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We study the quantum critical behavior of the Dicke Hamiltonian with finite number of atoms and explore
the signature of quantum chaos using measures like the ground-state fidelity and the Loschmidt echo and the
time-averaged Loschmidt echo. We show that these quantities clearly point to the classically chaotic nature of
the system in the superradiant (SR) phase. While the ground-state fidelity shows aperiodic oscillations as a
function of the coupling strength, the echo shows aperiodic oscillations in time and decays rapidly when the
system is in the SR phase. We clearly demonstrate how the time-averaged value of the echo already incorporates
the information about the ground-state fidelity and stays much less than unity, indicating the classically chaotic
nature of the model in the SR phase.

DOI: 10.1103/PhysRevE.90.022920 PACS number(s): 05.45.Mt, 03.67.−a, 73.43.Nq

I. INTRODUCTION

A classical system is said to be integrable if the number
of independent conserved quantities in the system equals the
number of degrees of freedom. The motion of a particle then
takes place on a d-dimensional tori, whereas the absence
of symmetries in the system causes the particle trajectory
to get delocalized over the whole of the energy surface
within a bounded region of the phase space. Such trajectories
may have hypersensitivity to initial conditions resulting in
chaotic dynamics. Such chaotic dynamics in classical systems
are generally characterized by a nonzero positive Lyapunov
exponent, which quantifies the exponential divergence of
“nearby” trajectories [1].

There are two different types of motions in classical
Hamiltonian mechanics: regular motion of integrable systems
or regular and chaotic motion produced by nonintegrable
systems. To understand whether a system is chaotic we look at
a cluster of trajectories of a Hamiltonian H originating from
nearly same initial conditions in the phase space. In chaotic
systems any two trajectories separate exponentially fast with
time, while for a regular system the separation varies with
a power law involving time (t). The linearity of quantum
mechanics disallows the phenomenon of chaos in quantum
systems [2]. Taking two eigenstates of the Hamiltonian
H at slightly separate phase space points, after time t ,
|〈φ(t)|ψ(t)〉|2 = |〈φ(0)|ψ(0)〉|2 due to the unitary nature of
the time evolution operator U = exp(−iH t/�); hence this
direct method of taking overlaps does not work in trying to
identify the possibility of chaos for the corresponding classical
Hamiltonian.

The correspondence principle, however, demands that just
like their classical counterparts, exponential sensitivity to
initial conditions should also manifest itself somehow in
quantum dynamics. That is, signatures of chaos can be
identified for quantum Hamiltonians, which will indicate their
classical counterparts to be chaotic [2]. The Loschmidt echo
(LE), which is the overlap of the same wave function evolved
under two slightly different Hamiltonians, was proposed as a
measure to identify chaos in quantum systems [3]. In order
to understand the role of the LE in identifying “quantum”
chaos in the Dicke Hamiltonian (DH) [4], we study the LE
and another measure related to it, the ground-state quantum
fidelity.

The Dicke model is a system of N interacting two-level
atoms placed in a bosonic cavity with a coupling characterized
by the parameter λ. This model is widely studied in quantum
optics to understand collective effects. In the limit of an infinite
system the model is integrable and shows a sharp quantum
phase transition. For a finite-size system (characterized by
a finite number of atoms proportional to j ) the transition is
rounded off; however, it shows a transition from a normal phase
(quasi-integrable) to a superradiant (SR) (chaotic) phase. This
is well understood from the studies of energy-level statistics
performed on it [5,6]. We use this finite j case to investigate
chaos in this present article.

Emary and Brandes [5,6] used level statistics of the
energy eigenvalues of the DH in the finite j case to
indicate the presence of chaos. They have used the fact
that quantum systems have conserved quantities when their
classical counterparts have a high degree of symmetry,
which leads to degeneracy in the energy spectrum. This
enables them to construct a distribution P (S), of the nearest
neighbor level spacing (denoted by S); P (S) is given by
the Poisson distribution as S → 0, when such symmetries
exist. Such a quantum system is “quasi-integrable.” On
the contrary, the classically chaotic regime is devoid of
symmetries, and, hence, the quantum Hamiltonian is nonde-
generate and absent energy level crossings leads to P (S) →
0 as S → 0 giving rise to the Wigner-Dyson distribution
[PW (S) = π (S/2) exp(−πS2/4)].

