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Rogue-wave pattern transition induced by relative frequency
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We revisit a rogue wave in a two-mode nonlinear fiber whose dynamics is described by two-component
coupled nonlinear Schrödinger equations. The relative frequency between two modes can induce different
rogue wave patterns transition. In particular, we find a four-petaled flower structure rogue wave can exist in the
two-mode coupled system, which possesses an asymmetric spectrum distribution. Furthermore, spectrum analysis
is performed on these different type rogue waves, and the spectrum relations between them are discussed. We
demonstrate qualitatively that different modulation instability gain distribution can induce different rogue wave
excitation patterns. These results would deepen our understanding of rogue wave dynamics in complex systems.
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I. INTRODUCTION

Recent experiments on rogue waves (RWs) suggest that
the unique wave arises from modulational instability, and the
rational solution of a nonlinear Schrödinger equation (NLSE)
can be used to describe dynamics of RWs prototypically [1–3].
Based on the rational solutions, it has been found that there are
some interesting patterns for RWs [4,5]. The fundamental RW
of scalar NLSE has the well-known eye-shaped structure [6]. A
dark RW is found to have an anti-eye-shaped structure in a two-
component coupled NLSE [7]. A four-petaled flower structure
RW was reported very recently in a three-component coupled
system [8,9]. Then, can the four-petaled flower structure
pattern exist in a two-component coupled NLSE? Are there any
relations between these different types of RW patterns? The
pattern types of RWs still need further research, since they
would provide knowledge or information on RW excitation
and application in many nonlinear systems (nonlinear fiber,
financial system, Bose-Einstein condensate, plasma, etc.).

Since RWs have been excited widely in nonlinear fiber
systems [1,10,11], we choose a nonlinear fiber system to
discuss the above questions. For a single-mode optical fiber,
the frequency of the background field has no real effects on the
pattern structure for RWs, since the corresponding solutions
can be correlated through a trivial Galileo transformation.
But for coupled mode fiber, the relative frequency between
different mode fields has real physical effects and cannot be
erased by any trivial transformation. Modulational instability
(MI) analysis of a continuous wave background suggests that
the relative frequency has a real effect on the instability
spectrum properties (see Fig. 4). We expect that the RW
excitation pattern could be changed with varying relative
frequency.

In this paper, we find a four-petaled flower structure
RW in the two-component coupled nonlinear Schrödinger
equation, in contrast to the eye-shaped, anti-eye-shaped one
reported previously [6,7]. Furthermore, we demonstrate that
these RW patterns can be transited to each other through
varying the relative frequency between the two modes in
nonlinear fiber. Moreover, their spectra are characterized
exactly and compared in detail. This provides a qualitative
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way to understand the relations between these different types
of patterns of vector RWs and would enrich our knowledge
about RW dynamics in complex systems.

II. THE SINGLE RW SOLUTION WITH ARBITRARY
RELATIVE FREQUENCY

For a two-mode nonlinear fiber, the wave evolution dynam-
ics can be described by the following two-coupled NLSE in
dimensionless form:

i
∂ψ1

∂z
+ ∂2ψ1

∂t2
+ 2[|ψ1|2 + |ψ2|2]ψ1 = 0, (1)

i
∂ψ2

∂z
+ ∂2ψ2

∂t2
+ 2[|ψ1|2 + |ψ2|2]ψ2 = 0, (2)

where ψ1 and ψ2 are the two mode optical fields. z denotes
the evolution dimension, and t represents the temporal distri-
bution dimension for the wave fields. The related dispersion
coefficient and Kerr nonlinearity strength have been scaled to
be 1 and 2 through coordinates transformation. The coupled
partial equations can also be used to describe the dynamics
of a matter wave in a quasi-onedimensional two-component
Bose-Einstein condensate [12], the evolution of optical fields
in a two-mode or polarized nonlinear fiber [13], and even
the vector financial system [14]. Equation (1) has been
solved to get nonlinear localized waves on the nontrivial seed
solutions [7,15,16]. They presented some interesting localized
wave dynamics in the coupled model, such as that RWs interact
with a bright-dark soliton [15,16], dark RW [7], and double
RW [7]. In this paper we revisit RWs in the coupled system.
To discuss the effects of background fields on RW dynamics,
we consider the generalized continuous wave background as

