
PHYSICAL REVIEW E 90, 022915 (2014)

Stripe patterns: Role of initial state and boundary conditions
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This paper presents results on stripe patterns by numerical solution of the Swift-Hohenberg equation. The
focus is on the role of initial state and boundary conditions. We choose initial states which generate simple defect
configurations and study their evolution. Various classes of defects are identified and their motion and relaxation
is studied numerically. We first study the dynamics of a straight front and present a comparison of numerical
results with some analytical results. We then study the domain-wall dynamics in configurations containing two
and three domains and identify some mechanisms of their relaxation. Rates of domain-wall relaxation depend
on several features like incommensuration, dislocations and orientations in neighboring domains, in addition to
the curvature of the walls. For a generic class of domain walls the relaxation process has an intrinsic frustration
which leads to generation of dislocations. This process also generates stripe curvature thereby making relaxation
nonmonotonic. We have also generated some other topological defects and studied their evolution and the effect
of boundary conditions on their stability.
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I. INTRODUCTION

Our understanding of patterns in a large number of physical,
chemical, and biological situations has advanced considerably
in the past 60 years or so. Several texts [1,2] and review articles
[3–5] have covered these developments in recent years. The
modeling of the phenomena in terms of partial differential
equations for a few coupled fields has proved to be very
rewarding. One of the most studied examples of this being the
patterns of fluid convection, where equations for the velocity
and temperature fields provide a quantitative description of the
occurrence and evolution of the observed patterns.

Though many patterns form out of equilibrium, here we
are concerned with situations where the evolution is towards
steady states which have spatial periodicity. The evolution of
such patterns can be described in terms of an appropriate free-
energy functional. In particular we study here stripe patterns
in two dimensions, whose common features are well described
by the Swift-Hohenberg equation (SHE) [6], which is

∂ψ(�r,t)
∂t

= [
ε − ξ 4

0

(∇2 + q2
0

)2]
ψ(�r,t) − ψ3(�r,t). (1)

The linear analysis shows that for ε < 0 a structureless uniform
state with ψ(�r) = 0 is stable. For ε > 0 this state becomes
unstable to perturbations of wave vectors whose magnitudes
lie in the range q2

0 − √
ε/ξ 2

0 < q2 < q2
0 + √

ε/ξ 2
0 . Though in

two dimensions, planforms such as stripes, parallelograms,
hexagons, etc. can occur, the above model gives rise to complex
stripe patterns, which can locally be written in the approximate
form

ψ(�r,t) = A cos(�q · �r + φ). (2)

In a typical pattern-forming system as a control parameter
is varied across a threshold, small domains with parallel and
nearly straight stripes form first and such patterns coarsen
with time. This process has been studied in a large number
of papers [7–21]. This is similar to coarsening in systems
with uniform order parameters, which is a well-studied subject
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with a rather long history [22–24], for example systems
described by time-dependent Ginzburg-Landau equations. A
major role in understanding these processes has been played
by two concepts. First is the scaling hypothesis, which states
that at late times the domain patterns differ statistically
only through a time-dependent length scale. More concretely,
for a scalar order parameter u(�r,t), the correlation function
C(�r,t) = 〈u(�x + �r,t)u(�x,t)〉, where brackets denote averaging
over initial states, is given by

C(�r,t) = C̃(�r/L(t)), (3)

where the length scale L(t) ∝ tn grows as a power law in
time. Similar statements can be made for order parameters
of other kinds. An important goal of the earlier studies has
been to establish the scaling and determine the exponent n

for different kinds of order parameters and different kinds of
dynamics viz. those which conserve or do not conserve the
order parameter. The second concept is that the late stage
slow dynamics is largely governed by defects viz. domain
walls, vortices in two dimensions (2D) (vortex lines in 3D),
disclinations, dislocations, etc. Some of these are topological
defects and their relaxation governs the value of the index n.
The nature of defects in a system crucially depends on the
order-parameter manifold [25–27].

The same concepts have been used to understand the
coarsening of stripes and other spatially periodic patterns
[7–9,11–19,21]. However, there are important differences.
First, the scaling concept is based on the key assumption that
a single length scale L(t) characterizes the order, Eq. (3).
This may not hold here as the order parameter has several
components which may have different evolutions, Eq. (2).
Secondly, the stripe patterns rarely evolve to a fully ordered
state consisting of a single domain of parallel stripes.

