r ′2 − 2rr ′μ′. Insert-
ing the result of the integral∫ 1

−1

exp
[
i ω

vs
(r2 + r ′2 − 2rr ′μ′)1/2

]
(r2 + r ′2 − 2rr ′μ′)1/2

dμ′

= − 1

irr ′ ω
vs

{
exp

[
i
ω

vs

(r − r ′)
]

− exp

[
i
ω

vs

(r + r ′)
]}

(21)

into Eq. (20) gives the solution in the ω domain

p̃(r,ω) = ip0
vs

r

exp
(− τ 2ω2

2 + i ω
vs

r
)

ω2

×
[

ω

vs

R cos

(
ω

vs

R

)
− sin

(
ω

vs

R

)]
, (22)

where r > R or r > r ′.
An inverse Fourier transform of p̃(r,ω) leads to

p(r,t) = i√
2π

p0
vs

r

∫ ∞

−∞

exp
(− τ 2ω2

2 + i ω
vs

r − iωt
)

ω2

×
[

ω

vs

R cos

(
ω

vs

R

)
− sin

(
ω

vs

R

)]
dω. (23)

Writing cos( ω
vs

R) and sin( ω
vs

R) in terms of exponentials into
Eq. (23) yields

p(r,t) = ip0

2
√

2π

R

r

∫ ∞

−∞

{
exp
[− τ 2ω2

2 + iω
(

r+R
vs

− t
)]

ω

+
exp
[− τ 2ω2

2 + iω
(

r−R
vs

− t
)]

ω

}
dω + 1

2
√

2π
p0

vs

r

×
∫ ∞

−∞

{
exp
[− τ 2ω2

2 + iω
(

r+R
vs

− t
)]

ω2

−
exp
[− τ 2ω2

2 + iω
(

r−R
vs

− t
)]

ω2

}
dω. (24)

If the following I1 and I2 integrals are solved, then the
solution of the photoacoustic equation can be obtained,

I1 =
∫ ∞

−∞

exp
[− τ 2ω2

2 + iω( r+R
vs

− t)
]

ω
dω, (25)

I2 =
∫ ∞

−∞

exp
[− τ 2ω2

2 + iω( r+R
vs

− t)
]

ω2
dω. (26)

These I1 and I2 kinds of integrals can be calculated carrying
out the residue theorem [47].

To calculate an integral of the type

I =
∫ ∞

−∞
f (z) exp(iαz)dz, (27)

the Jordan lemma has to be satisfied. The Jordan lemma states
that if f (z) → 0 as z → ∞, then

lim
R→∞

∫
CR

f (z) exp(iαz)dz = 0, (28)

where CR is a circular path of infinite radius on the upper z

plane for α > 0. The I1 integral in complex z plane can be
written as∮ exp

[− τ 2z2

2 + iz
(

r+R
vs

− t
)]

z
dz

=
∫ ∞

−∞

exp
[− τ 2x2

2 + ix
(

r+R
vs

− t
)]

x
dx

+ lim
R→∞

∫
CR

exp
[− τ 2z2

2 + iz
(

r+R
vs

− t
)]

z
dz. (29)

Here if ( r+R
vs

− t) > 0, the second integral on the right hand
side of Eq. (29) becomes zero due to the Jordan lemma.

Applying the residue theorem at z = 0 gives

∮ exp
[− τ 2z2

2 + iz
(

r+R
vs

− t
)]

z
dz

=
⎧⎨
⎩πi limz→0 z

exp[− τ2z2

2 +iz( r+R
vs

−t)]

z
if ( r+R

vs
− t) > 0,

−πi limz→0 z
exp[− τ2z2

2 +iz( r+R
vs

−t)]

z
if ( r+R

vs
− t) < 0.

(30)

Hence,

I1 = πi sgn

(
r + R

vs

− t

)
(31)

where sgn(x) is the signum function. Following the similar
steps and taking into consideration that z = 0 is a second order
pole, I2 can be found as

I2 = −π

(
r + R

vs

− t

)
sgn

(
r + R

vs

− t

)
. (32)

Substituting Eqs. (31) and (32) into Eq. (24) leads to the
following solution of the photoacoustic equation in time
domain for a spherical object heated homogeneously by a
short laser pulse having a Gaussian temporal profile

p(r,t) = 1

2

√
π

2

p0

r

[
(r − vst) sgn

(
r + R

vs

− t

)

+ (−r + vst) sgn

(
r − R

vs

− t

)]
. (33)

Diebold et al. [27,30] derived expressions in an original way
for the photoacoustic response from a uniformly irradiated
sphere. They used a δ function heating pulse and amplitude
modulated radiation. Different from their work, in our study,
the temporal part of the source term is taken as Gaussian and
our solution is based on the complex integration technique.
As can be seen in the next section, the Gaussian temporal
part reveals the effect of laser parameters on the photoacoustic
wave in an overt manner. In this way, regarding the application,
parameters can be adjusted to utilize the photoacoustic wave
and the required primary radiation force.

If a pulsed laser is sent to a spherical object of radius R,
the object is heated and an initial pressure p0 is created inside
the object. There are three cases based on the propagation time
when observation point is outside the spherical object [24,48].
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(i) If r − R > vst , the spherical object does not intersect
with the spherical shell of radius vst which is centered at the
observation point so that p(r,t) becomes zero.

(ii) If vst is between the interval [r − R,r + R], the heated
spherical object touches the spherical shell of radius vst .
Therefore, the pressure can be described by Eq. (33).

(iii) If r + R < vst , then the spherical object cannot
intersect with the spherical shell; thus, p(r,t) becomes zero.