ψ10 = s1 exp
[
i
(
2s2

1 + 2s2
2

)
z
]
, (3)

ψ20 = s2 exp
[
ikt + i

(
2s2

1 + 2s2
2 − k2

)
z
]
, (4)

where s1 and s2 are two arbitrary real constants and denote
the background amplitude. Since the relative frequency plays
a real physical effect on the dynamics of a localized wave, we
introduce the parameter k to denote the frequency difference
of the continuous wave backgrounds in the two modes.
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(a) (b) (c)

FIG. 1. (Color online) The process for which an eye-shaped RW transits to be a four-petaled flower structure RW in the component |ψ2|
with varying the relative frequency. (a) With k = 0.999, (b) k = 1.01, and (c) k = 1.1. The other parameters are s1 = 1,s2 = 1,A3 = 3.

With some constrains on frequencies of the two modes,
we have derived a double RW and four fundamental RWs in
the coupled model [7,17]. However, the constraint conditions
would limit the pattern types of RWs greatly in the model. To
study the patten types of fundamental RWs conveniently, we
release the constraint condition to derive a more general single
RW solution. With arbitrary relative frequency k, the rational
solution corresponding to a single RW can be written as

ψ1 =
[

1 − i(λ − λ∗)�1�
∗
2/s1

|�1|2 + |�2|2 + |�3|2
]

ψ10, (5)

ψ2 =
[

1 − i(λ − λ∗)�1�
∗
3/s2

|�1|2 + |�2|2 + |�3|2
]

ψ20, (6)

where the ∗ means the complex conjugate, and the explicit
expressions for �j (j = 1,2,3) are presented in the Appendix.
Four essential parameters determine the explicit dynamics of
RW: s1, s2, A3, and k. The solution can be used to observe
the effects of these parameters on RW dynamics through
the control variate method. Interestingly, we find the relative
frequency plays an essential role in determining the structure
profile with other parameters unchanged. For example, we set
s1 = s2 = s to observe the effects of relative frequency on RW

pattern dynamics, with λ =
√

k6−4k2[5k2s2−2
√

−s2(k2−s2)3+2s4]−k3

2k2 .
The other cases can be discussed directly through varying
parameters in the general single RW solution. We find
that the transition process of different RW patterns can be
observed by varying the relative frequency. In particular, we
demonstrate that the four-petaled flower structure RW can
exist in a two-component coupled NLS model, which was
reported previously in three-component coupled nonlinear
systems [8,9].

III. THE ROGUE WAVE PATTERN TRANSITION INDUCED
BY THE RELATIVE FREQUENCY

To demonstrate the transition process, we observe a RW
pattern with varying the relative frequency from low to high.
When k < 0, the structure evolution characters are similar to
the ones k > 0; just the temporal velocity of the RW is the
inverse. The structure is mainly determined by the absolute
value of k. When k < 1 s, RWs in the two components both
are eye-shaped ones, which are identical to the ones in Fig. 1 in
Ref. [15]. For an example, we show the evolution structure of