It is therefore important to recall some relevant features of
the stripe order parameter (OP) which we summarize below
[28]. This OP is characterized by an amplitude A, wave vector
�q, which gives the periodicity and direction of stripes, and
φ the phase of their undulations, Eq. (2). The amplitude A

reaches its saturation value in the early part of the evolution,
apart from defected regions. The magnitude of �q lies in a small
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band (we shall study the problem near threshold, i.e., for small
positive ε). Thus in two dimensions the order parameter is
characterized by two angles φ and θ giving the direction of
�q. For stripes (−�q,2π − φ) and (�q,φ) are equivalent. The OP
manifold is P1 × P1 which is a two-dimensional torus in which
(φ,θ ) and (2π − φ,θ + π ) are identified. The fundamental
group of the manifold is Z × Z2, so according to the standard
topological analysis, defects in this system are characterized
by m,n/2, where m,n are any two integers. These are winding
numbers in φ and θ respectively corresponding to dislocations
and disclinations.

However, as observed by Chen, Alexander, and Kamien
[28], such a classification fails here, as no disclinations
with winding number greater that +1 can occur in a stripe
system. This is due to the spatial coupling of �q with phase
φ as �q = ��φ. The system has only one Goldstone mode
corresponding to phase relaxation (φ) but no mode for
orientational relaxation (θ ). This allows for sharp domain walls
which are seen frequently in stripe patterns.

Another feature to be recalled for periodic or crystalline
patterns in 2D is that the two components, phase order and
orientational order, associated with the positional order are
not tied to each other. Nelson and Halperin [29] showed that
due to thermal fluctuations the system loses its phase order
but not the orientational order above a certain temperature
T1, while the latter order is lost at a higher temperature T2.
Both the transitions are caused by defects. The phase order is
destroyed by proliferation of free dislocation which can occur
above T1, while the orientational order is destroyed by free
disclinations which occur above T2. Toner and Nelson [30]
studied the effect of thermal fluctuations specifically for the
stripe order and argued that here a free dislocation has finite
energy and the phase order is lost at any nonzero temperature
due to their finite density. Dislocations do not disrupt the long-
range orientational order which survives to a temperature at
which free disclinations can occur.

The coarsening process in stripe systems is understandably
more complex due to the presence of several types of defects
described above. These relax and translate at different rates
and affect order parameter through dephasing of translational
phase and angular correlations in different ways. The pre-
vious studies [7–9,11–16,18,19,21] have disentangled many
of these features, yet to our mind some issues need further
clarifications. Since patterns emerging from a random initial
state have interplay of several factors together, we have chosen
to consider some simple initial states which together with
boundary conditions allow study of patterns with simple
configurations of defects.

The evolution of patterns in large domains from well-
defined initial states raises interesting questions regarding
symmetry breaking. When the equations governing the dy-
namical evolution have the symmetry which permits a number
of ordered states within the order parameter manifold, the
eventual emergence of a steady pattern involves a selection
caused by the initial state together with boundary conditions.
What are the parameters that select the order parameter of the
emergent pattern? Since the states that emerge are rarely pure,
the above question should be supplemented by the following.
Under what conditions do certain defects or defect textures
appear and which parameters can be used to predict their

occurrence? Thus it is useful to understand the role of initial
state and the boundary conditions in the selection of order
parameter and other aspects related to defects in simpler
situations.

In addition to numerical studies we also obtain an
approximate time-dependent solution which shows explicit
dependence on the initial state. Such studies were first done on
the time-dependent Ginzburg-Landau equation for the scalar
order parameter [31] and Fisher equation [32,33]. The earlier
solutions based on a singular perturbation analysis [34] have
proved useful for analyzing motion of fronts in one dimension
and some features of time-dependent structure factor in these
systems. Elder and Grant [35] applied this technique to
pattern-forming systems and found a good account of the
motion of the front in one dimension and averaged structure
factor.

We apply this method in a somewhat different way. First we
apply it to situations where single domain patterns form, aside
from effects accruing from boundary conditions. Here also
one needs to determine for a given initial state the values of
�q and φ that would eventually emerge. Since the initial states
contain no stripes this is a nontrivial question. We present such
a selection criterion based on linear evolution and show how
it works for the single-domain patterns and how these patterns
are modified by boundary conditions. One would like to extend
the above considerations to situations where a specified set of
topological defects occur, i.e., determine characteristics of the
initial state that selects such topological features. However, we
are not able to give criteria for even the case of single defects,
but we do provide examples of initial states which produce
specified defects.