Therefore, these three cases can be combined into an
equation by utilizing the Heaviside step function, θ (x),

p(r,t) = 1

2

√
π

2

p0

r

{
(r − vst) sgn

(
r + R

vs

− t

)

+ (−r + vst) sgn

(
r − R

vs

− t

)}
× θ (r − |R − vst |)θ (−r + R + vst), (34)

for outside the object (r > R).
Moreover, if the pulse duration is sufficiently long and the

radial distance r is greater than the radius of the absorber, r
R

�
1, our method yields the far-field based solution, which was
presented by Diebold et al. [49]. For any slow heat deposition
from an incompressible spherical particle, Diebold et al. [49]
obtained a photoacoustic wave,

p(r,t) = βa

8π2r̂CP

d

dt
q

(
t − r

c

)
, (35)

where a is the radius, r̂ = r
a

, and q is the heat flux vector.
In our case, for the far-field approximation r ′

r
	 1,

exp
(
i ω

vs
|r − r′|)

|r − r′| ≈
exp
(
i ω

vs
r
)

r
+

exp
(
i ω

vs
r
)

r

(
1 − i

ω

vs

r

)
μ′ r

′

r
,

(36)

where μ′ = cos θ ′. Substituting Eq. (36) into Eq. (20) and
using the inverse Fourier transform gives the normalized
solution

p̃(r,t) ∼ − R3

v3
s τ

3

(
−1 + vst

r

)
exp

[
− (r − vst)2

2v2
s τ

2

]
. (37)

Note that for R 	 1, the same solution can also be obtained
expanding cosine and sine terms in series in Eq. (22),

cos( ω
vs

R) ≈ 1 − ( ω
vs

R)2

2 and sin( ω
vs

R) ≈ ω
vs

R − ( ω
vs

R)3

6 .
Now we want to obtain an expression using Diebold’s result

given by Eq. (35). Multiplying the heat flux from the absorber
by the number of the absorbers per unit volume yields the heat
flux in terms of the heating function [50],

q(r,t) = c
p0CP R

v2
s β

exp
(− t2

2τ 2

)
√

2πτ 2
, (38)

where c is a dimensionless quantity related to the ratio of the
volume of domain and the volume of the absorber. Substituting
Eq. (38) into Eq. (35) leads to the same normalized solution
obtained by Eq. (37) except for the normalization constants.
If the pulse duration is long enough, vsτ

R
≈ 1, Eq. (37) can be

written as

p̃(r,t) ∼
(

1−vst

r

)
exp

[
−
(

vs t

R
− r

R

)2
2

]
. (39)

The pressure rise just after the laser excitation can be expressed
in terms of the optical absorption coefficient and the optical
fluence considering a fractional volume expansion,

dV

V
= −κp + βT , (40)

where T is the increase in temperature. For a very short laser
pulse which is in the thermal and the stress confinements, the
change of the volume can be neglected so that the increase in
pressure just after the excitation can be expressed by

p0 = βT

κ
. (41)

Substituting T = ηth
A

ρCV
into Eq. (41) leads to

p0 = β

κρCV

ηthA, (42)

where ηth is the fraction of the laser energy converted into
heat. Defining Grueneisen parameter � = β

κρCV
and writing

A = μaF , Eq. (42) becomes

p0 = �ηthμaF, (43)

where μa and F stand for the optical absorption coefficient
and the optical fluence, respectively.

The photoacoustic signals can be detected if an ultrasonic
transducer is located outside the spherical object. Thus, the
optical absorption coefficient μa can be calculated by inserting
the detected signal and the other parameters in Eq. (34).

A. Solution of photoacoustic wave equation for a Gaussian
radial absorption profile

In this section, we treat the radial absorption profile as
Gaussian, which is a more comprehensive case compared to
the uniform radial profile case,

p0(r) = p0 exp

(
− r2

2σ 2

)
θ (r)θ (−r + R), (44)

where σ is the standard deviation or beamwidth of the laser.
Fourier transform of p(r,t) gives

p̃(r,ω) = p0

2π

1

vsr
exp

[
−τ 2ω2

2

](∫ R

0
r ′ exp

(
− r ′2

2σ 2

)

×
{

exp

[
i
ω

vs

(r − r ′)
]

− exp

[
i
ω

vs

(r + r ′)
]}

dr ′
)

.

(45)

The solution of the photoacoustic equation in time domain can
be obtained by calculating the following integral:

p(r,t) = p0

2
√

2π

1

vsr

∫ R

0
r ′ exp

(
− r ′2

2σ 2

)

×
∫ ∞

−∞

{
exp

[
−τ 2ω2

2
+ iω

(
r − r ′

vs

− t

)]

− exp

[
−τ 2ω2

2
+ iω

(
r + r ′

vs

− t

)]}
dωdr ′.