For finite j , the appearance of Poisson distribution of P (S)
in the normal phase and the Wigner-Dyson distribution in
the SR phase serves as a good signature for the transition to
chaos. However, this correspondence between the P (S) and
the “chaoticity” of the classical or the quantum Hamiltonian
is not general or unique, and a good number of exceptions
do exist [6]. This motivates us to look for other signatures to
identify chaos in a more general fashion using two quantum
information theoretic measures: the ground-state fidelity and
the time average of the LE. We note that there exists a
different approach based on the operator fidelity metric [7]
which bypasses the necessity of a perturbative expansion in
the coupling strength in order to generate the eigenstates for
the modified Hamiltonian with a shifted parameter value. In
our case, on the other hand, we use a numerical method to
obtain the eigenstates in a direct fashion. We note here that the
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signature of chaos is also found by studying the semiclassical
equations of motion [8].

In recent years, there have been many works which
have studied the connection between quantum phase transi-
tions [9], quantum information [10,11], and quantum critical
dynamics [12,13]. Two important measures which show
interesting behavior close to a quantum critical point are
the LE [14–17] and the ground-state quantum fidelity [18]
(see review articles [12,19]). The former in particular has
been studied extensively in recent years in connection with
the dynamics of decoherence [20–22], work statistics [23],
equilibration [24], and the dynamical phase transition [25,26].
As noted already, the concept of the LE was proposed in
connection to quantum chaos [3] to describe the hypersen-
sitivity of the time evolution of the system to the perturbations
experienced by the surrounding environment; there have been
many studies in this direction in recent years [27–30]. We
emphasize at the outset that though contradictions exist, our
result obtained using quantum information theoretic measures
are in complete agreement with those of Refs. [5,6] for
the DH.

The paper is organized in the following manner. In Sec. II
we discuss the DH briefly, also providing an approach to
numerically diagonalize the DH. We then move onto the
study of ground-state fidelity in both thermodynamic and finite
size limits in Sec. III. We then discuss the LE for the DH
in Sec. IV followed by the numerical analysis for the time
average of the LE in Sec. V and present the final conclusions in
Sec. VI.

II. THE DICKE MODEL: INFINITE AND FINITE j

We look for the signatures of quantum chaos in the Dicke
Hamiltoninian (DH), which describes a single-mode bosonic
field interacting with an ensemble of N two-level atoms [4],
given by

H = ω0

N∑
i=1

si
z + ωa†a

+
N∑

i=1

λ√
N

(a† + a)(s(i)
+ + s

(i)
− ) [� = 1]. (1)

Here ω0 is the energy level splitting between the two-level
systems. a†(a) is the creation (annihilation) operator for the
bosonic field, with [a†,a] = 1. In our case, we consider only
a single bosonic mode which interacts with two-level atoms
with the interaction strength λ. The ith atom is described by the
spin-half operators (si

k; k = z,±), obeying the commutation
rules [sz,s±] = ±s± and [s+,s−] = 2sz. The origin of the
factor 1/

√
N in the interaction term results from the dipole

interaction, which is proportional to 1/
√

V , where V is
the volume of the cavity. Taking into consideration that the
density of atoms in the cavity is ρ = N/V , we find that the
coupling strength is of the form λ/

√
N . The scaling factor√

N appearing in the interaction plays an important role for
the finite “size” system.

The DH [Eq. (1)] is further simplified by using collective
atomic operators,

Jz ≡
N∑

i=1

s(i)
z , J± ≡

N∑
i=1

s
(i)
± , (2)

which obey the usual angular momentum commutation rela-
tions. Here j is assigned its maximum value j = N/2, and this
value is constant for a fixed value of N . Thus, the N two-level
system effectively gets reduced to a (2j + 1) [=(N + 1)] -level
system. The final form of the single-mode DH then looks like

H = ω0Jz + ωa†a + λ√
2j

(a† + a)(J+ + J−). (3)

The resonance condition, ω = ωo = 1, has been used in the
rest of the paper. The parity operator (�) can be defined here
in terms of the total number of excitation quanta (N̂) in the
system as

� = exp{iπN̂}, N̂ = a†a + Jz + j. (4)

Clearly, the operator � can have only two eigenvalues (±1),
N being even or odd. Thus, the DH turns out to be parity
conserving as [H,�] = 0, and, correspondingly the Hilbert
space of the total system is split into two noninteracting
subspaces.

