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Multicluster and traveling chimera states in nonlocal phase-coupled oscillators
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Chimera states consisting of domains of coherently and incoherently oscillating identical oscillators with
nonlocal coupling are studied. These states usually coexist with the fully synchronized state and have a small
basin of attraction. We propose a nonlocal phase-coupled model in which chimera states develop from random
initial conditions. Several classes of chimera states have been found: (a) stationary multicluster states with evenly
distributed coherent clusters, (b) stationary multicluster states with unevenly distributed clusters, and (c) a single
cluster state traveling with a constant speed across the system. Traveling coherent states are also identified. A
self-consistent continuum description of these states is provided and their stability properties analyzed through
a combination of linear stability analysis and numerical simulation.
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I. INTRODUCTION

Networks of coupled oscillators have been studied exten-
sively for many years, motivated by a wide range of appli-
cations in physics, chemistry, and biology [1,2]. Examples
include laser arrays [3], coupled Josephson junctions [4],
firefly populations [5], etc. When the coupling is weak, changes
in the oscillation amplitude can be neglected and the oscillator
system can be reduced, by means of phase reduction [6], to
a system of phase-coupled oscillators. Among the models of
phase-coupled oscillators, Kuramoto-type models [7–9] are
best known. In these models, each oscillator is described
by a single phase variable θ which interacts with the others
through a sinusoidal coupling. Many efforts have been made to
describe the dynamics that prevail when the coupling is either
local or global [9–11], but the effects of nonlocal coupling
remain relatively unexplored. Kuramoto and Battogtokh [12]
investigated a system of identical oscillators, each with natural
frequency ω, described in the continuum limit by the equation

∂θ

∂t
= ω −

∫
G(x − y) sin[θ (x,t) − θ (y,t) + α] dy (1)

and discovered, for the coupling function
G(y) = κ

2 exp(−κ|y|), states of partial synchronization.
These states, called chimera states [13], consist of a domain
or domains of coherent, phase-locked oscillators embedded
in a background of incoherent oscillators, and resemble states
consisting of laminar flow embedded within a turbulent state
familiar from studies of plane Couette flow [14–16].

To obtain chimera states within the system (1) two basic
conditions must be satisfied [17]: the coupling must be
nonlocal and the parameter α must be nonzero. In fact, the
chimera states are mostly found when α ≈ π

2 . These numerical
observations inform many of the subsequent studies of the
chimera state [18–25]. In these papers, the coupling function
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G(x) is chosen to be a nonnegative even function that decreases
monotonically with |x|. In the present paper, we retain the
property that G(x) is even but relax, following Ref. [25],
both the monotonicity requirement and the requirement that
it be nonnegative. Our motivation for this generalization of
the coupled oscillator problem comes from biology, and in
particular neural systems [26], in which negative coupling at
large separations is quite typical. With this coupling, we have
found a much richer variety of chimera states, including a
remarkable traveling chimera state. Some of these states, such
as multicluster chimera states, are similar to those reported
recently in Refs. [19,23,24]. Of these Ref. [19] reports the
presence of multicluster chimera states in a particular time-
delay system, while Refs. [23] and [24] report a two-cluster
state and an evenly spaced multicluster state, respectively.
However, no analytical description of these states or of their
stability properties is provided.

We consider phase oscillators distributed uniformly on a
one-dimensional ring of length 2π . The value of ω can be set
to zero by going into a rotating frame. The model equation
then takes the form

∂θ

∂t
= −

∫ π

−π

G(x − y) sin[θ (x,t) − θ (y,t) + α] dy (2)

with α ∈ [0,π/2]. For later convenience, we define β ≡ π
2 −α.

Two families of coupling functions are considered:

G(1)
n (x) ≡ cos(nx), G(2)

n (x) ≡ cos(nx) + cos[(n + 1)x],

where n is an arbitrary positive integer. In each case the
coefficient in front of the coupling function has been set
equal to unity by rescaling time. In both cases, if θ (x,t) is
a solution so is θ (−x,t). In view of the periodic boundary
conditions this implies that Eq. (2) possesses O(2) symmetry
[8]. In particular we are guaranteed the presence of reflection-
symmetric solutions; such solutions cannot drift in the x

direction, and we refer to them as stationary states or standing
waves. On the other hand solutions that break the symmetry
x → −x are expected to drift in the x direction, and we refer to
such solutions as traveling waves; for each solution that drifts
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to the right there is a solution that drifts to the left, obtained
by reflection in x.

The approach we follow is closest to that of Omel’chenko
[25] who proved a number of general results about Eq. (2)
for general coupling functions G(x), while focusing on
two simple choices, G(x) = (2π )−1(1 + A cos x), 0 < A < 1
[13,17], and G(x) = (2πr)−1 for |x| � πr and zero otherwise
[21,27]. Our results for G(1)

n (x) resemble known results for
G(x) = (2π )−1(1 + A cos x), 0 < A < 1, in that we identify
both single and multicluster chimeras with evenly distributed
clusters, indicating that the nonzero mean of G(x) in Ref. [25]
does not play a major role. On the other hand the situation
changes dramatically when the coupling G(2)

n (x) is used
instead. This coupling allows us to identify multicluster
chimeras with unevenly distributed clusters as well as two
types of traveling structures: a traveling coherent state and
a single-cluster traveling chimera state. To characterize these
states we solve in each case a nonlinear integral equation for the
complex order parameter describing the state in the continuum
limit, and compare the result with extensive simulations using
large numbers of oscillators that are necessary to reduce
the effects of fluctuations due to finite oscillator number. In
addition, we follow Ref. [25] in studying the linear stability
of these states and examine their bifurcations as the parameter
β is varied. Some of these lead to hysteretic transitions to
different states, while others lead to nearby stable states.

The paper is organized as follows. In Secs. II and III
we study the system (2) with the coupling functions G(1)

n (x)
and G(2)

n (x), respectively. In both cases we describe a self-
consistency analysis of the chimera states found, focusing
on multicluster chimeras and on their stability properties.
Section III also reports our results on the two traveling
states identified in our numerical simulations with G(2)

n (x) and
formulates a nonlinear complex-valued eigenvalue problem
for the drift speed and rotation frequency of these states. For
the traveling coherent state the solution of this problem is in
excellent agreement with the results of numerical simulations
despite the episodic nature of the drift near the onset of the drift
instability. A brief conclusion is provided in Sec. IV together
with directions for future work.

II. G(1)
n (x) COUPLING

In this section, we consider the case G(1)
n (x) ≡ cos(nx).

Here and elsewhere all numerical simulations are performed
using a fourth-order Runge-Kutta method with time step
δt = 0.025 and repeated with δt = 0.01. The ring is discretized
into N oscillators with N ranging from 512 to 4096.