(46)
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Substituting

∫ ∞

−∞
exp

[
−τ 2ω2

2
+ iω

(
r ∓ r ′

vs

− t

)]
dω =

√
2π

τ
exp

⎡
⎣−
(

r∓r ′
vs

− t
)2

2σ 2

⎤
⎦ (47)

into Eq. (46) leads to

p(r,t) = p0

2

1

vsrσ

∫ R

0
r ′

⎧⎨
⎩exp

⎡
⎣− r ′2

2σ 2
−
(

r−r ′
vs

− t
)2

2σ 2

⎤
⎦− exp

⎡
⎣− r ′2

2σ 2
−
(

r+r ′
vs

− t
)2

2σ 2

⎤
⎦
⎫⎬
⎭ dr ′ (48)

for outside the object (r > R). Calculations of

J1,2 =
∫ R

0
r ′ exp

⎡
⎣− r ′2

2σ 2
−
(

r∓r ′
vs

− t
)2

2σ 2

⎤
⎦ dr ′ (49)

integrals, which are on the right hand side of Eq. (48), yield

J1 =
∫ R

0
r ′ exp

[
− r ′2

2σ 2
−

( r−r ′
vs

− t)2

2τ 2

]
dr ′ (50)

= τσ 2vs

2
(
σ 2 + τ 2v2

s

)3/2 exp

[
− (r − vst)2

2τ 2v2
s

](√
2πσ (r − vst) exp

[
σ 2(r − vst)2

2τ 2v2
s

(
σ 2 + τ 2v2

s

)
]

×
{

erf

[
σ 2(−r + R + vst) + Rτ 2v2

s√
2τσvs

√
σ 2 + τ 2v2

s

]
+ erf

[
σ (r − vst)√

2τvs

√
σ 2 + τ 2v2

s

]}

− 2τvs

√
σ 2 + τ 2v2

s

{
exp

[
1

2
R

(
−−2r + R + 2vst

τ 2v2
s

− R

σ 2

)]
− 1

})
(51)

and

J2 =
∫ R

0
r ′ exp

⎡
⎣− r ′2

2σ 2
−
(

r+r ′
vs

− t
)2

2τ 2

⎤
⎦ dr ′ (52)

= τσ 2vs

2
(
σ 2 + τ 2v2

s

)3/2 exp

[
− (r + R − vst)2

2τ 2v2
s

− R2

2σ 2

](√
2πσ (r − vst) exp

{[
σ 2(r + R − vst) + Rτ 2v2

s

]2
2τ 2σ 2v2

s

(
σ 2 + τ 2v2

s

)
}

×
{

erf

[
σ (r − vst)√

2τvs

√
σ 2 + τ 2v2

s

]
− erf

[
σ 2(r + R − vst) + Rτ 2v2

s√
2τσvs

√
σ 2 + τ 2v2

s

]}

+ 2τvs

√
σ 2 + τ 2v2

s

(
exp

{
R[2(r − vst) + Rτ 2v2

s

σ 2 + R]

2τ 2v2
s

}
− 1

))
, (53)

respectively, where erf(x) is the error function.
Therefore, substituting the integrals J1 and J2 into Eq. (48) and considering the three cases based on the propagation time

mentioned in the previous section gives

p(r,t) = p0σ
2

4r
(
σ 2 + τ 2v2

s

)3/2 exp

[
−2R(r − vst) + 2(r − vst)2 + R2

2τ 2v2
s

− R2

2σ 2

]

×
(√

2πσ (r − vst)

{
erf

[
σ 2(−r + R + vst) + Rτ 2v2

s√
2τσvs

√
σ 2 + τ 2v2

s

]
exp

[
(r + R − vst)2

2τ 2v2
s

+ σ 2(r − vst)2

2τ 2v2
s

(
σ 2 + τ 2v2

s

) + R2

2σ 2

]

+ erf

[
σ 2(r + R − vst) + Rτ 2v2

s√
2τσvs

√
σ 2 + τ 2v2

s

]
exp

⎧⎨
⎩

[σ 2(r+R−vs t)+Rτ 2v2
s ]2

σ 2(σ 2+τ 2v2
s ) + (r − vst)2

2τ 2v2
s

⎫⎬
⎭
⎫⎬
⎭

−2τvs

√
σ 2 + τ 2v2

s exp

[
(r − vst)2

2τ 2v2
s

]{
exp

[
2R(r − vst)

τ 2v2
s

]
− 1

})
θ (r − |R − vst |)θ (−r + R + vst) (54)
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1 2 3 4 5
vS t
R

0.4

0.2

0.2

0.4

p r,t
p0

75 μm
50 μm

FIG. 1. Normalized photoacoustic wave p(r,t)
p0

vs normalized time
vs t

R
at r = 2R for the beamwidth (a) σ = 50 μm and (b) σ = 75 μm,

where R = 75 μm and the pulse duration τ = 5 ns.

for outside the spherical object. In order to relate the spherical
object’s parameters to the signal, p0 = �ηthμaF can be written
into Eq. (54).

Hence, Eq. (54) gives the photoacoustic wave generated
by a short laser pulse which has both Gaussian temporal and
radial profiles.

For biomedical applications, we take the values of the speed
of the wave, the pulse duration of the laser, and the radius
of the absorber, vs = 1480 m/s, τ = 5 ns, and R = 75 μm,
respectively [12,51,52]. From Eq. (54), the behavior of a
normalized photoacoustic wave with respect to the normalized
time is obtained. Figure 1 shows the change of the normalized
photoacoustic wave p(r,t)

p0
as a function the normalized time

vs t

R
for the beamwidth of laser σ = 50 and 75 μm values.

Figure 2 shows the change of the normalized amplitude
of photoacoustic wave with increasing pulse duration τ for
σ = 25, 50, and 75 μm.

III. EFFECT OF THE LASER PARAMETERS ON THE
PRIMARY RADIATION FORCE ACTING ON A

MICROBUBBLE

Leighton [33], Dayton et al. [34], Zheng and Apfel [35], Lee
and Wang [36], Lofstedt and Putterman [37], Wu and Du [38],

2 4 6 8 10
τ ns

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p r,t
p0

75 μm
50 μm
25 μm

FIG. 2. Normalized amplitude of photoacoustic wave p(r,t)
p0

vs
pulse duration τ for the beamwidth σ = 25,50, and 75 μm, where
r = 100 μm.

r 
R 

Absorber Microbubble 
 

R0 

FIG. 3. The absorber and the microbubble with radii of R and R0,
respectively.

and Crum [39] studied the primary radiation force acting on
the microbubbles treated as compressible microspheres.