This paper is organized as follows. In Sec. II we present
the singular perturbation technique applied to the simplest
case of a single domain pattern. Comparison between singular
perturbation results and numerical solutions is discussed in
Sec. III. In the following two sections we report numerical
simulations on Swift-Hohenberg equation. In Sec. IV, we focus
on the relaxation and motion of domain walls. We study initial
states which evolve into few domains in simple configurations.
We present detailed dynamical results in a few cases and
identify features that occur commonly. In Sec. V, we generate
isolated disclinations and study their growth and stability to
boundary conditions. We conclude by summarizing our results
in Sec. VI.

II. SINGULAR PERTURBATION THEORY FOR
SINGLE DOMAIN PATTERNS

In order to extend the singular perturbation theory (SPT)
for SHE, two additional physical points need to be considered.
First is that there are two length scales, one corresponding
to the periodicity of the pattern and the second to the scale
over which the order parameter varies in space, say, around a
defect or near a boundary. The singular perturbation method as
originally formulated is suitable for fields which vary slowly
in space. Therefore, we use the amplitude equation which
describes how the amplitude of the stripe oscillations varies
over a length scale much larger than the wavelength of the
stripe pattern [36,37]. The second point is that this procedure
requires a linear solution about which the perturbation theory
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is developed. For this one needs to specify the wave-vector
direction and phase of the solution, which are also the
parameters of the eventual pattern that emerges.

Our criterion of selection of direction �e and phase φ of stripe
patterns uses linear analysis, according to which the fastest
growing mode occurs at wave number q = q0. We assume
that the final stripe pattern has the wave vector �q = q0�e and
phase φ. Now given an initial state ψ(�r,0), we define the
following quantity in an infinite domain:

G(�e,φ) =
∫ ∞

−∞

∫ ∞

−∞
ψ(�r,0) cos(q0�e · �r + φ)d2r. (4)

The direction �e and phase φ of the final stripe pattern is
determined by maximizing G(�e,φ) with respect to these
arguments.

For stripe patterns ψ(�r,t) is written as

ψ(�r,t) = A(�r,t)eiq0�e·�r + c.c., (5)

where A(�r,t) is a complex amplitude which varies slowly on
the scale of 2π/q0. For the Swift-Hohenberg equation (ξ0 = 1),
the amplitude equation is [36,37]

∂A

∂t
= εA + 4q2

0 (�e · �∇)2A − 3|A|2A. (6)

The singular perturbation analysis [31] yields an approximate
solution of Eq. (6) to be

A(�r,t) =
√

εA0(�r,t)
[ε + 3|A0(�r,t)|2]1/2

, (7)

where A0(�r,t) is the solution of the linear part of Eq. (6). Its
Fourier transform Ã0(�k,t) is given by

Ã0(�k,t) = exp
{[

ε − 4q2
0 (�e · �k)2

]
t
}
Ã(�k,0) = eγkt Ã(�k,0). (8)

Ã(�k,0) is to be determined from the initial condition ψ(�r,0).
The Fourier transform of the initial field using Eq. (5) can be
written as

ψ̃(�k,0) = Ã(�k + �q0,0) + Ã∗(�k − �q0,0). (9)

This equation can be used to derive the following recursion
formula for Ã(�k,0):

2Ã(�k,0) =
N∑

n=0

(−1)n{ψ̃[�k − (−1)n(2n + 1)�q0,0]

+ ψ̃∗[�k + (−1)n(2n + 1)�q0,0]}
+ {Ã[�k − 2(N + 1)�q0,0] + Ã[�k + 2(N + 1)�q0,0]}.

(10)

Since the amplitude A(�r,t) varies slowly in space, its Fourier
transform has significant value only for small values of k. By
neglecting Ã[�k ± 2(N + 1) �q0,0] we can use the relation to
obtain Ã(�k,0) with increasing accuracy by raising the value of
N . Now the linear solution is

A0(�r,t) =
∫

d2k

(2π )2
eγkt e−i�k·�r

∫
d �r ′ψ(�r ′,0)[e−i �q0· �r ′ − e3i �q0· �r ′

+ e−5i �q0·�r · · · + (−1)Ne−i(−1)N (2N+1)�q0·�r ]. (11)

The SPT solution for ψ(�r,t) is obtained by combining Eqs. (5)
and (7).