A. Splay states

Synchronized states with

θ (x,t) = 
t + qx (3)

are referred to as splay states [10,11] and form an important
class of solutions to both locally and globally coupled phase
oscillator systems. In the present context the frequency 


satisfies


 = −
∫ π

−π

G(y) sin(qy + α) dy, (4)

and q is an integer in order that periodic boundary conditions
be satisfied. States of this type travel with speed c = −
/q,
i.e., to the right if 
 < 0 and q > 0 (positive slope) and to
the left if 
 < 0 and q < 0 (negative slope) and vice versa if

 > 0. The fully synchronized state corresponds to the special
splay state with q = 0 and does not travel. Similar states exist
in systems of nonidentical phase oscillators as well [28].

To analyze the linear stability properties of these states, we
follow Ref. [11] and let θ (x,t) = 
t + qx + η(x,t), where
|η| � 1. The linearized equation takes the form

∂η

∂t
=

∫ π

−π

G(x−y) cos[q(x − y) + α][η(y,t) − η(x,t)] dy,

(5)

which admits solutions of the form η ∼ eλmt eimx . Here λm is
the linear growth rate that can be expressed as

λm = 1
2

(
e−iαĜq+m + eiαĜq−m

) − Ĝq cos α (6)

with Ĝq ≡ ∫ π

−π
G(y)eiqy dy. This convention is adopted

throughout the paper as the definition of a Fourier coefficient.
For the coupling function G(1)

n (x), Ĝq = π (δn+q + δn−q).
When α is equal to π

2 , all the splay states are marginally
stable. With a random incoherent initial condition, the system
tends to remain incoherent as time evolves. When α < π

2 ,
the splay states with |q| = n become linearly stable while
all the others become unstable. This is consistent with our
numerical simulations. Snapshots of two different stable splay
states are shown in Fig. 1. Starting from an unstable splay state
with small random noise added or simply from a completely
incoherent state with R = 0 (see below) we find that the
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FIG. 1. Stable splay states with (a) G
(1)
1 (x) ≡ cos(x) and (b)

G
(1)
2 (x) ≡ cos(2x). In both cases β = 0.1 and N = 512. State (a)

travels with speed c = 3.124, while (b) travels with speed c = 1.563,
both towards the right.
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FIG. 2. Chimera states with (a) G
(1)
1 (x) ≡ cos(x) and (b)

G
(1)
2 (x) ≡ cos(2x) obtained from random initial conditions. In both

cases β = 0.1 and N = 512.

system always evolves into one of two attractors: a stable
splay state with |q| = n or a multicluster chimera state. The
system is therefore bistable, with the final state selected by
the initial condition chosen; cf. Ref. [19]. The properties
of the multicluster chimera states are discussed in the next
subsection.

B. Multicluster chimera states

As mentioned above, multicluster chimera states are ob-
tained in numerical simulations with the coupling function
G(1)

n (x) and different values of n. Figures 2 and 3 show the
results for n = 1, 2, 3, and 4 and appropriate values of β, all at
t = 5000. In previous studies [12,13,18], chimera states were
observed only when starting from carefully prepared initial
conditions while here chimera states are easily obtained even
from random initial conditions. This is also the case in a system
with nonlinear nonlocal coupling described in Ref. [29]. This
suggests the chimera states with the coupling function G(1)

n (x)
have a larger basin of attraction than with the exponential
coupling function used by Kuramoto and Battogtokh [12].
However, as in the previous studies, chimera states first appear
when β is small but nonzero, while for large β the splay state
is preferred and appears more and more frequently when the
system is initialized using random initial conditions.

The chimeras shown in Figs. 2 and 3 are stationary in
the sense that they do not display any organized or coherent
motion. This is a consequence of the symmetry of these states
under spatial reflection. Of course, owing to the incoherence
of the surrounding oscillators and their finite number, each
coherent cluster will undergo fluctuations in both its location
and rotation frequency, although the clusters remain, on
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FIG. 3. Chimera states with (a) G
(1)
3 (x) ≡ cos(3x) and (b)

G
(1)
4 (x) ≡ cos(4x) obtained from random initial conditions. (a)

β = 0.05 and N = 512; (b) β = 0.02 and N = 1024.

average, evenly spaced. These fluctuations are quite small
for the simulations reported here and become even smaller
as the number N of oscillators increases. Our simulations
suggest that the length of the cluster and the positions of
the bounding fronts execute zero-mean Brownian motion with
standard deviation σ (N ) (see below).

For G(1)
n (x) ≡ cos(nx), the number of coherent clusters

in the chimera state is always 2n. In fact, if θ (x,t) is a
solution for G

(1)
1 (x), then θm(x,t) ≡ θ (mx,t) is a solution for

G(1)
m (x). Thus each multicluster chimera with G(1)

n (x) is in fact
a concatenation of n single-cluster chimeras with G

(1)
1 (x).

To study these chimera states, we proceed as in Ref. [27].
We define a local mean field z(x,t) as the local average of
exp[iθ (x,t)],

z(x,t) ≡ lim
δ→0+

1

δ

∫ δ/2

−δ/2
eiθ(x+y,t) dy. (7)

The evolution equation for z then takes the form [27,30,31]

zt = 1
2 [e−iαZ(x,t) − z2eiαZ∗(x,t)], (8)

where Z(x,t) ≡ Kz(x,t) and K is a compact linear operator
defined by

Kv(x,t) ≡
∫ π

−π

G(x − y)v(y,t) dy. (9)

The local mean field z(x,t) effectively smooths out the phase
in the incoherent region and yields a well-defined dynamical
system.

The chimera states reported above belong to a special
class of solutions of Eq. (8) referred to as standing waves
[31]. Solutions belonging to this class are stationary in an
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appropriate rotating frame. We assume that this frame has
angular frequency −
 relative to the original frame. In this
case the rotating wave takes the form z(x,t) ≡ e−i
t z̃(x) and
Eq. (8) reduces to

i
z̃ + 1
2 [e−iαZ̃(x) − z̃2eiαZ̃∗(x)] = 0, (10)

where Z̃(x) ≡ ei
tZ(x,t). Solving Eq. (10) as a quadratic
equation in z̃ we obtain [27]

z̃(x) = eiβ 
 − μ(x)

Z̃∗(x)
= eiβZ̃(x)


 + μ(x)
, (11)

where, for reasons explained in Ref. [27], μ(x) is equal to√

2 − |Z̃(x)|2 when |
| > |Z̃(x)| and i

√
|Z̃(x)|2 − 
2 when

|
| < |Z̃(x)|. As explained below this choice of root also
corresponds to solutions with a stable essential spectrum and
hence to solutions that are potentially stable. Since Z̃(x,t) ≡
Kz̃(x,t), Eq. (11) is equivalent to the self-consistency relation
[12]

Z̃(x) ≡ R(x)ei�(x) =
∫ π

−π

G(x − y)ei[β+�(y)]h(y) dy, (12)

where

h(x) ≡ 
 − μ(x)

R(x)
(13)

and the x dependence of the quantity μ arises from its
dependence on the unknown function Z̃(x). Here R > 0 and
� are real-valued functions of x and play the role of local
order parameters. Equation (12) can be also obtained from the
Ott-Antonsen Ansatz [32].