The time average of the product of the fluctuation in the
volume of a spherical compressible bubble and the gradient
in the acoustic pressure waves creates a radiation force on the
bubble given by [33,34]

Fprimary = 〈V ∇p(r,t)〉 , (55)

where V and ∇ represent volume of the bubble and gradient
in space, respectively. The radiation force is mainly guided by
the primary radiation force; the secondary radiation force is
negligible with respect to the primary force. In this respect,
whenever radiation force is stated it is referred to primary
radiation force. The force with the resonant frequency of the
microbubble can be simplified to the expression [34]

F = 2πP 2
AτR0νPRF

δtotρvsω0
, (56)

where PA, τ , R0, νPRF, δtot, ρ, v, and ω0 stand for the pressure
amplitude, pulse duration, radius of the bubble, pulse repetition
frequency, total damping constant, density of surrounding
medium, speed of sound, and resonant frequency, respectively.

We calculate the radiation force on the microbubble due to
the excitation of the absorber illustrated in Fig. 3. When the
pulsed laser is sent to the absorber, a photoacoustic wave is
generated, leading to a force on the microbubble. We combine
the photoacoustic wave expression, which is derived in the
previous section, with Leighton’s [33] and Dayton et al.’s [34]
acoustic radiation model to obtain the photoacoustic radiation
force.

It is crucial that Eq. (56) is valid only if the resonant
frequency of the bubble and the center frequency of the
acoustic wave are the same. In addition, the derivation of

TABLE I. Resonant frequency ω0 and corresponding pulse
duration τ = 1

2ω0
for the microbubbles with diameter of 5 μm [53].

Resonant frequency Pulse duration
Microbubble ω0 (MHz) τ = 1

2ω0
(ns)

Sovonue 2.2 227.3
Albunex 5.2 96.1
Quantison 11.0 45.4
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TABLE II. Resonant frequency ω0 and corresponding pulse
duration τ = 1

2ω0
for the microbubbles with a diameter of 10 μm [53].

Resonant frequency Pulse duration
Microbubble ω0 (MHz) τ = 1

2ω0
(ns)

Sovonue 0.9 555.5
Albunex 1.9 263.1
Quantison 4.0 125.0

Eq. (56) is based on a narrowband acoustic excitation [33,34],
whereas the photoacoustic wave is usually broadband. How-
ever, if the pulse duration of the photoacoustic wave is long,
the photoacoustic wave is narrowband [44]. Therefore, our
approximation is valid (i) when the center frequency of the
photoacoustic wave is very close to the resonant frequency of
the microbubble and (ii) when the pulse duration is long. For
this reason, in our calculations, the pulse duration is taken such
that the center frequency of the photoacoustic wave is equal
to the resonant frequency. In other words, the pulse duration
is τ = 1

2ω0
. In addition, the pulse duration is also sufficiently

long, varying between 45.4 and 555.5 ns, corresponding to
the resonant frequencies of the microbubbles given in Tables I
and II.

In order to find the force on a microbubble due to the
photoacoustic absorber, we first obtain the pressure amplitude
of the photoacoustic wave expressed by Eq. (54) in the previous
section. Next we calculate the primary radiation force on the
microbubble.

Microbubbles vary in their sizes and properties, three of the
commercially produced microbubbles—Sovonue, Albunex,
and Quantison—are chosen for calculations [53].

The radiation force on each microbubble with respect to
the radial distance is investigated. The effect of the beamwidth
and pulse repetition frequency on the radiation force is also
examined.

For near infrared (970 nm) and visible (596 and 578 nm)
wavelengths, the absorption coefficients of whole blood are
taken as μa = 6.9, 44.8, and 268 cm−1, respectively [54,55].

Parameters of the absorber are � = 0.2, ηth = 1 [24], and
F = 15 mJ/cm2 [56]. The density and the speed of sound
are ρ = 1000 kg/m3 and vs=1480 m/s, respectively [24,34].
Acoustic pulse repetition rates are on the order of kHz. In our
case, instead of an acoustic wave generator, the pulsed laser is
used to create an acoustic wave by means of the photoacoustic
effect. Thus, repetition rates up to the order of MHz are utilized
in order to adjust (increase) the radiation force.

In our calculations, the total damping constant for all
microbubbles is δtot = 0.15 since each diameter is either 5 or
10 μm [53]. Figure 4(a) shows the change of the radiation force
on the microbubbles with a diameter of 5 μm, which results
from the absorber of radius 75 μm, with respect to the position
of the bubbles. The resonant frequencies of aforementioned
microbubbles are 2.2, 5.2, and 11 MHz [53], as summarized
in Table I. Figure 4(b) shows the change of the force on the
bubbles with a diameter of 10 μm and resonant frequencies of
0.9, 1.9, and 4 MHz [53], as summarized in Table II. In Fig. 4,
the absorption coefficient of whole blood μa is 6.9 cm−1.
Figures 5 and 6, recurrently, illustrate the change of the force
on the microbubbles with respect to the position of the bubbles
for the same parameters except for the absorption coefficients
of the whole blood that are μa = 44.8, and 268 cm−1 for
wavelengths of 596 and 578 nm, respectively [54,55]. Here
the pulse repetition frequency and the beamwidth are νPRF = 1
MHz and σ = 70 μm, respectively.