III. COMPARISON OF SPT WITH NUMERICAL RESULTS

We have compared the singular perturbation theory (SPT)
result with numerical solution (NS) for the initial states
which give rise to single-domain states with no defects.
All the numerical results of SHE are computed for ε = 0.1
and q0 = 1 on a square lattice 1025 × 1025 with 
x =
0.2 and 
t = 0.0001. We choose initial states which have
gradients only along one direction and parallel to one of the
boundaries. Periodic boundary conditions are used. The first
initial condition we consider is

ψ(x,y,0) =
{

1 if x0 − a � x � x0 + a,
0 otherwise. (12)

According to the pattern selection criterion Eq. (4) the wave
vector of the final stripe pattern will be in x direction. The
comparison of the SPT solution for N = 3 with numerical
solution of SHE at three times is shown in Fig. 1. Results
compare well after a time of 40 units. The selected wave vector
is 1.01.

From the above results the front speed can be calculated as
a function of time. The front position x(t) is shown as dots in
Fig. 1(d). The front position is taken to be the position where
the stripe amplitude is half of its maximum value. This result
is compared with the theoretical analysis [38,39]. The result
for the speed of the front moving from the stable stripe state
into the unstable uniform state for SHE is

v(t) = v∗ − 3

2λ∗t
, (13)

where the asymptotic front speed v∗ is given by

v∗ = 4

3
√

3
(
√

1 + 6ε + 2)(
√

1 + 6ε − 1)1/2, (14)
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FIG. 1. (Color online) Comparison of numerical simulation to
singular perturbation theory for the initial condition Eq. (12) is shown
at different times: (a) t = 20, (b) t = 40, and (c) t = 120. Panel (d)
shows positions of the front x(t) with time as dots. The continuous
line is the fit according to Eq. (13).
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and λ∗ is a parameter of the theory whose value is ad-
justed using numerical results. The result using Eq. (13),
shown as a full line, fits very well with the numer-
ical data. Note that the asymptotic speed measured is

1.33 ± 0.04, whereas Eq. (13) yields 1.29 and the SPT yields
1.26.

In order to test the robustness of SPT we consider a
perturbed step function of the form

ψ(x,y,0) =
⎧⎨
⎩

1 if x0 − a � x � x0 + a,
α + β sin(μx) if x0 − 2a < x < x0 − a and x0 + a < x < x0 + 2a,
0 otherwise.

(15)

We have done comparison for many values of α with β = μ =
0.1. For a value of α close to unity the numerical results and
SPT match well after an initial period. However, on increasing
the perturbation, α = 0.5, agreement between NS and SPT
deteriorates (see Fig. 2). At early times there is mismatch in
both the amplitude and the phase of the oscillations but at larger
times the solution matches reasonably as SPT is expected to be
good at large times. This is a limitation of the SPT. The Fourier
transform of the initial state contains a spread of wave vectors,
whereas in SPT only the fastest growing mode is treated well.
The deviations from the selected wave vector �q0 lead to phase
deviations which are only partially corrected at long times.
The wave-vector spread increases as α decreases.

We have investigated other initial states to test the criterion
for wave-vector selection. Even with simplest initial states
the boundary conditions lead to nucleation of more than one
grain, but the criterion can be seen to be satisfied at a local
level and at times before the boundary effects come into play.
In the next sections we deal with more complicated boundary
conditions in which the nucleation occurs at boundaries as
well as regions of large gradients of ψ . Accordingly, several
fronts move simultaneously and overlap quickly. The SPT
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FIG. 2. (Color online) Comparison of numerical simulation to
singular perturbation theory for the initial condition given by Eq. (15)
with α = 0.5 is shown at different times: (a) t = 20, (b) t = 40, and
(c) t = 120.

which is built around a single solution cos(�q · �r + φ) needs
to be used in different regions with different directions of �q.
We have not been able to implement this program successfully
yet. Therefore, only numerical studies of the Swift-Hohenberg
equation (SHE) are shown in the following sections.

IV. STRUCTURE AND DYNAMICS OF DOMAIN WALLS

In this section we study some initial states which evolve
into simple configurations of domains with two or three
domain walls. Domain walls are the dominant defects in stripe
configurations and play a significant role in the relaxation and
the coarsening process. In this and the following sections the
symmetry breaking involved in pattern formation is due to
the initial state and boundary conditions. In order to identify
defects and quantify the dynamical process we have used
numerical procedures given by Qian and Mazenko [18] and
extended them in some ways. This is summarized in the next
subsection.