Equation (12) may be applied to our model (Fig. 4). Since
Eq. (2) is invariant under (1) translation in x and (2) phase
rotation (i.e., translation in θ ), it follows that if R(x)ei�(x) is a
solution of Eq. (12), then so is R(x + x0)ei[�(x+x0)+�0]. Here
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FIG. 4. (Color online) (a) The phase distribution θ in a chimera
state with coupling G

(1)
1 (x) ≡ cos(x). (b) The local order parameters

R (red dashed line) and � (blue dotted line) computed from Eq. (7)
and the definitions z(x,t) ≡ e−i
t z̃(x) and Z̃ ≡ R(x)ei�(x) = Kz̃. The
simulation was done with β = 0.1 and N = 512.

x0 and �0 are arbitrary real constants. Using this property, we
pick x0 and �0 such that the self-consistency relation for the
G(1)

n (x) coupling takes the form

R exp(i�) = a cos(nx) + ib sin(nx), (14)

where a and b are real constants satisfying

a = eiβ〈h(y)ei�(y) cos(ny)〉, (15)

ib = eiβ〈h(y)ei�(y) sin(ny)〉. (16)

The bracket 〈·〉 is defined by 〈f 〉 = ∫ π

−π
f (y) dy.

This procedure can be applied to the local order parameters
R(x) and �(x) shown in Fig. 4(b). Moreover, since both R and
� are even functions of x with respect to a suitable origin, it
follows that b = 0 except at phase discontinuities where R = 0
[Fig. 4(b)], and hence that R(x) = R0| cos(nx)|, R0 > 0. The
self-consistency relation thus becomes

R2
0 = eiβ

〈

 −

√

2 − R2

0 cos2(ny)
〉

(17)

and is independent of n provided n is an integer or a half-
integer.

Equation (17) can be regarded as two equations (real and
imaginary parts) with two unknowns R0 and 
. Solving these
equations by numerical continuation with n = 1 and β = 0.1
as the starting point we can determine the dependence of R0,

 and the coherent fraction e on β (Fig. 5). The coherent
fraction e is defined as the ratio of the total length of coherent
clusters to the spatial domain size, 2π . The starting values
of R0 and 
 are first obtained by temporal simulation and
then corrected via the self-consistency relation (17). The
plots indicate the two-cluster chimera states are born from
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FIG. 5. (a) The quantities R0 and 
, and (b) the coherent fraction
e, all as functions of β for the two-cluster chimera state with G

(1)
1 (x)

coupling [Fig. 4(a)].

022919-4



MULTICLUSTER AND TRAVELING CHIMERA STATES IN . . . PHYSICAL REVIEW E 90, 022919 (2014)

an incoherent state with R > 0 as β increases from zero. Even
though the self-consistency relation indicates the existence of
chimera states for 0 < β < π/2, such states are not necessarily
stable or have a large enough basin of attraction to be observed
in numerical simulations. For example, starting from the
two-cluster chimera state in Fig. 4(a), we increased β from 0.1
in small steps, each time evolving the system until it reached a
steady chimera solution. This process failed for the first time at
β ≈ 0.170 ± 0.005, where the solution evolved into a |q| = 1
splay state. The calculation was repeated with four different
choices of N , N = 512, 1024, 2048, and 4096, with essentially
identical results.

Linear stability of the chimera states can be studied by
linearizing Eq. (8) about z̃(x),

vt = iμv + 1
2 [e−iαV − z̃2eiαV ∗], (18)

where v(x,t) represents a small deviation from z̃ and V (x,t) ≡
Kv(x,t); cf. Ref. [27]. This equation is solved by

v(x,t) = eλtv1(x) + eλ∗t v∗
2 (x), (19)

leading to the eigenvalue problem

λ

(
v1

v2

)
= 1

2

(
2iμ+ e−iαK −eiαz̃2K

−e−iαz̃∗2K −2iμ∗ + eiαK

) (
v1

v2

)
. (20)

Since K is compact [27] (indeed, finite-dimensional for the
coupling G(1)

n and G(2)
n ), its spectrum consists of two parts,

a continuous spectrum given by {iμ(x), − iμ∗(x)} with x ∈
[−π,π ) and a (possibly empty) point spectrum. The spectrum
is in addition symmetric with respect to the real axis: if λ is an
eigenvalue with eigenvector (v1,v2)T , then λ∗ is an eigenvalue
with eigenvector (v∗

2 ,v
∗
1 )T . The continuous spectrum is stable

(negative) or neutrally stable (purely imaginary). Thus the
stability of the chimera states is determined by the point
spectrum.

We can compute unstable point eigenvalues λp numerically.
For this purpose we rewrite Eq. (20) in the form⎛

⎝2 − e−iαK
λp−iμ

eiα z̃2K
λp−iμ

e−iα z̃∗2K
λp+iμ∗ 2 − eiαK

λp+iμ∗

⎞
⎠(

v1

v2

)
= 0 (21)

and define f ≡ 1
4

e−iα

λp−iμ
, f ∗ ≡ 1

4
eiα

λp+iμ∗ , g ≡ 1
4

eiα z̃2

λp−iμ
, and

g∗ ≡ 1
4

e−iα z̃∗2

λp+iμ∗ . Note that f ∗ and g∗ are not necessarily the
complex conjugate of f and g, as λp can be complex. As
suggested in Ref. [25], it is convenient to solve the eigenvalue
problem using Fourier basis functions, especially so since the
coupling function is sinusoidal. Equation (21) then takes the
form ∑

m

Blmv̂m = 0, (22)

where

Blm =
(

πδl,m − f̂l−mĜm ĝl−mĜm

ĝ∗
l−mĜm πδl,m − f̂ ∗

l−mĜm

)
,

v̂m =
(

v̂1,m

v̂2,m

)
,

and f̂l , f̂ ∗
l , ĝl , ĝ∗

l are the Fourier coefficients of f , f ∗, g, and
g∗, respectively; the latter are defined by f̂l = ∫ π

−π
f eilxdx,

etc.
The point eigenvalue λp satisfies the condition

det(B(λp)) = 0. With the coupling function G(1)
n we obtain

det

⎛
⎜⎜⎜⎜⎝

1 − f̂0 ĝ0 −f̂−2n ĝ−2n

ĝ∗
0 1 − f̂ ∗

0 ĝ∗
−2n −f̂ ∗

−2n

−f̂2n ĝ2n 1 − f̂0 ĝ0

ĝ∗
2n −f̂ ∗

2n ĝ∗
0 1 − f̂ ∗

0

⎞
⎟⎟⎟⎟⎠ = 0, (23)

or equivalently

w(λ) ≡ det

⎛
⎜⎜⎜⎜⎝

1 − f̂0 −f̂−2n ĝ0 ĝ−2n

−f̂2n 1 − f̂0 ĝ2n ĝ0

ĝ∗
0 ĝ∗

−2n 1 − f̂ ∗
0 −f̂ ∗

−2n

ĝ∗
2n ĝ∗

0 −f̂ ∗
2n 1 − f̂ ∗

0

⎞
⎟⎟⎟⎟⎠ = 0.