In Fig. 7, the effect of the beamwidth on the radiation force
is investigated at r = 75μm for the pulse repetition frequen-
cies, νPRF = 250 kHz, 500 kHz, and 1 MHz, respectively, for
a microbubble with a diameter of 5 μm. The pulse duration of
the laser is 45.4 ns corresponding (or matching) to the resonant
frequency of the microbubble which is 11 MHz.

IV. DISCUSSION

In this paper, we first obtain an elaborate expression of
the photoacoustic wave and then calculate the corresponding
primary radiation force on a microbubble.

First, we solve the photoacoustic wave equation for various
spatial and temporal profiles. The selection of these profiles is

100 150 200 250 300 350 400 450
r μm

0.05

0.10

0.15

0.20

0.25

0.30
F pN

SOVONUE
ALBUNEX
QUANTISON

100 150 200 250 300 r μm

0.5

1.0

1.5

2.0

2.5
F pN

SOVONUE
ALBUNEX
QUANTISON

(a) (b)

FIG. 4. (Color online) Primary radiation force F (in units of piconewtons) on Sovonue, Albunex, and Quantison vs position r (in units
of micrometers) for the diameters of the microbubbles (a) 5 μm with the resonant frequencies of ω0 = 2.2, 5.2, and 11.0 MHz, respectively,
and (b) 10 μm with the resonant frequencies of ω0 = 0.9, 1.9, and 4.0 MHz, respectively, where the pulse duration τ = 1

2ω0
, the absorption

coefficient of whole blood μa = 6.9 cm−1, pulse repetition frequency νPRF = 1 MHz, and beamwidth σ = 70 μm.
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FIG. 5. (Color online) Primary radiation force F (in units of piconewtons) on Sovonue, Albunex, and Quantison vs position r (in units
of micrometers) for the diameters of the microbubbles (a) 5 μm with the resonant frequencies of ω0 = 2.2, 5.2, and 11.0 MHz, respectively,
and (b) 10 μm with the resonant frequencies of ω0 = 0.9, 1.9, and 4.0 MHz, respectively, where the pulse duration τ = 1

2ω0
, the absorption

coefficient of whole blood μa = 44.8 cm−1, pulse repetition frequency νPRF = 1 MHz, and beam width σ = 70 μm.

important since it determines both the magnitude and the form
of the photoacoustic wave [2,25,27,30,31,49]. For example,
in the literature the temporal profile is usually approximated
by a Dirac δ function since the pulse duration is usually very
short. However, in our work, the temporal profile is taken as
Gaussian that leads to a wave expression including explicit
laser parameters, the pulse duration, and the beamwidth.
Hence, our approach to find a photoacoustic wave can also
be used for the slow heat deposition as well as for the fast
heat deposition depending on the pulse duration [49,57]. In
addition, we also approximate the absorption profile by a
Gaussian function under the assumption that the heat depo-
sition is localized. Note that if the heat deposition is uniform,
the absorption profile can be taken as rectangular. As a result,
we obtain a photoacoustic wave that is explicitly dependent
on the pulsed laser parameters. This allows us to investigate
the photoacoustic signal as a function of beamwidth, pulse
duration, and repetition rate.

We show the effect of the laser beamwidth on the pho-
toacoustic signal in Fig. 1. In that figure, the change of the

normalized photoacoustic wave is given as a function of the
normalized time for various beamwidth values. It is seen
that the form of the wave approaches an N shape as the
beamwidth of the laser pulse becomes comparable to the radius
of the object which also provides an explicit laser parameter
dependence. Moreover, if the radius of the object is much
greater than the beamwidth of the laser, the Gaussian spatial
profile behaves like a δ function. This can also be observed
in Fig. 1 where the amplitude diminishes as the beamwidth
decreases.

We also show the impact of pulse duration on the wave
for various beamwidth. It is already well known that the
amplitude of the photoacoustic wave decreases as the pulse
duration gets longer. The peak power is hence inversely
proportional to the pulse duration if the pulse energy of the
laser is constant. Therefore, shorter pulse durations yield
larger wave amplitudes accompanied by a deterioration in
depth resolution. In Fig. 2, as the beamwidth decreases, the
signal decreases slightly because the radial profile becomes
very sharp approaching a δ function. Therefore, the explicit

100 150 200 250 300 r μm
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3000

3500

F pN
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QUANTISON

100 150 200 250 300 350 400
r μm

100

200

300

400

F pN

SOVONUE
ALBUNEX
QUANTISON

(a) (b)

FIG. 6. (Color online) Primary radiation force F (in units of piconewtons) on Sovonue, Albunex, and Quantison vs position r (in units
of micrometers) for the diameters of the microbubbles (a) 5 μm with the resonant frequencies of ω0 = 2.2, 5.2, and 11.0 MHz, respectively,
and (b) 10 μm with the resonant frequencies of ω0 = 0.9, 1.9, and 4.0 MHz, respectively, where the pulse duration τ = 1

2ω0
, the absorption

coefficient of whole blood μa = 268 cm−1, pulse repetition frequency νPRF = 1 MHz, and beam width σ = 70 μm.
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FIG. 7. (Color online) Primary radiation force F (in units of
piconewtons) on Quantison vs beamwidth σ (in units of micrometers)
for the pulse repetition frequencies of νPRF = 250 kHz, 500 kHz,
and 1 MHz, respectively, at r = 75 μm, where ω0 = 11 MHz, the
pulse duration τ = 1

2ω0
, the absorption coefficient of whole blood is

μa = 44.8 cm−1, and the diameter of the microbubble 5 μm.

laser parameter dependence disappears. For a very large pulse
duration, the wave diminishes since the stress and thermal
confinement conditions are violated.