The DH shows a Quantum Phase Transition (QPT) in
the thermodynamic limit (as N → ∞) at a critical value of
the atom-field coupling strength (λ), λc = √

ωωo/2 where the
symmetry associated with the parity operator (�) is broken.
The second derivative of the ground-state energy per j with
respect to λ shows a sharp discontinuity at the point λ = λc

clearly marking the occurrence of a phase transition; this
transition separates the normal phase (for λ < λc) from the
SR phase (for λ > λc). The system in the normal phase is
only microscopically excited, whereas the SR phase shows
macroscopic excitations.

In the finite j limit, however, parity symmetry holds and
� continues to be a good quantum number for all values of
λ, and there is no discontinuity in the ground-state energy
per j (=EG/j ) with respect to λ, indicating the absence of
a sharp phase transition. However, the finite j results tend
to the infinite j (i.e., thermodynamic limit) very rapidly. The
system, however, shows microscopic excitations below λc even
for finite j and is macroscopically excited above that value,
although the crossover from the microscopically excited phase
to the macroscopically excited phase is not sharp. Therefore,
one observes that the initially localized wave function for a
small but finite j gets delocalized rapidly with a slight increase
in j . Finally as j → ∞, the wave function breaks into two
lobes (creating a degeneracy); the parity symmetry breaks and
there is a proper QPT at λc in this limit [6]. There is no QPT for
a finite j case in the true sense of the term, because the parity
symmetry remains intact, but there is a crossover at around
λc indicating a transition from a localized (normal) phase to a
delocalized (chaotic) phase.

Exact solutions of the DH at finite j do not exist except
for j = 1/2 (though a study based on finite size scaling
has been carried out in Ref. [31]). Hence, we resort to a
numerical diagonalization scheme using the number states of
the field |n〉 and the Dicke states |j,m〉 as our combined basis
{|n〉 ⊗ |j,m〉}. To perform the diagolnalization the bosonic
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FIG. 1. (Color online) The ground-state expectation values of
mean photonic number N = 〈a†a〉 (background), the ground-
state energy Eg (left inset), and the expectation value of the
atomic inversion Jz (right inset) per j as a function of λ for
the numerically diagonalized Hamiltonian (λc = 0.5, ω = ωo = 1).
The plots produced here match the ones in Ref. [6] and hence establish
the justification of the chosen system parameters j = 5 and nc = 40
for the remaining simulations.

Hilbert space is truncated, while for the pseudospin the full
Hilbert space is considered. We take nc as the maximum
boson number in the artificially truncated space. Finally,
diagonalizing the DH for finite j (= 5), we evaluate and plot the
ground-state energy (EG/j ) and the ground-state expectation
values of the scaled atomic inversion 〈Jz〉/j and the photonic
number 〈a†a〉/j as a function of the coupling strength λ (see
Fig. 1). We emphasize that our results match those produced
in Ref. [6], in terms of both the phase transition point and
behavior at high λ.

III. IDENTIFICATION OF CHAOS THROUGH
GROUND-STATE FIDELITY

The ground-state quantum fidelity (F ), which measures the
overlap between many-body ground states at slightly different
values of a parameter λ of the Hamiltonian, usually serves
as an important tool for detecting quantum phase transitions.
We shall discuss below that it also acts as a good indicator of
transition to quantum chaos. We define the the ground-state
fidelity as

F = |〈ψ(λ + δ)|ψ(λ)〉|2, (5)

where |ψ(λ + δ)〉 and |ψ(λ)〉 are the ground states of the DH
with parameters λ and λ + δ, respectively. We present results
for the ground-state fidelity defined in Eq. (5) of the DH in both
limits, thermodynamic (N, i.e., j → ∞) and finite j (=5), in
both phases. Although results obtained in the thermodynamic
limit were already reported in Ref. [18], we present them here
to contrast with the features that emerge in the finite j case in
the SR phase.

A. Thermodynamic limit

To exactly diagonalize the Hamiltonian in the thermody-
namic limit one resorts to the Holstein-Primakoff transfor-
mation (applied to the DH as in Ref. [32]) of the angular

momentum operators, given by

J+ = b†
√

2j − b†b, (6)

J− =
√

2j − b†bb, (7)

Jz = (b†b − j ), (8)

where [b,b†] = 1. With these substitutions we get the DH in
the normal phase as

H = ω0(b†b − j ) + ωa†a

+ λ(a† + a)

(
b†

√
1 − b†b

2j
+

√
1 − b†b

2j
b

)
. (9)

In the SR phase to capture the macroscopic occupations of
both the field and the atomic ensembles we have to displace the
bosonic modes in Holstein-Primakoff representation, in either
of the following ways:

a† → c† + √
α, b† → d† −

√
β, (10)

a† → c† − √
α, b† → d† +

√
β, (11)

and retain only the terms linear in j . Both choices of bosonic
displacements give identical Hamiltonians. Hence, every state
is doubly degenerate in the SR phase.