(24)

The resulting point eigenvalue is computed using con-
tinuation based on Newton’s method. For the chimera state
in Fig. 4(a) the calculation shows that an unstable real
point eigenvalue emerges from the continuous spectrum as
β increases above β ≈ 0.17, in agreement with the result
from direct numerical simulation. To confirm that there is
only one unstable point eigenvalue, we evaluate the integral

1
2πi

∮
w′(λ)/w(λ) dλ for closed contours in the upper half

of the complex λ plane. Since the integral is consistently
equal to 1 there are no additional unstable point eigenvalues.
Figure 6(a) shows the spectrum of Eq. (20) when β ≈ 0.83,
while Fig. 6(b) shows the point eigenvalue λp as a function
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FIG. 6. (a) Spectrum of the linearized operator in Eq. (20) for G
(1)
1

when β ≈ 0.83. (b) Dependence of the point eigenvalue λp on β.
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FIG. 7. The eigenvector (v1,v2) of the unstable point eigenvalue
with coupling G

(1)
1 (x) at threshold. Left panels: |v1(x)| and |v2(x)|.

Right panels: phase of v1(x) and v2(x). The phase jumps by ±π

whenever the modulus vanishes.

of β. The corresponding eigenvector is shown in Fig. 7 and is
symmetric under reflection x → −x.

As mentioned earlier, owing to the finite number of
oscillators in the simulations, each coherent cluster in a
multicluster chimera undergoes fluctuations in both its location
and rotation frequency, although the clusters remain on average
evenly spaced. Here we examine the details of the associated
fluctuations numerically for the case n = 1 using several
different values of N : 256, 362, 512, 724, 1024, 1448, and
2048. For each value of N , we collect data based on time
simulation of a two-cluster chimera state starting with three
different initial conditions with R ≈ 0. The total simulation
time for each run is 5000. To avoid initial transients, data points
between t = 0 and 1000 are excluded from the calculation of
the statistics.

To obtain the location and rotation frequency of each
coherent cluster, we compute the discrete version of the
local order parameter Z(N) ≡ 2π

N

∑N
m=1 G(x − xm)eiθm , where

xm = 2πm
N

and θm = θ (xm), and compare it with the general
form of the local order parameter

e−i
∫


 dt ′ {a cos[n(x − x0)] + ib sin[n(x − x0)]} (25)

to obtain the real coefficients x0, a, b, and 
, all of which
fluctuate as time evolves. Figure 8 shows a sample plot of
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FIG. 8. The position x0 of a coherent cluster as a function of t in
a chimera state obtained with the coupling G

(1)
1 (x) when β = 0.1 and

N = 256.
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FIG. 9. The dependence of the standard deviation σ of (a) ẋ0, (b)

 − 
, and (c) a − a on log2 N when β = 0.1.

the position x0 of one of the coherent clusters as a function
of t when β = 0.1 and N = 256. Because of the reflection
symmetry of this state on average we expect the position x0 to
undergo fluctuations with zero mean; cf. Ref. [21].

The dynamics of ẋ0(t), 
(t) − 
, and a(t) − a are modeled
well by a Gaussian white noise η(t) satisfying η(t)η(t ′) =
σ 2δ(t − t ′). Figure 9 shows the dependence of the standard
deviation σ on log2 N for ẋ0(t), 
(t) − 
, and a(t) − a. The
results show that σ scales as N−0.523 for ẋ0, N−0.536 for 
,
and N−0.515 for a. For comparison, for a steplike coupling
function and a one-cluster chimera the corresponding result is
σ ∼ N−0.845 [21].

III. G(2)
n COUPLING

In this section we consider the case with the coupling
function G(2)

n .

A. Splay states

Splay states with G(2)
n and their linear stability properties are

determined as for G(1)
n . The growth rate λm for an eigenmode
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FIG. 10. (a) The dependence of the speed c on β for n = 3 (solid
line), and n = 4 (dashed line) splay states with G

(2)
3 coupling. (b) The

dependence of the frequency 
 on β is the same in both cases.

of the form eimx still satisfies the relation Eq. (6) but this time
with

Ĝq = π (δn+q + δn−q + δn+1+q + δn+1−q ). (26)

The |q| = n, n + 1 splay states become linearly stable for
nonzero β while all the other splay states become unstable.
Figure 10 shows the frequency 
 for the stable n = 3,4 splay
states for G

(2)
3 coupling as a function of β together with their

drift speeds c = −
/n. This speed is positive, implying that
positive slope splay states travel to the right. As before the final
state reached from random initial conditions can be either a
splay state with |q| = n or n + 1, or a stationary multicluster
chimera state. However, this time we have also identified a
family of entirely new states that can also be reached from
random initial conditions: traveling chimera states. Traveling
coherent states are also present, as discussed further below.

B. Multicluster chimera states

Here we report our results on stationary multicluster
chimera states with the coupling G(2)

n . Figures 11 and 12 show
the phase distribution in multicluster chimera states obtained
with n = 1, 2, 3, and 4. The figures reveal a total of 2n + 1
coherent clusters in each case, distributed evenly across both
the spatial domain and the phase θ .