In the second part of the paper, we calculate the photoa-
coustic radiation force on a microbubble. We achieve this
by utilizing the photoacoustic wave expression obtained in
Sec. II with the primary radiation force [33,34]. We express
the force in terms of the laser parameters. It is important that
this expression is valid only if the center frequency of the
photoacoustic wave is very close to the resonant frequency
of the bubble. The pulse duration is chosen such that the
correspondent center frequency of the wave is equal to the
resonant frequency of the microbubble. The broadband nature
of a photoacoustic wave may also lead to an overestimation
of the applied force. However, if the pulse duration is long
enough, then the photoacoustic wave is narrowband [44]. For
this reason, our results are based relatively on the long pulse
duration.

Our calculations show that the force on the microbubble is
decreasing with the distance, as expected. Figures 4–6 state
that the higher frequency leads to the higher force. According
to Eq. (56), the force is inversely proportional to the resonant
frequency. However, adjusting the pulse duration according to
the resonant frequency leads to a higher amplitude and force
in Eq. (56).

A comparison among Figs. 4–6 indicates that the absorption
coefficient has a considerable effect on the force. Especially
for the absorption coefficient of whole blood corresponding
to a visible wavelength of around 578 nm [54,55], the force
increases dramatically. In addition, the absorption coefficient
can also be increased by using contrast agents. For example, the
optical absorption coefficient of whole blood for a wavelength
of 800 nm, is around 4–5 cm−1, 16 cm−1 for Indocyanine
Green (ICG) in water, and 43 cm−1 for ICG in blood [58,59].
Richness of optical contrast agents is another advantage for
manipulation of microbubbles with photoacoustic radiation
force. On the other hand, it should be noted that when the
absorption coefficient increases, penetration depth in tissue
decreases. There is a compromise between the increase in force
and penetration depth via absorption coefficient adjustment.
Figures 5 and 6 indicate that the force can reach the order of
100 and 1000 pN using the visible wavelengths. Application of
the force at this scale makes the manipulation and confinement
of the microbubbles possible to enhance the image quality and
drug delivery. At least forces of a few hundred piconewtons
are needed to manipulate the microbubbles in biological
applications [45]. In addition, considerably small forces
(<10 pN) can be used to measure viscoelastic properties of the
microbubbles [46]. As the microbubble is farther away from
the absorber, the force decreases as expected. Our results are
in good agreement with Zharov’s and Hernot’s experimental
results [40,43].

The radiation force increases with the beamwidth, as can
be seen in Fig. 7. The reason for this increase is that the laser
pulse with a large beamwidth is absorbed by the larger part of
the absorber. In Fig. 7, the force is shown to be increasing with
the pulse repetition frequency.

Therefore, a comprehensive understanding of the primary
radiation force and analytical solutions to the photoacoustic
wave equation make adjustment of parameters specifically for
biological applications possible.
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(1978).
[26] H. M. Lai and K. Young, J. Acoust. Soc. Am. 72, 2000 (1982).
[27] G. J. Diebold, T. Sun, and M. I. Khan, Phys. Rev. Lett. 67, 3384

(1991).
[28] V. N. Inkov, A. A. Karabutov, and I. M. Pelivanov, Laser Phys.

11, 1283 (2001).
[29] V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov,

V. Solomatin, and A. Karabutov, J. Acoust. Soc. Am. 116, 1498
(2004).

[30] G. J. Diebold and J. Westervelt, J. Acoust. Soc. Am. 84, 2245
(1988).

[31] I. G. Calasso, W. Craig, and G. J. Diebold, Phys. Rev. Lett. 86,
3550 (2001).

[32] M. A. Anastasio, J. Zhang, D. Modgil, and P. J. La Rivière,
Inverse Probl. 23, S21 (2007).

[33] T. G. Leighton, The Acoustic Bubble (Academic Press, San
Diego, CA, 1994).

[34] P. A. Dayton, K. E. Morgan, A. L. S. Klibanov, G.
Brandenburger, K. R. Nightingale, and K. W. Ferrara, IEEE
Trans. Ultrason. Ferroelectr. Freq. Control 44, 1264 (1997).

[35] X. Zheng and R. Apfel, J. Acoust. Soc. Am. 97, 2218 (1995).
[36] C. P. Lee and T. G. Wang, J. Acoust. Soc. Am. 93, 1637 (1993).
[37] R. Lofstedt and S. Putterman, J. Acoust. Soc. Am. 90, 2027

(1991).

[38] J. Wu and G. Du, J. Acoust. Soc. Am. 87, 997 (1990).
[39] L. Crum, J. Acoust. Soc. Am. 57, 1363 (1975).
[40] S. Hernot and A. L. Klibanov, Adv. Drug Delivery Rev. 60, 1153

(2008).
[41] A. F. H. Lum, M. A. Borden, P. A. Dayton, D. E. Kruse,

S. I. Simon, and K. W. Ferrara, J. Controlled Release 111, 128
(2006).

[42] P. H. Jones, E. Stride, and N. Saffari, Appl. Phys. Lett. 89,
081113 (2006).

[43] V. P. Zharov, T. V. Malinsky, and R. C. Kurten, J. Phys. D: Appl.
Phys. 38, 2662 (2005).

[44] N. Wua, Y. Tiana, X. Zoub, and X. Wang, Proc. SPIE 8694,
869401 (2013).

[45] A. L. Klibanov, M. S. Hughes, F. S. Villanueva, R. J. Jankowski,
W. R. Wagner, J. K. Wojdyla, J. H. Wible, and G. H.
Brandenburger, Magma Magn. Reson. Mater. Phys. Biol. Med.
8, 177 (1999).