a RW in component ψ2 of a case with k = 0.999 s in Fig. 1(a).
It should be pointed that when k = 1 s, the solution form fails
to present RW dynamics, and we need resolve it. In this case,
there are two eye-shaped ones or two with different patterns in
each component, which have been shown in Ref. [7]. However,
their pattern types are very complicated to be classified. Here
the fundamental RW pattern types are discussed conveniently
and clearly. When k is a bit bigger than s, the RW pattern in
component ψ1 is still an eye-shaped one (we do not show it
hereafter), but the RW pattern in ψ2 begins to change. Namely,
the hump of an eye-shaped one will split to be two on the
temporal-spatial distribution. As an example, we demonstrate
one case with k = 1.01 s in Fig. 1(b). It is seen that there
are two humps emerging and the humps are not isolated in
this case. Interestingly, the humps can be isolated with each
other when k is much larger. When k = 1.1 s, the distance
between two humps becomes much larger, for which the two
humps can be seen as isolated. The structure seems like a
four-petaled flower, which is very similar to the one found
in the three-component case [8]. The evolution character is
quite different from the eye-shaped RW reported before, which
possesses one hump and two valleys [6,18–21]. In this way,
we demonstrate a symmetric eye-shaped RW transit to be a
four-petaled flower RW in component ψ2 through increasing
k from 0 to a bit larger than 1 s.

We observe the transition from four-petaled flower one to
anti-eye-shaped one through increasing the relative frequency
further. When k = 1.3 s, the two humps become much more
isolated, and the two valleys begin to approach each other
significantly, as shown in Fig. 2(a). When k = 1.5 s, the
two valleys approach each other further and tend to merge
[Fig. 2(b)]. When k = 1.8 s, the two valleys merge to be one
valley in component ψ2, which makes the RW possess an
anti-eye structure [Fig. 2(c)], which is identical with the dark
RW reported in Ref. [7]. The RW pattern in ψ1 just changes
its size, and the eye-shaped character is kept fundamentally
during the whole transition process.

IV. SPECTRUM ANALYSIS OF DIFFERENT
ROGUE WAVE PATTERNS

Spectrum anlysis of a Peregrine RW suggests that it has
a specific triangular spectrum, which could be used for
early warning of RWs through spectral measurements [22].
Recently, intensity and phase spectral shaping was used to

022918-2



ROGUE-WAVE PATTERN TRANSITION INDUCED BY . . . PHYSICAL REVIEW E 90, 022918 (2014)

(a) (b) (c)

FIG. 2. (Color online) The process for which a four-petaled flower structure RW transits to be an anti-eye-shaped RW in the component
ψ2 with varying the relative frequency. (a) With k = 1.3, (b) k = 1.5 (c) k = 1.8. The other parameters are s1 = s2 = 1,A3 = 3.

generate RWs successfully in a nonlinear fiber [23]. Therefore,
the spectrum analysis is meaningful for RW prediction
and excitation research [23,24]. Then we perform spectrum
analysis of these RW discussed above through the following
Fourier transformation:

F1,2(ω,z) = 1√
2π

∫ +∞

−∞
ψ1,2(t,z) exp [iωt] dt. (7)

The solution can be written in the form of a constant
background plus a signal. The constant background is infinity,
and thus its integral is δ(ω − ω0); then we can eliminate
the δ function and obtain the spectrum of the RW signal.
When k = 1.1 s, the signal will evolve to be the four-petaled
flower structure RW in Fig. 1(c). The corresponding spectrum
evolutions of a RW in component ψ1 and ψ2 are shown in

Fig. 3(a) and 3(b), respectively. There is a valley on the lower
frequency and a hump on the higher frequency, compared with
the background frequency. It is seen that there is a discontinuity
point on the spectral distribution, and the spectral distributions
are asymmetric on the two sides of the point. This is quite
different from the spectrum of the eye-shaped RW reported
previously [22]. When k = 1.8 s, the signal in component ψ2

will evolve to be the anti-eye-shaped RW in Fig. 2(c), and the
eye structure one in ψ1 is kept as well. The corresponding
spectrum evolutions are shown in Fig. 3(c) and 3(d). The
valley on the lower frequency in Fig. 3(d) becomes much
shallower than the one for the four-petaled flower RW. The
spectrum corresponding to Fig. 3(a) and 3(c) is approaching
the well-known symmetric triangular distribution [22]. When
k = 0, the RW in each component becomes the standard

(a) (b)

(c) (d)

FIG. 3. (Color online) (a) The spectrum evolution
√|F1(ω,z)| of the RW in component ψ1. (b) The spectrum evolution