Diagonalizing the Hamiltonian in the uncoupled (q1,q2)
basis we obtain the ground states as

�G(q1,q2) = G−(q1)G+(q2). (12)

In this scheme the ground states in both phases have a Gaussian
profile [G±, with different (q1,q2) in both the phases], given
in the artificial (x,y) basis by

g(x,y) =
(

ε+ε−
π2

)1/4

exp

[−〈R,AR〉
2

]
, (13)

A = U−1MU, (14)

M = diag[ε−,ε+]. (15)

A is the rotation matrix parametrized with the angle γ , which
is needed to transfer the basis from (q1,q2) to R = (x,y),
and U is an orthogonal matrix. ε± are the atomic and the
photonic excitations of the DH. The ground-state fidelity is
given by [18,33]

〈g|g′〉 = 2
[det A det A′]1/4

[det(A + A′)]1/2
, (16)

which on simple determinant manipulation gives

〈g|g′〉 = 2
[det M det M ′]1/4

[det(M + M ′)]1/2
. (17)

This yields a fidelity expression for the normal phase as a
function of the parameter λ. In the plot of ground-state fidelity
versus the λ in the thermodynamic limit we have color coded
the two phases differently as they arise from two different
representations of the same Hamiltonian, on either side of the
QPT. For the calculation of the ground-state fidelity in the SR
phase, we take the Hamiltonan in which both the modes have
acquired nonzero mean fields above λc, formed by using the
Holstein-Primakoff representation, to calculate the atomic and
photonic excitations, which are different from those obtained
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FIG. 2. (Color online) The plot for the exact fidelity expression
in the thermodynamic limit; one finds a sharp dip at the quantum
critical point λc = 1/2.

in the normal phase, which we insert in Eq. (17) to obtain the
ground-state fidelity.

B. Finite j

To obtain the numerical value of fidelity we set the
parameter δ = 0.1 and diagonalize the DH on either side of
the critical point. We numerically obtain the ground states
|ψ(λ)g〉 and |ψ(λ + δ)g〉 to calculate the fidelity as defined
earlier. The fidelity when plotted against λ shows a dip near
the thermodynamic Quantum Critical Point (QCP); the slight
difference is due to the finite size of the system.

Immensely interesting behavior of the fidelity occurs in the
SR phase at λ > λc. We see a significant number of oscillations
in the fidelity, which drops from a value less than unity to near
zero. It rises and falls aperiodically, staying below 1 till a value
of λ when nc is no longer a sufficient cutoff. Then the fidelity
rises to one, but the aperiodic oscillations persist.

On increasing the value of nc (i.e., the bosonic cutoff), we
observe that the fidelity remains less than one up to even larger
value of λ though the oscillation persists. Ideally, an infinite
bosonic cutoff would see the fidelity never rise to one at any fi-
nite value of λ. In the j → ∞ limit, the DH is integrable in both
its phases, and we recall the absence of aperiodic oscillations in
both the phases of the plot at all values of λ as shown in Fig. 2.

Remarkably, the presence of chaos in the SR phase, as in-
dicated by the level crossing arguments and their statistics [6],
manifests itself in the fidelity as aperiodic oscillations. Even
for a small change in the parameter δ in the Hamiltonian, we
find that the ground states are widely separated (in state space)
for certain values of λ(>λc) resulting in a nearly vanishing
fidelity. For other values of λ(>λc) also, the overlap is small
(<1) and decreases further with increasing δ as seen in the
insets of Figs. 3 and 4. Thus, unlike the normal phase where
the fidelity remains very close to unity throughout with a dip
at the critical point, one finds a significantly different behavior
in the SR phase.