We examine the properties of these states in the case n = 1.
Figure 13 shows the position of one of the coherent clusters as
a function of time. The plot indicates that the cluster remains
on average stationary, at least for moderate times, although
slow drift over very long times cannot be excluded. The
apparent stationarity of the cluster permits us to employ a
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FIG. 11. Chimera states with (a) G
(2)
1 ≡ cos(x) + cos(2x) and (b)

G
(2)
2 ≡ cos(2x) + cos(3x) obtained from random initial conditions. In

both cases β = 0.03 and N = 512.

self-consistency analysis analogous to that leading to Eq. (12).
With G = G

(2)
1 this equation yields

R exp(i�) = a cos x + b sin x + c cos(2x) + d sin(2x), (27)
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FIG. 12. Chimera states with (a) G
(2)
3 ≡ cos(3x) + cos(4x)

and (b) G
(2)
4 ≡ cos(4x) + cos(5x) obtained from random initial

conditions. In both cases β = 0.03 and N = 512.
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FIG. 13. The position x0 of a coherent cluster in the three-cluster
chimera state obtained with coupling G

(2)
1 ≡ cos(x) + cos(2x) as a

function of t for t � 5000 when β = 0.1 and N = 512, starting from
random initial conditions at t = 0.

where a, b, c, and d are complex numbers given by

a = eiβ〈hei� cos y〉,
b = eiβ〈hei� sin y〉,
c = eiβ〈hei� cos 2y〉,
d = eiβ〈hei� sin 2y〉,

with h defined as in Eq. (13). Translations in x and θ allow
us to fix two of the unknown variables in the self-consistency
equation. With these conditions, we can solve for a, b, c, d

and the real quantity 
.
Instead of solving the self-consistency equation by brute

force, we observe that Fig. 14 indicates that one can shift the
coordinate so that R(x) becomes an even function of x,

R(x) = R0| cos(3x/2)|, R0 > 0, (28)

while �(x) consists of straight line segments with slope ±1/2
and phase jumps ±π whenever R(x) touches zero (the case
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FIG. 14. (Color online) (a) The phase distribution θ (x) in a three-
cluster chimera state with coupling G

(2)
1 ≡ cos(x) + cos(2x) and

β = 0.05, N = 512 [Fig. 11(a)]. (b) The local order parameters R

(red dashed line) and � (blue dotted line).

of positive slope is not shown in Fig. 14 but is also observed
in the simulations). The even parity of R(x) is consistent with
the observation that the chimera is stationary. Combining these
observations with phase translation, we conclude that the local
order parameter for the multicluster chimera state takes the
form

R exp(i�) = R0 cos(3x/2) e±ix/2; (29)

indeed, Z̃(x) = R0 cos[(2n + 1)x/2] exp(±ix/2) for n � 1.
Comparing Eq. (29) with Eq. (27), one obtains a = c = R0/2
and b = −d = ∓iR0/2. Substituting Eq. (29) into the self-
consistency equation (12) we obtain four relations from the
requirement that the coefficients of cos x, sin x, cos(2x), and
sin(2x) all vanish. It turns out that these relations are all
identical, leading to the final self-consistency requirement

R2
0 = eiβ

〈

 −

√

2 − R2

0 cos2(3y/2)
〉
. (30)

This equation is of the form (17). Since the solutions of
this equation are independent of n when n is an integer or
half-integer, the solutions presented in Fig. 5 also describe the
β dependence of R0, 
 and the coherent fraction e for the three-
cluster chimera state with G

(2)
1 coupling. The multicluster

chimera states are thus also born from the incoherent state
as β increases from zero. Direct numerical simulations show
that this time the solution loses stability when β reaches
approximately 0.125 ± 0.005, a result obtained with N = 512
and confirmed using N = 1024 and 2048.

These results are in close agreement with a theoretical
stability analysis based on Eq. (22). This time the calculation
reveals a pair of unstable complex point eigenvalues that
appear as β increases above β ≈ 0.120, followed by an
unstable real point eigenvalue that emerges as β reaches
β ≈ 0.174 [Fig. 15(b)]. The corresponding eigenvectors are
again even (Fig. 16), implying that neither instability results
in drift. Numerical contour integration indicates that no other
unstable point eigenvalues are present. Figure 15(a) shows the
spectrum of Eq. (20) when β ≈ 0.83, while Fig. 15(b) shows
the unstable point eigenvalues λp as a function of β. The results
for G

(2)
3 are qualitatively similar, with the oscillatory instability

appearing at β ≈ 0.129 and the stationary instability located
at β ≈ 0.176.

There remains the question whether the multicluster
chimera states with the coupling G(2)

n are the only nontrivial
solutions of Eq. (12) other than the splay states. Our numerical
simulations indicate that the answer is no. Figures 17 and 18
provide two examples of stationary but “exotic” chimera states.
Figure 17 shows the results for G

(2)
1 ≡ cos(x) + cos(2x), while

Fig. 18 shows the results for G
(2)
2 ≡ cos(2x) + cos(3x), both

with β = 0.03 and N = 512. There are several differences
between these states and the multicluster chimera states
already discussed. First, the number of the clusters is not equal
to 2n + 1. Second, the coherent clusters in these states are
distributed nonuniformly in space. As shown in the snapshots,
these states consist of two pairs of coherent domains with the
components of each pair closer to one another than the mean
separation. Finally, the phase of the local order parameter is no
longer linear in the spatial variable x and exhibits oscillations.
However, we can still shift the x coordinate to make R(x)
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FIG. 15. (Color online) (a) Spectrum of the linearized operator
in Eq. (20) for G

(2)
1 coupling when β ≈ 0.83. (b) Dependence of the

point eigenvalues on β. Black line: real point eigenvalue. Red (or
gray) solid line: real part of the complex point eigenvalues. Red (or
gray) dashed line: imaginary part of the complex point eigenvalues.

even, implying that these exotic chimera states are stationary
in space except for an overall rotation frequency 
 (and the
presence of fluctuations due to finite size effects).

To understand the properties of the nonuniform multicluster
chimera state in Fig. 17 we translate the state such that R(0) =
R(π ) = 0. It follows from Eq. (27) that a = c = 0, leaving the
following two consistency conditions:

be−iβ =
〈
b sin2 x + d sin x sin 2x


 + μ(x)

〉
, (31)

de−iβ =
〈
b sin x sin 2x + d sin2 2x


 + μ(x)

〉
. (32)

These equations constitute a pair of complex equations for
the complex coefficients b and d and the unknown frequency

. However, Fig. 17 also shows that �(π/2) = 0 (modulo
π phase jumps), and we use this observation to deduce that
bi = 0. In this case Eqs. (31) and (32) reduce to four real
equations for br , dr , di , and 
.

We begin by observing that a solution with order param-
eter Z for (br,dr ,di,
) implies the presence of a solution
with order parameter Z∗ for (br,−dr,−di,
). This is a
consequence of the invariance of the conditions (31)–(32)
under d → −d corresponding to invariance with respect
to the translation x → x + π . Figure 17 compares a four-
cluster chimera state with complex order parameter Z with
one with order parameter Z∗, both computed for β = 0.03.
Note also that a solution β,br ,dr ,di,
 implies the presence
of a solution −β,br ,dr ,−di,
. In view of these sym-
metries the self-consistency conditions have two solutions
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FIG. 16. Eigenvectors of (a) the real unstable mode and (b) the
Hopf mode at threshold [Fig. 15(b)]. In each plot, the left panels
correspond to |v1(x)| and |v2(x)|, while the right panels show the
phase of v1(x) and v2(x). The phase jumps by ±π whenever the
modulus vanishes.

for β = 0.03: br = 2.1985, dr = ∓0.0073, di = ±1.8375,

 = 2.4683. A similar calculation for G

(2)
2 (Fig. 18) yields

the result br = −1.6529, dr = ±0.00296, di = ±1.7256,


 = 2.2426, again for β = 0.03. These results agree well with
the measured order parameter in both cases.