[46] V. Sboros, Adv. Drug Delivery Rev. 60, 1117 (2008).
[47] P. M. Morse and H. Feshbach, Methods of Theoretical Physics,

Part I (McGraw-Hill, New York, 1953).
[48] C. G. A. Hoelen and F. F. M. de Mul, J. Acoust. Soc. Am. 106,

695 (1999).
[49] G. J. Diebold, A. C. Beveridge, and T. J. Hamilton, J. Acoust.

Soc. Am. 112, 1780 (2002).
[50] Y. N. Cao, H. X. Chen, T. Sun, G. J. Diebold, and M. B. Zimmt,

J. Phys. IV 04, C7-713 (1994).
[51] X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. H. V. Wang,

Nat. Biotech. 21, 803 (2003).
[52] Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal,

G. Stoica, and L. H. V. Wang, Nano Lett. 4, 1689 (2004).
[53] N. de Jong, A. Bouakaz, and P. Frinking, Echocardiography 19,

229 (2002).
[54] H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat.

Biotechnol. 24, 848 (2006).
[55] N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van

Leeuwen, and D. J. Faber, Lasers Med. Sci. 29, 453 (2014).
[56] S. J. Yoon, A. Murthy, K. P. Johnston, K. V. Sokolov, and S. Y.

Emelianov, Opt. Express 20, 29479 (2012).
[57] S. M. Park, M. I. Khan, H. Z. Cheng, and G. J. Diebold,

Ultrasonics 29, 63 (1991).
[58] G. Ku and L. V. Wang, Opt. Lett. 30, 507 (2005).
[59] M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J.

Appl. Physiol. 40, 575 (1976).