IV. LOSCHMIDT ECHO FOR FINITE j

The modulus of the overlap between the two ground states,
where one is evolved with H (λ) and the other with a shifted
parameter λ + δ is known as the Loschmidt echo (LE) given

FIG. 3. (Color online) Fidelity for δ = 0.1 and δ = 0.3 (inset) for
nc = 40. As is evident the ground-state fidelity oscillates wildly as
the system crosses λc into the SR phase. Inset: The plot in the case
of a large deviation δ = 0.3 clearly shows a lower recovery for the
ground-state fidelity.

by the expression

L(t) = |〈ψ(λ)| eiH (λ)t e−iH (λ+δ)t |ψ(λ)〉|2. (18)

We study the time evolution of the LE in the normal phase and
the SR phase as well as at the QCP for appropriate values of
the parameter λ. We list the observations below.

In the normal phase Fig. 5 (top left), we find that the
amplitude of the LE varies from a value of 1.0 to 0.55, and the
peaks in the envelope have nearly the same amplitude.

Near the QCP Fig. 5 (background), the ground states at λc

and at λc + δ are widely separated; hence, we see that the LE
dips from 1 to 0 and there is no apparent periodicity marking
the QCP at around λ = 0.5.

In the SR phase Fig. 5 (top right), there is an overall decay
in the amplitude of the LE with time. The amplitude of the
envelope revives after a long time.

We see from Fig. 6, which is a plot of the overlap between
the ground state at λ and all states at λ + δ against the total

FIG. 4. (Color online) Fidelity for δ = 0.1 and δ = 0.3 (inset) for
nc = 70. The plot in the case of a larger bosonic cutoff shows that
the fidelity remains less than one for larger range of λ without any
change in the oscillatory behavior in the SR phase.
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FIG. 5. (Color online) The LE for finite j and with δ = 0.3 at
a set time in the normal phase (top left), at the QCP (λ = λc)
(background), and in the SR phase (top right). The LE in the normal
phase shows sustained oscillations (periodic) as only a few states are
involved; as we move into the SR phase the nature of the LE becomes
aperiodic with many states contributing to the LE.

number of states, that in the normal phase the overlap between
the ground state and the states of the Hamiltonian with a shifted
value of λ is limited to one or two excited states. Hence there
is no decay of the LE with time, the system oscillates with the
superposition of two or three frequencies associated with the
energy differences of the nonzero overlaps. In the SR phase,
in contrary, we see a delocalization of the wave function with
parameter λ + δ. As evident from a greater number of states
of |ψi(λ + δ)〉 contributing to the overlap with the ground
state with smaller amplitudes than in the normal phase. As
a larger number of overlaps are involved the phases interfere
destructively, leading to a decay of the LE with time. Finally
at the crossover point λc we see a mixture of both of the above

FIG. 6. (Color online) This plot shows the mod square of the
overlap between 〈ψo(λ)| and |ψi(λ + δ)〉 for i ∈ [0,n] corresponding
to the LE plots (with the parameters δ = 0.3, nc = 40, and j = 5):
blue (dotted) for the normal phase (λ < 0.5), green (thin line) at
the QCP, and red (thick line) for the SR phase (λ > 0.5). One can
clearly observe that after the crossover point λc = 0.5, the overlap
between the initial ground state and the excited states of the perturbed
Hamiltonian is significant.

mentioned behaviors: chaotic and nonchaotic regimes of λ get
involved in the LE, and so we get an aperiodic pattern.

V. THE TIME AVERAGE OF THE LE

Generally the LE serves as a good indicator of QCP, but to
understand the transition to chaos in the SR phase of the DH,
one should explore the time average of the LE as argued by
Peres [3]. It has been suggested that if a quantum system has a
chaotic classical analog, then the time average of the overlap
between two states nearly vanishes in the chaotic phase while
it remains close to unity in the regular phase. We employ the
same technique in the present context using the two ground
states evolved with two slightly different Hamiltonians. It is
easy to show that

〈L〉 = lim
T →∞

∫ T

0 L(t) dt∫ T

0 dt
=

∑
i

|〈ψo(λ)|ψi(λ + δ)〉|4, (19)

where ψ0 is the ground state of H (λ) and ψi is the ith excited
state of the Hamiltonian with the modified value of λ. We
emphasize that though there is an apparent similarity with
the expression for fidelity, there is also a subtle difference;
this expression incorporates information about all the excited
states of the Hamiltonian H (λ + δ). Thus the time average of
the LE is expected to capture the entire delocalization scheme
unlike the fidelity.