A. Numerical procedure

In this procedure one identifies the grain boundaries and
isolated defects by examining the spatial variation of a field �B.
The field �B is constructed from the director field n̂ in the
following way:

n̂ = ∇ψ

|∇ψ | = (cos θ, sin θ ) (16)

and

Bx = cos χ = n2
x − n2

y,
(17)

By = sin χ = 2nxny,

where χ = 2θ . Then these fields are smoothened over the
lattice using the iterative process

fn+1(i,j ) = 1

2
fn(i,j ) + 1

8

∑
(i ′,j ′)∈NN

fn(i ′,j ′). (18)

This smoothening suppresses small fluctuations away from the
defects. Next we calculate the quantity D(�x) defined as

D(�x) =
∑
α,β

(∇αBβ)2 =
∑

α

(∇αχ )2. (19)

Due to the periodic nature of χ some care is needed to calculate
its derivative. We define the difference (χi+1,j − χi−1,j ) as

χi+1,j − χi−1,j = min(|χi+1,j − χi−1,j |,|χi+1,j − χi−1,j

+ 2π |,|χi+1,j − χi−1,j − 2π |). (20)
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Once we have calculated D(�x), a particular site is identified as
defect if 4(
x)2D(�x) is greater than a threshold D0 [18]. We
have taken D0 = 2. After picking out all such sites, the next
step is to identify them either as point defects or belonging to
an extended structure like a grain boundary. For this purpose a
filter R is defined such that when distance between two defect
sites is less than or equal to R, they are part of the same
structure. We have used the cluster multiple labeling method
of Hoshen and Kopelman [40] to pick out these clusters and
their sizes. In order to distinguish between point defect and
grain boundary, we define a filter l0 such that, when a size
of a structure is less than l0, the structure corresponds to a
point defect; otherwise, it is a grain boundary. Both R and l0
are fixed by trial after corroborating the defect identification
visually. Point defects are further classified into dislocations
and disclinations by calculating the line integral of χ (�x) over
a counterclockwise path around the mass center of the point
defect: ∮

∂χ

∂s
ds. (21)

In our computation we have taken a 16 × 16 square as the
closed contour. If the integral is zero, then the given point
defect is dislocation. If it is close to 2πm, it is a disclination
of strength m/2.

B. Domain walls: Two domains

In order to generate configurations with two or three
domains in cells with periodic boundary conditions, it is
convenient to take an initial state of the form

ψ(�r,0) = 1

1 + exp[�n · (�r − �r0)/ξ ]
. (22)

Depending on the value of ξ and �n this function allows
gradients and nucleation along the line �n · (�r − �r0) and along
the edges of the square domain. For large ξ of the order of the
domain size, the case we consider first, the nucleation occurs
dominantly at the boundaries. This leads to two domains. Here
we also examine the effect of incommensuration by studying
two cases in which the lattice period is commensurate or
incommensurate with the stripe period. We shall see that the
incommensuration introduces dislocations and changes the
evolution considerably.

First in Fig. 3 we show patterns evolving for the initial
state with ξ = 1000 and �n = (1,

√
3)/2 for a commensurate

512 × 512 lattice with 
x = π/4. �r0 is taken to be the center
of the square cell in this and all the following simulations.
Here the pattern evolves rapidly into two domains with stripes
parallel to the two square edges and no other defect. The first
panel shows the initial state.

In order to describe the time dependence of the annihilation
process of the domain we first present the results for the
evolution of the total number of defects ND(t) and the excess
free energy 
F (t) in Fig. 4. Here t is measured from the time
the domain wall has formed. The inset of Fig. 4(b) also shows
a plot of 
F (t) with ND(t). This shows a linear dependence
of the two quantities, though ND(t) shows considerable
fluctuation on a shorter time scale. These curves can be
fitted well to a polynomial of the form a + bt + ct2 + dt3;

FIG. 3. Four panels show patterns evolving from the initial
condition in Eq. (22) at different times: (a) t = 0, (b) t = 300,
(c) t = 3000, and (d) t = 12 000. Parameters of the initial state are
ξ = 1000, �n = (1/2,

√
3/2), and �r0 is the center of the square cell.

however, such a fit yields little insight into the mechanism
involved. We argue that the decay process is autonomous:
d(
F )/dt = f (
F ). In Fig. 5(a) the plot of d(
F )/dt with

F is shown. There is distinct difference between the late and
early time stages. For the late stage f (
F ) ≈ −k(
F )−1.08,
while in the early stage decay rate increases rapidly with 
F .