Having established the value of the self-consistency analy-
sis for the exotic chimera states we now use it as a predictive
tool. In Fig. 19 we present a plot of the coefficients (br ,dr ,di,
)
as a function of the parameter β. The results show that at
β ≈ 0.24 the local minima of R(x) touch the line R = 


[Fig. 19(b)] and for larger β dip below R = 
. At this
point the quantity μ(x) in the consistency condition becomes
pure imaginary and the solution ceases to exist. We have
checked this prediction using numerical simulations. These
indicate that for β � 0.24 the four-cluster chimera state indeed
disappears and that it does so by a pairwise merger of the
clusters, forming a two-cluster chimera for β � 0.24 (Fig. 20).

With increasing β these two remaining clusters gradually
grow in length (Fig. 21) but do not merge. Instead this two-
cluster state loses stability at β ≈ 0.96 where a real eigenvalue
passes through zero. This prediction is consistent with direct
numerical simulations provided a sufficiently large number
of oscillators is used (β ≈ 0.93 when N = 512, β ≈ 0.96
when N = 2048). The simulations reveal that this instability is
responsible for a strongly hysteretic transition to the stationary
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FIG. 17. (Color online) (a) The phase distribution θ (x) in a four-
cluster chimera state with coupling G

(2)
1 ≡ cos(x) + cos(2x) and

β = 0.03, N = 512. (b) The local order parameters R (red dashed
line) and � (blue dotted line). (c, d) A related chimera state with
order parameters R and −�.

fully coherent state shown in Fig. 22. Since the corresponding
order parameters R(x) and �(x) are both even with respect to
the same point the coherent state must again be stationary. We
therefore write

R exp(i�) = a cos(x) + c cos(2x) (33)

and use the symmetries of the order parameter to set ai = 0.
The self-consistency equations for this case are

ae−iβ =
〈
a cos2 x + c cos x cos 2x


 + μ(x)

〉
, (34)

ce−iβ =
〈
a cos x cos 2x + c cos2 2x


 + μ(x)

〉
. (35)
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FIG. 18. (Color online) (a) The phase distribution θ (x) in a four-
cluster chimera state with coupling G

(2)
2 ≡ cos(2x) + cos(3x) and

β = 0.03, N = 512. (b) The local order parameters R (red dashed
line) and � (blue dotted line).

Figure 23(a) shows the solution of these equations as a
function of β. Solutions exist for all values of β but change
their character dramatically below β ≈ 0.7644. Figure 23(b)
explains the reason for this change: at this value of β the
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FIG. 19. (Color online) (a) The solution of the self-consistency
conditions (31)–(32) as a function of β (br : solid black line, dr : solid
red (or gray) line, di : dashed red (or gray) line, 
: dashed black
line). (b) The predicted order parameter R(x) at β = 0.24 (solid
line) in comparison with the line R = 
 (dashed line) indicating that
four-cluster chimeras are present for β � 0.24; for β � 0.24 only
two-cluster chimeras are predicted.
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FIG. 20. (Color online) (a) The computed phase distribution θ (x)
at β = 0.24 and (b) the corresponding order parameter R(x) (red
dashed line) and the associated phase �(x) (blue dotted line) for
comparison with the prediction in Fig. 19.

global minimum of the order parameter R(x) touches the line
R = 
 for the first time as β decreases, and for β � 0.7644 the
quantity μ(x) is no longer everywhere real. However, this time
the consequences of this fact are different and are discussed in
the next section.

C. Traveling coherent states

Numerical simulations confirm the presence of a stable
stationary coherent state for G

(2)
1 down to β ≈ 0.7644 (a

threshold value computed with N = 512 oscillators) but reveal
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FIG. 21. (Color online) (a) The phase distribution θ (x) at β = 0.6
and (b) the corresponding order parameter R(x) (red dashed line) and
the associated phase �(x) (blue dotted line) for comparison with
Fig. 20.
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FIG. 22. (Color online) (a) The phase distribution θ (x) and (b)
the corresponding order parameter R(x) (red dashed line) and the
associated phase �(x) (blue dotted line) for the stationary coherent
state with G

(2)
1 coupling present at β = 0.96.

that for lower values of β this state develops a small asymmetry
[Fig. 24(b)] and begins to travel to the left. We have examined
carefully the behavior of this state near the (nonhysteretic)
transition at β ≈ 0.7644. Figure 25(a) shows the position of
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FIG. 23. (Color online) (a) The solution of the self-consistency
conditions (34)–(35) as a function of β [ar : solid black line, cr : solid
red (or gray) line, ci : dashed red (or gray) line, 
: dashed black line].
(b) The predicted order parameter R(x) at β = 0.77 (solid line) in
comparison with the line R = 
 (dashed line).
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FIG. 24. (a) The phase distribution θ (x) at (a) β = 0.77
(symmetric distribution), (b) β = 0.76 (asymmetric distribution) and
(c) β = 0.66 (asymmetric distribution), all for N = 512. The state in
(b) oscillates in time while drifting to the left; state (c) travels to the
left at constant speed. Reflected solutions travel to the right.

the coherent state as a function of time when β = 0.762. The
figure reveals that the drift speed to the left is not constant in
time but is accompanied by small amplitude oscillations. As β

increases and one approaches the threshold for this transition
the motion takes on the characteristic of stick-slip motion,
i.e., the coherent state spends longer and longer periods of
time in a near-stationary state, interrupted by brief episodes
of slip during which the phase decreases by 2π . In many if
not most systems this type of behavior is associated with the
presence of a sniper bifurcation, a saddle-node bifurcation of
two equilibria on an invariant circle [33]. However, our detailed
investigation of the origin of this behavior has failed to confirm
the presence of this bifurcation. Instead, our self-consistency
analysis indicates that the symmetric coherent state persists
as β decreases but loses stability below βc ≈ 0.7644, a
threshold value that is in good agreement with the numerically
determined threshold. At this parameter value a single real
eigenvalue passes through zero, becoming positive for β < βc.
The associated eigenfunction is antisymmetric (not shown),
indicating that this bifurcation should be a parity-breaking
bifurcation leading to drift with a constant speed c that varies
with β as (βc − β)1/2 [34].