A simple mathematical expression connects the time-
averaged LE and the ground-state fidelity:

〈L〉 = F 2 +
∑
i �=0

|〈ψ0(λ)|ψi(λ + δ)〉|4. (20)

Figure 7 clearly shows that the first dip of the ground-state
fidelity (green) in the chaotic phase occurs at the a value
of λ where the LE average (red) just starts to flatten out.
This implies that the terms with i �= 0 in Eq. (20) oscillate
complementary to that of the square of the fidelity, showing

FIG. 7. (Color online) A combined plot of the time average LE
(red), ground-state fidelity (green), and complementary higher state
fidelity sum (blue) versus λ (δ = 0.3). It can be clearly seen that
the time average of the LE contains within it information about the
ground-state fidelity as expected, making the picture of delocalization
of the wave function in state space clear as we move into the SR phase.
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FIG. 8. (Color online) Time-averaged LE for δ = 0.3 (back-
ground) and δ = 0.1 (inset). In both the cases the time average of
the LE dips significantly from 1 as λ goes into the chaotic SR phase.
Inset: Like in the case of ground-state fidelity (Fig. 3) as δ is increased
the recovery of the time average of the LE to 1 never really occurs.

a clear connection between the fidelity and the time-averaged
LE. Thus we can conclude that the time average of the LE
incorporates the effect of ground-state fidelity while providing
a clearer picture of the delocalization in state space.

The time average of LE, as shown in Fig. 8, distinctly
separates the two phases of the DH. As argued in Ref. [3],
the occurrence of chaos in the SR phase is indicated by the
time average dipping to a value much less than one, whereas
in the normal phase, the time average remains close to unity
indicating regularity. This is because in the normal phase, on a
slight change of the perturbing parameter δ, only a few excited
states of the perturbed Hamiltonian have significant overlap
with the ground state of the unperturbed Hamiltonian ψ0(λ);
this indicates that the initial ground state remains close to
itself (in the state space) even when the Hamiltonian is shifted,
which should indeed be the case for a regular behavior.

Contrary to this, in the chaotic phase, one finds a significant
reduction of the overlap between the initial ground state and
the ground state ψ0(λ + δ) of the Hamiltonian with parameter
λ + δ; this can be understood as a signature of chaos. On
a small change of the parameter λ here, there is an overlap
between the initial ground state and a large number of the
excited states of the perturbed Hamiltonian; these states
having nonzero (but small in magnitude) overlap with the
initial ground state are randomly distributed. Thus we see

that on shifting the parameter λ by δ the shifted ground state
ψ0(λ + δ) is widely separated from the initial ground state
ψ0(λ) in the state space. In the classical picture, chaos is
understood as the exponential separation of two trajectories
with very similar initial conditions. This effect is manifested
in the quantum analog, by this aforementioned dissimilarity
between the initial and final states (in state space) produced by
shifting the Hamiltonian parameter. As the time average of the
LE contains this distribution through the sum over all states,
we see a significant drop in the value in the SR phase, clearly
pointing to delocalization and hence serving as a signature
of chaos.

In our entire argument, we are adhering to a completely
quantum mechanical formulation. It should be mentioned that
there have been other studies using the semiclassical LE on
some models to identify chaos and draw a connection to the
classical Lyapunov exponent ([28,34,35] (for a review, see
[36])). However, we are interested here in a fully quantum
mechanical case where establishing such a connection is not
apparently feasible. A semiclassical treatment of the DH with
a finite j through the LE and establishing a connection to the
classical Lyapunov exponent would be an interesting topic of
future research.

VI. CONCLUSION

In conclusion, we have studied the signature of “chaos”
in the SR phase of the DH using the ground-state quantum
fidelity, the LE, and its time-averaged value for a finite j .

We have observed that the ground-state fidelity shows
aperiodic and random oscillations in the SR phase, and the
results are drastically different from the behavior of fidelity
in the j → ∞ limit, which we also present for the sake
of comparison. On the other hand, the LE shows a similar
aperiodic oscillation as a function of time in the SR phase
followed by a rapid decay.

We argue that in the SR phase, many states contribute to
the LE, leading to a faster decay. We also show that the time-
averaged LE contains the information gained from the ground-
state fidelity and stays much less than unity in the SR phase.
In short, we concentrate on the delocalization produced in the
state space by the onset of chaos as compared to the distribution
of eigenenergies as studied in other works. We conclude that
the delocalization of the wave function manifests itself in the
time average of the LE, and the fidelity giving clear signs of
the presence of chaos in the SR phase of the DH.
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