√|F2(ω′,z)| (where
ω′ = ω + 1.1) of the RW with the four-petaled flower structure in Fig. 1(c). (c) The spectrum evolution

√|F1(ω,z)| of the RW in component
ψ1. (d) The spectrum evolution

√|F2(ω′,z)| (where ω′ = ω + 1.8) of the RW with anti-eye structure in Fig. 2(c).
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(a) (b) (c)

FIG. 4. (Color online) The modulational instability spectrum of the coupled system with relative wave vector k = 0 (a), k = 1.1 (b), and
k = 1.8 (c).

eye-shaped one, whose spectrum is identical with the triangular
spectrum of a Peregrine RW. In this way, we provide the
spectrum relations between these different structured RWs.
Then, why do we find these different patterns for RWs in the
coupled nonlinear system?

It is known that MI can be seen as a mechanism for RWs in
nonlinear systems. Therefore, relative frequency should play
nontrivial role in the MI of the coupled system. We perform the
linear instability analysis of plane wave backgrounds (ψ10 and
ψ20) in the system; namely, we add small-amplitude Fourier
modes on the plane wave background as ψ1 = ψ10{1 +
f+ exp [i k′(t − 	z)] + f ∗

− exp [−i k′(t − 	∗z)]} and ψ2 =
ψ20{1 + g+ exp [i k′(t − 	z)] + g∗

− exp [−i k′(t − 	∗z)]}
(where f+, f−, g+, and g− are small amplitudes of the Fourier
modes). Substituting them in Eq. (1) and after linearizing the
equations, one can get the following dispersion relation:

−2k′2(2s2
1 + 2k2 − 2k	 + 2s2

2 + 	2
) + 4s2

1 (	 − 2k)2

+k′4 + 	2
(
4k2 − 4k	 + 4s2

2 + 	2
) = 0. (8)

We can demonstrate the instability regime Im(	) on the
perturbation frequency k′ vs amplitude of the backgrounds
s1 = s2 = s with different k values in Fig. 4. The coupled
nonlinear system with these different relative frequencies
k = 0 s, k = 1.1 s, and k = 1.8 s admits the eye-shaped
RW pattern, four-petaled flower structure [Fig. 1 (c)], and
anti-eye-shaped one [Fig. 2 (c)], respectively. It is seen
that different MI gain spectrum characteristics correspond
to different RW patterns. This partly means that different
RW pattern types could come from the different MI gain
spectra. It should be noted that the explanations for a dark
RW in Ref. [25] cannot apply to the RWs obtained here,
since there is no singularity for rational solution in coupled
focusing NLS. We demonstrate qualitatively that different MI
gain distribution properties induce different RW excitation
patterns. Recently studies of the rational solution of the Sasa-
Satsuma equation suggested that the dynamics of the rational
solution can be understood well by its MI property. When the
background frequency is in the MI regime, the rational solution
corresponds to RW behavior [26,27]; otherwise, the rational
solution demonstrates W-shaped soliton behavior [28] for the
nonlnear fiber with high-order effects. It was also demonstrated
that relative frequency can vary MI properties and induced
RWs in coupled defocusing NLS [29]. However, the precise
connections between them are still unknown, since the MI

is qualitative to analyze but the RW solutions are exact and
quantitative results for the nonlinear coupled model.

V. DISCUSSION AND CONCLUSION

In summary, we find that the two-component coupled
model admits a RW with a four-petaled flower structure, in
addition to an eye-shaped one and an anti-eye-shaped one. We
demonstrate that these different RW patterns can be transited to
each other through varying the relative frequency between the
two modes. It can be expected that similar effects exist widely
in multicomponent coupled systems. Furthermore, the spectra
of different RW patterns are investigated exactly through
performing a Fourier transformation. It is shown that the
spectra of RWs with four-petaled flower and anti-eye shapes
are asymmetric, in contrast to the symmetric distribution of
a scalar Peregrine RWs’ spectrum. The asymmetric character
comes from the difference between the frequencies of the two-
component backgrounds and cross-phase modulation effects,
which are absent in the reported RW patterns in a scalar NLS
system.