To understand why this behavior is not observed we have
examined the origin of the oscillations in the speed c. It
turns out that these are associated with oscillations in the
phase distribution [Fig. 26(a)] localized in the vicinity of a
near-discontinuity in the distribution [compare Figs. 24(a) and
24(b)]. The oscillators in this region periodically detrain and
entrain, and it is the detraining events that are responsible
for the observed episodic drift. We have checked that this is
not a discreteness effect: the oscillation frequency at fixed β

remains unchanged when N is increased from 512 to 1024
and 2048. However, as one approaches βc from below these
episodes become more and more infrequent and in the vicinity
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FIG. 25. (a) The position x0 of the coherent state as a function of
time at β = 0.762. (b) The time-averaged speed c̄ of the coherent state
as a function of β as β decreases. Note the abrupt decrease in speed at
β ≈ 0.7570 associated with the disappearance of the oscillations. (c)
The time-averaged speed c̄ of the coherent state as a function of β as
β increases. Oscillations reappear at β ≈ 0.7595 as shown in (d). The
position of the coherent state is measured mod 2π . All calculations
are for N = 512.

of βc become nonperiodic. In contrast to the periodic motion,
the observed nonperiodic motion is likely a consequence
of intrinsic noise in the system whose effects are strongly
amplified close to the transition at β = βc. Indeed, sufficiently
near the transition the sign of the phase slip begins to fluctuate
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FIG. 26. Hidden line plots of the phase distribution θ as a function
of time when (a) β = 0.762 [oscillatory drift, Fig. 25(a)] and (b)
β = 0.755 (constant drift), both for N = 512.

and the coherent state at times shifts to the left but at other
times shifts to the right (not shown). Figure 25(b) shows that
as β decreases the time-averaged speed c̄ increases linearly
with decreasing β until β ≈ 0.7570, where there is a hysteretic
transition to an oscillation-free drift with a substantially lower
speed. Figure 25(c) shows that when β is increased again the
system remains in the oscillation-free state until β ≈ 0.7595;
at this point the oscillations reappear [Fig. 25(d)] and the speed
jumps to a larger value. Evidently the oscillations increase
the mean speed because c̄ is dominated by the faster motion
associated with time intervals corresponding to maximum
asymmetry.

We believe that the discrepancy between the linear stability
predictions and the observed behavior is a consequence of
the fact that the former is based on the smoothed out order
parameter Z, which is insensitive to the near-discontinuity
in the slope of the phase distribution that appears to be
responsible for the instability. For this reason the analysis
is unable to capture the imaginary part of the eigenvalue,
although it does correctly predict the onset of the instability.
Moreover, because the order parameter profile is symmetric
the unstable eigenfunction is necessarily antisymmetric, in
contrast to the observed unstable mode which is asymmetric
but not antisymmetric. For these reasons a consistency analysis
of the type used with success for stationary states does not
appear to be appropriate for this type of drifting state.

As β decreases further below the hysteresis region the
speed c continues to grow linearly but at β ≈ 0.646 the
coherent state itself undergoes a hysteretic transition to a
stationary two-cluster chimera of the type represented in
Fig. 21(a). We have not investigated the origin of this instability
in detail.

It turns out that the speed c and the angular frequency 
 of
the coherent state can both be computed theoretically and the
predictions compared with measured values. For this purpose
we suppose that the coherent state is stationary in the moving
frame (Fig. 26 indicates that this is at best an approximation);
i.e., we suppose that z(x,t) ≡ u(ξ ), where ξ ≡ x − ct , obtain-
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FIG. 27. Comparison of (a) the speed c and (b) the frequency 


obtained from the solution of the nonlinear eigenvalue problem (36)
(solid lines) with measurements computed with N = 512 oscillators
(open circles), both as a function of β. The inset in (a) reveals the
expected square root behavior near βc ≈ 0.7644. In contrast, the
behavior of 
 is approximately linear everywhere.

ing a complex nonlinear eigenvalue problem for the speed c

and the frequency 
 of the coherent state:

cũξ + i
ũ + 1
2 [e−iαŨ − ũ2eiαŨ ∗] = 0. (36)

Here ũ = u exp i
t and likewise for Ũ . This equation is to
be solved subject to periodic boundary conditions on [−π,π ).
Figure 27 compares the solution of this eigenvalue problem
(solid lines) with the measured values (open circles). The
agreement is excellent. The inset in Fig. 27(a) shows that suf-
ficiently near βc the speed c varies as (βc − β)1/2, as expected
of a parity-breaking bifurcation, while 
 is linear in β. Away
from this region numerical fits yield |c| ≈ 0.82(βc − β) and
|
| ≈ 1.03(βc − β). Figure 28 performs a more rigorous test
of the two procedures by comparing, for β = 0.66, the details
of the order parameter profiles computed from simulation
and from the nonlinear eigenvalue problem. Although the
agreement is now less good, it is clear that the nonlinear
eigenvalue problem captures the essential details of the order
parameter profile and in particular of the asymmetry in the
profile that is responsible for the presence of drift. As β

increases towards βc the agreement between the measured
and predicted profiles improves dramatically, although a small
residual discrepancy remains in regions of near-discontinuity,
where the instantaneous profile exhibits localized oscillations
[Fig. 24(b)].
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FIG. 28. (Color online) Comparison of the phase and order pa-
rameter profiles from direct simulation (top panels) with those
obtained from the nonlinear eigenvalue problem when β = 0.66. The
profiles are qualitatively similar modulo translation and overall phase
rotation.

D. Traveling chimera states

Apart from the chimera states discussed in the previous
subsections, which we consider as stationary in the large N

limit, we have also observed one-cluster chimera states in
which the coherent cluster drifts at constant speed in the x

direction as time evolves. Figure 29 shows a snapshot of such
a traveling chimera state when the coupling function is G

(2)
2 ≡

cos(2x) + cos(3x), while Fig. 30 shows examples for G
(2)
3 ≡

cos(3x) + cos(4x). The direction of motion is determined by
the gradient of the phase in the coherent region: when the
gradient is positive (left panels in Figs. 29 and 30), the cluster
travels to the left; when it is negative, it travels to the right.
However, the measured speeds are much smaller and in the
opposite direction from the drift speeds of the n = 2 and n = 3
(Fig. 29) or n = 3 and n = 4 (Fig. 30) splay states, whose
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FIG. 29. (a) A left-traveling one-cluster chimera state. (b) A
right-traveling one-cluster chimera state. The simulation is done for
β = 0.03 with the coupling G

(2)
2 ≡ cos(2x) + cos(3x) and N = 512.

ghostlike signature is evident in the phase distribution in the
figures, and in particular in Fig. 31(c). However, despite these
differences, the phase gradient in the traveling chimera state
with G

(2)
3 coupling is intermediate between the phase gradients
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FIG. 30. (a) A left-traveling one-cluster chimera state. (b) A
right-traveling one-cluster chimera state. The simulation is done for
β = 0.03 with the coupling G