023001-11

http://dx.doi.org/10.1364/OE.19.009027
http://dx.doi.org/10.1364/OE.19.009027
http://dx.doi.org/10.1364/OE.19.009027
http://dx.doi.org/10.1364/OE.19.009027
http://dx.doi.org/10.1109/TMI.2009.2024082
http://dx.doi.org/10.1109/TMI.2009.2024082
http://dx.doi.org/10.1109/TMI.2009.2024082
http://dx.doi.org/10.1109/TMI.2009.2024082
http://dx.doi.org/10.1109/T-UFFC.1986.26854
http://dx.doi.org/10.1109/T-UFFC.1986.26854
http://dx.doi.org/10.1109/T-UFFC.1986.26854
http://dx.doi.org/10.1109/T-UFFC.1986.26854
http://dx.doi.org/10.1103/RevModPhys.58.381
http://dx.doi.org/10.1103/RevModPhys.58.381
http://dx.doi.org/10.1103/RevModPhys.58.381
http://dx.doi.org/10.1103/RevModPhys.58.381
http://dx.doi.org/10.1103/PhysRevE.71.031912
http://dx.doi.org/10.1103/PhysRevE.71.031912
http://dx.doi.org/10.1103/PhysRevE.71.031912
http://dx.doi.org/10.1103/PhysRevE.71.031912
http://dx.doi.org/10.1098/rsfs.2011.0028
http://dx.doi.org/10.1098/rsfs.2011.0028
http://dx.doi.org/10.1098/rsfs.2011.0028
http://dx.doi.org/10.1098/rsfs.2011.0028
http://dx.doi.org/10.1364/OE.17.007688
http://dx.doi.org/10.1364/OE.17.007688
http://dx.doi.org/10.1364/OE.17.007688
http://dx.doi.org/10.1364/OE.17.007688
http://dx.doi.org/10.1364/OE.17.010489
http://dx.doi.org/10.1364/OE.17.010489
http://dx.doi.org/10.1364/OE.17.010489
http://dx.doi.org/10.1364/OE.17.010489
http://dx.doi.org/10.1155/2004/478079
http://dx.doi.org/10.1155/2004/478079
http://dx.doi.org/10.1155/2004/478079
http://dx.doi.org/10.1155/2004/478079
http://dx.doi.org/10.1063/1.2195024
http://dx.doi.org/10.1063/1.2195024
http://dx.doi.org/10.1063/1.2195024
http://dx.doi.org/10.1063/1.2195024
http://dx.doi.org/10.1121/1.382132
http://dx.doi.org/10.1121/1.382132
http://dx.doi.org/10.1121/1.382132
http://dx.doi.org/10.1121/1.382132
http://dx.doi.org/10.1121/1.388631
http://dx.doi.org/10.1121/1.388631
http://dx.doi.org/10.1121/1.388631
http://dx.doi.org/10.1121/1.388631
http://dx.doi.org/10.1103/PhysRevLett.67.3384
http://dx.doi.org/10.1103/PhysRevLett.67.3384
http://dx.doi.org/10.1103/PhysRevLett.67.3384
http://dx.doi.org/10.1103/PhysRevLett.67.3384
http://dx.doi.org/10.1121/1.1781710
http://dx.doi.org/10.1121/1.1781710
http://dx.doi.org/10.1121/1.1781710
http://dx.doi.org/10.1121/1.1781710
http://dx.doi.org/10.1121/1.397017
http://dx.doi.org/10.1121/1.397017
http://dx.doi.org/10.1121/1.397017
http://dx.doi.org/10.1121/1.397017
http://dx.doi.org/10.1103/PhysRevLett.86.3550
http://dx.doi.org/10.1103/PhysRevLett.86.3550
http://dx.doi.org/10.1103/PhysRevLett.86.3550
http://dx.doi.org/10.1103/PhysRevLett.86.3550
http://dx.doi.org/10.1088/0266-5611/23/6/S03
http://dx.doi.org/10.1088/0266-5611/23/6/S03
http://dx.doi.org/10.1088/0266-5611/23/6/S03
http://dx.doi.org/10.1088/0266-5611/23/6/S03
http://dx.doi.org/10.1109/58.656630
http://dx.doi.org/10.1109/58.656630
http://dx.doi.org/10.1109/58.656630
http://dx.doi.org/10.1109/58.656630
http://dx.doi.org/10.1121/1.411947
http://dx.doi.org/10.1121/1.411947
http://dx.doi.org/10.1121/1.411947
http://dx.doi.org/10.1121/1.411947
http://dx.doi.org/10.1121/1.406823
http://dx.doi.org/10.1121/1.406823
http://dx.doi.org/10.1121/1.406823
http://dx.doi.org/10.1121/1.406823
http://dx.doi.org/10.1121/1.401630
http://dx.doi.org/10.1121/1.401630
http://dx.doi.org/10.1121/1.401630
http://dx.doi.org/10.1121/1.401630
http://dx.doi.org/10.1121/1.399435
http://dx.doi.org/10.1121/1.399435
http://dx.doi.org/10.1121/1.399435
http://dx.doi.org/10.1121/1.399435
http://dx.doi.org/10.1121/1.380614
http://dx.doi.org/10.1121/1.380614
http://dx.doi.org/10.1121/1.380614
http://dx.doi.org/10.1121/1.380614
http://dx.doi.org/10.1016/j.addr.2008.03.005
http://dx.doi.org/10.1016/j.addr.2008.03.005
http://dx.doi.org/10.1016/j.addr.2008.03.005
http://dx.doi.org/10.1016/j.addr.2008.03.005
http://dx.doi.org/10.1016/j.jconrel.2005.11.006
http://dx.doi.org/10.1016/j.jconrel.2005.11.006
http://dx.doi.org/10.1016/j.jconrel.2005.11.006
http://dx.doi.org/10.1016/j.jconrel.2005.11.006
http://dx.doi.org/10.1063/1.2338512
http://dx.doi.org/10.1063/1.2338512
http://dx.doi.org/10.1063/1.2338512
http://dx.doi.org/10.1063/1.2338512
http://dx.doi.org/10.1088/0022-3727/38/15/019
http://dx.doi.org/10.1088/0022-3727/38/15/019
http://dx.doi.org/10.1088/0022-3727/38/15/019
http://dx.doi.org/10.1088/0022-3727/38/15/019
http://dx.doi.org/10.1117/12.2029916
http://dx.doi.org/10.1117/12.2029916
http://dx.doi.org/10.1117/12.2029916
http://dx.doi.org/10.1117/12.2029916
http://dx.doi.org/10.1007/BF02594596
http://dx.doi.org/10.1007/BF02594596
http://dx.doi.org/10.1007/BF02594596
http://dx.doi.org/10.1007/BF02594596
http://dx.doi.org/10.1016/j.addr.2008.03.011
http://dx.doi.org/10.1016/j.addr.2008.03.011
http://dx.doi.org/10.1016/j.addr.2008.03.011
http://dx.doi.org/10.1016/j.addr.2008.03.011
http://dx.doi.org/10.1121/1.427087
http://dx.doi.org/10.1121/1.427087
http://dx.doi.org/10.1121/1.427087
http://dx.doi.org/10.1121/1.427087
http://dx.doi.org/10.1121/1.1508788
http://dx.doi.org/10.1121/1.1508788
http://dx.doi.org/10.1121/1.1508788
http://dx.doi.org/10.1121/1.1508788
http://dx.doi.org/10.1051/jp4:19947167
http://dx.doi.org/10.1051/jp4:19947167
http://dx.doi.org/10.1051/jp4:19947167
http://dx.doi.org/10.1051/jp4:19947167
http://dx.doi.org/10.1038/nbt839
http://dx.doi.org/10.1038/nbt839
http://dx.doi.org/10.1038/nbt839
http://dx.doi.org/10.1038/nbt839
http://dx.doi.org/10.1021/nl049126a
http://dx.doi.org/10.1021/nl049126a
http://dx.doi.org/10.1021/nl049126a
http://dx.doi.org/10.1021/nl049126a
http://dx.doi.org/10.1046/j.1540-8175.2002.00229.x
http://dx.doi.org/10.1046/j.1540-8175.2002.00229.x
http://dx.doi.org/10.1046/j.1540-8175.2002.00229.x
http://dx.doi.org/10.1046/j.1540-8175.2002.00229.x
http://dx.doi.org/10.1038/nbt1220
http://dx.doi.org/10.1038/nbt1220
http://dx.doi.org/10.1038/nbt1220
http://dx.doi.org/10.1038/nbt1220
http://dx.doi.org/10.1007/s10103-013-1446-7
http://dx.doi.org/10.1007/s10103-013-1446-7
http://dx.doi.org/10.1007/s10103-013-1446-7
http://dx.doi.org/10.1007/s10103-013-1446-7
http://dx.doi.org/10.1364/OE.20.029479
http://dx.doi.org/10.1364/OE.20.029479
http://dx.doi.org/10.1364/OE.20.029479
http://dx.doi.org/10.1364/OE.20.029479
http://dx.doi.org/10.1016/0041-624X(91)90175-8
http://dx.doi.org/10.1016/0041-624X(91)90175-8
http://dx.doi.org/10.1016/0041-624X(91)90175-8
http://dx.doi.org/10.1016/0041-624X(91)90175-8
http://dx.doi.org/10.1364/OL.30.000507
http://dx.doi.org/10.1364/OL.30.000507
http://dx.doi.org/10.1364/OL.30.000507
http://dx.doi.org/10.1364/OL.30.000507