Scalar Akhmediev breathers, RWs, and Kuznetsov-Ma
breathers have been excited successfully in nonlinear
fiber [1,30]. Vector solitons have been realized in multi-
component Bose-Einstein condensate systems [12] and in a
nonlinear birefringent fiber [13]. It could be expected the
the pattern transition can be observed experimentally in a
nonlinear two-mode fiber or multicomponent Bose-Einstein
condensate system through combining the techniques. These
exact results would provide ideal initial conditions for these
RW patterns of experimental excitations in vector nonlinear
systems, including phase and intensity forms. By varying the
frequency difference value, the pattern transition can be ob-
served conveniently, combining with the corresponding initial
excitation form construction. For example, we demonstrate an
explicit parameter condition for a dark four-petaled flower RW
in a nonlinear fiber with group velocity dispersion coefficient
β2 = −20 ps2 km−1 and Kerr nonlinear coefficient n2 =
1.1 W−1 km−1 for optical fields near wavelength 1.55 μm.
When the mean intensity power is 1 W , the frequency
difference should be 0.258 ps−1 to excite the four-petaled RW
[Fig. 1 (c)] with the initial input profile given by the exact
analytical solution. In fact, these conditions are given assuming
that the system coefficients are identical for the two modes in
the nonlinear fiber. Therefore, the frequency difference cannot

022918-4



ROGUE-WAVE PATTERN TRANSITION INDUCED BY . . . PHYSICAL REVIEW E 90, 022918 (2014)

be too large to make the approximation unreasonable. Recent
numerical and experimental studies suggest that the Peregrine
RW can still be observed in a nonlinear system even with
nonideal initial perturbations [31,32]. These patterns would
also emerge in the vector nonlinear system even with some
deviations from the ideal initial form.

Very recently studies of RWs in the nonlinear coupled
system also showed that the relative frequency plays an
important role in determining the RW structure, mainly
including the long-wave-short-wave resonance equation [25]

and coupled defocusing NLS [29]. Here we demonstrate the
different pattern structures of RWs in coupled focusing NLS
can be transited to each other by varying the relative frequency
between the two modes.

ACKNOWLEDGMENT

This work is supported by National Science Foundation of
China (Contact Nos. 11405129, 11347025).

APPENDIX: EXPLICIT EXPRESSIONS OF � j ( j = 1,2,3)

The explicit expressions of �j (j = 1,2,3) in Eqs. (5) and (6) are

�1[t,z] = −1

3
A3 K(t,z),

�2[t,z] = iA3s1

λ − k + 3iτ

[
9i

λ − k + 3iτ
+ K(t,z)

]
,

�3[t,z] = iA3s2

λ + 2k + 3iτ

[
9i

λ + 2k + 3iτ
+ K(t,z)

]
,

where K(t,z) = 2kz − 2λz − 6izτ − 3t − 3, and the parameter τ is

τ = i
[
2λ3 + (−3k2 + 9s2

1 + 9s2
2

)
λ + 3kλ2

]
2
(
3λ2 + 3k2 + 3λk + 9s2

1 + 9s2
2

) − i
2k3 − 18ks2

1 + 9ks2
2

2
(
3λ2 + 3k2 + 3λk + 9s2

1 + 9s2
2

) .

The parameter λ which mainly determines the form of initial signals should satisfy the equation as

27k2λ4 + 54k
(
k2 − s2

1 + s2
2

)
λ3 + 27

[
k4 + 2k2

(
s2

1 + 4s2
2

) + (
s2

1 + s2
2

)2]
λ2

+54k
[
k2

(
4s2

1 + s2
2

) − 4s4
1 + s2

1s
2
2 + 5s4

2

]
λ + 4

(
k2 + 3s2

1 + 3s2
2

)3 − (
2k3 − 18ks2

1 + 9ks2
2

)2 = 0.
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