(2)
3 ≡ cos(3x) + cos(4x) and N = 512.
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FIG. 31. (a,b) Splay states with n = 3 and n = 4 for comparison
with (c) the traveling chimera state with G

(2)
3 ≡ cos(3x) + cos(4x)

coupling. (d) Instantaneous phase velocity of the state in (c). (e)
Profile of the function F used to track the position of the coherent
structure.

associated with the competing n = 3 and n = 4 splay states
[Figs. 31(a) and 31(b)], and this is so for the G

(2)
2 coupling

as well.
To determine the parameter dependence of the speed of

these coherent structures we first need to be able to track their
position. As shown in Fig. 31(d), the spatial profile of θt at
a given instant in time consists of a flat part corresponding
to the position of the coherent cluster. Thus the shift in the θt

pattern provides a unique indication of a shift in the location of
the coherent cluster. Following Ref. [21] we pick a reference
profile f (x,x∗) = − cos(x − x∗) and use the value of x∗ which
minimizes the function

F (x∗) := 1

N

N∑
k

[θt − f (xk,x
∗)]2 (37)

as the position x0 of the coherent cluster. Figure 31(e) shows
a snapshot of the function F (x∗). Figure 32(a) shows the
position of the coherent cluster in a periodic domain as a
function of time determined using this method when N = 512,
β = 0.03. The cluster moves to the right at an almost constant
speed c ≈ 0.0077. Figure 32(b) shows that the speed c is
approximately independent of the number N of oscillators,
suggesting that the motion is an intrinsic property of the state
and not an artifact of the finiteness of N . Finally, Fig. 32(c)
shows that the speed c increases with increasing β. As in the
case of the stationary chimeras described above, the probability
of obtaining a traveling chimera when the simulation starts
from random initial conditions decreases as β increases; i.e.,
the basin of attraction of this state, like those of the stationary
states, appears to shrink as β increases.
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FIG. 32. (a) The position of the coherent cluster as a function
of time when N = 512, β = 0.03. (b) The dependence of the time-
averaged speed c of the cluster on the oscillator number N when
β = 0.03. (c) The dependence of the time-averaged speed c of the
cluster on the parameter β when N = 512.

In fact, the traveling chimera state is more complex than
suggested by the snapshots in Figs. 29 and 30. This fact is
clearly revealed only in a space-time plot of the instantaneous
order parameter. Figure 33(a) shows the modulus R(x,t)
of the instantaneous local order parameter corresponding
to Fig. 30(b), with time increasing upwards. The profile
resembles a half-wavelength of a sinusoidal function (Fig. 34)
and propagates with approximately constant speed to the right.
However, the shape of the profile fluctuates in time, with
smaller amplitude waves running on top of the translating
bulk profile [Fig. 33(b)].

Altogether we have found for the coupling G
(2)
3 as many as

four distinct stable states: splay states with n = 3 and n = 4,
the stationary multicluster chimera state with seven clusters
[Fig. 12(a)], and the one-cluster traveling chimera (Fig. 30).
Among these, the splay states are stable for all 0 < β < π

2 .
The multicluster chimera is stable for small β (it is observed
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FIG. 33. (a) The local order parameter R(x,t) in a space-time
plot for the traveling chimera in Fig. 30(b). (b) Zoom of (a) showing
additional detail.

in numerical simulations already when β = 0.001 although
the fraction of the oscillators in the coherent state is then very
small). As β increases this state loses stability when β reaches
a value between 0.115 and 0.12 and evolves to one or other of
the splay states. The traveling chimera is stable in the interval
0.015 � β � 0.065; below this range a linear instability takes
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FIG. 34. (Color online) (a) Snapshot of the phase distribution in
a one-cluster traveling chimera state with G

(2)
3 ≡ cos(3x) + cos(4x)

coupling. (b) Local order parameters R (red dashed line) and � (blue
dotted line). The simulation is done with β = 0.03 and N = 512.

it to the multicluster state while above this range it takes it into
one or other of the splay states. However, despite considerable
effort and simulations of very large oscillator systems to get
accurate initial conditions, we have not succeeded in solving
the corresponding nonlinear eigenvalue problem for the speed
c of this state. We attribute this failure to the fact, clearly visible
in Fig. 33, that this state does not in fact drift as a rigid object:
it is a time-dependent state even in the comoving frame.

IV. CONCLUSION

In this paper we have investigated the effects of nonlocal
coupling of indefinite sign on a system of identical phase-
coupled oscillators. We focused on the case with positive
(attractive) coupling over small distances and negative (re-
pulsive) coupling over large distances, as exemplified by
the coupling functions G(1)

n ≡ cos(nx) and G(2)
n ≡ cos(nx) +

cos[(n + 1)x], and identified a variety of evenly spaced
stationary multicluster chimera states without having to rely
on the presence of time delay or parameter heterogeneity
[19,23,24]. More significantly, we also found a class of
chimeras with uneven separation, traveling coherent states,
and a traveling chimera state. In contrast to the earlier systems
referred to above the chimera states in the system studied
here have relatively large basins of attraction and no specially
tailored initial conditions are required to obtain such states. In
particular, robust chimeras are realized starting from random
initial conditions.

We have given a fairly complete description of the different
accessible states using a self-consistency analysis based on
Eq. (12) and showed that this type of analysis works well not
only for stationary evenly spaced chimeras but also for the
exotic unevenly spaced chimeras. In particular, we were able
to show that the local order parameter profiles predicted by
this type of analysis agree well with the phase distribution
generated in direct numerical simulations of the coupled
oscillator system. We used these results to make predictions
for different types of transitions that these states may undergo,
merger of coherent clusters and transition to a drifting state,
and confirmed these predictions using numerical simulations.
The self-consistency analysis predicted instability thresholds
accurately but missed some crucial details, including the
presence of localized small amplitude oscillations near the
onset of the drift instability. Despite this failure the drift
speed predicted from the solution of a nonlinear eigenvalue
problem obtained from the self-consistency analysis was in
excellent agreement with the numerically determined speed,
and likewise for the overall rotation frequency 
 of the
phase distribution. Stable (nonsplay) traveling states appear
to require a significant contribution from both n and n + 1
modes in the coupling function G(2)

n . We have checked, for
example, that with G(x) = cos(3x) + A cos(4x) the traveling
chimera present at A = 1 loses stability when A ≈ 0.95;
when this occurs the system evolves to a traveling splay state
instead. However, we were unable to obtain an analytical
description of the traveling chimera state and its stability
properties.

It is of considerable interest to see to what extent the results
from the system studied here carry over to more realistic
oscillator systems, such as those studied in Refs. [35–38],
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when these are coupled nonlocally with an attractive-repulsive
coupling. We plan to report on these questions in future
work.
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