The motion of the domain wall is tracked by looking at
certain points on the wall. Figure 5 shows the motion of end
points Xmax and Ymax of the lower left of the domain wall. These
points move horizontally and vertically respectively and have
identical time dependence which is similar to the free energy.
We tracked other points on the wall as well. All the points show
the same time dependence in this case. A wall is characterized
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FIG. 4. (Color online) (a) Evolution of the total number of defect
points ND(t) and (b) the excess free energy 
F (t) with time. The
time t is measured from the time the domain wall is formed. The
inset shows a plot of 
F with ND . Continuous lines are a guide to
the eyes.
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FIG. 5. (Color online) (a) Plot of d(
F )/dt with 
F . The dotted
line is the power-law fit at the late stage. (b) Motion of end points
Xmax and Ymax of the lower left of the domain wall in Fig. 3(c).

by two angles θ1 and θ2 that the stripes on the two sides make
with the wall. Since the stripe amplitude vanishes on the wall,
one can argue following Cross [41] that the wall energy per
unit length should be ∝ε3/2ξ0(| cos θ1| + | cos θ2|). For the wall
here both angles vary from 0 to π/2, and the curvature of the
wall also varies considerably over its length. The speed of a
wall in the absence of dislocations or other defects does not
seem to depend on these factors.

In this case where the two domains consist of perpendicular
stripes, steps of annihilation can be easily discerned. We
consider the motion near Xmax, where a short vertical stripe
annihilates to allow the advance of horizontal stripes. In
Figs. 3(c) and 3(d) one sees that the vertical stripe evolves
into spots equispaced at distance of 2π/q0 to which the
horizontal stripes join in. In other parts the dissociation of
the vertical stripes occurs only in portions near the wall which
allows horizontal stripes to advance. The above results for two
domains are not specific to one initial state. Similar domains
arise with other initial states; for example, the state given in
Eq. (24) gives rise to two domains without any other defects
for large values of ξ . Here again one finds a similar behavior
except when the domain wall becomes small.

Next we come to the incommensurate case. Figure 6 shows
four panels of evolution at times indicated. The initial two
domains are formed rapidly, but the evolution shows three
distinct stages. In the first stage 10 < t < 20 000 domain-
wall motion remains considerably slower, particularly in
x direction. At t ≈ 20 000 a pair of horizontal dislocations
is nucleated [see Fig. 6(c)] and thereafter the wall moves at
a speed comparable to the commensurate case. The domain
is annihilated and in the final stage the dislocation pair is
annihilated. The relative speed of dislocations is constant all
through.

Figures 7(a) and 7(b) show the evolution of the total
number of defect sites ND(t) and the excess free energy 
F (t)
with time. Time dependences in both cases are similar but
the decay rates are halved compared to the commensurate
case. The inset of Fig. 7(b) shows the linearity of 
F (t)
with ND(t). We again analyze it by considering the plot of
d(
F )/dt with 
F . This plot is quite different indicating
the strong effect of incommensuration. Here f (
F ) shows
distinct steps and jumps in the force. Within the scenario for
the domain annihilation presented above, this is suggestive of
the following. As the vertical stripes dissociate into spots,

FIG. 6. Patterns evolving from the initial condition of Fig. 3 for
incommensurate 513 × 513 lattice with 
x = 0.8 at different times:
(a) t = 300, (b) t = 12 000, (c) t = 21 000, and (d) t = 30 000.

horizontal stripes join them through curved segments in
order to accommodate an extra stripe in the middle, which
eventually results in the dislocation pair. After the formation of
dislocations, spots and stripes are commensurate and the wall
moves more rapidly. Thus the generation of the dislocation
pair releases structural frustration.

The incommensuration causes an anisotropic motion of the
wall as seen in Fig. 6. So the motion of the end points and also
some intermediate points of the domain wall were tracked.
Figure 8(a) show the motion of end points Xmax and Ymax

of the lower left of the domain wall. The position along the
X direction varies linearly in time, whereas the position in the
Y direction varies as t0.6. Figure 8(b) show the positions of
two intermediate points. These show a similar difference in x

and y directions as the end points.
We have also examined the spread of the wave number in

the above two cases. For this purpose, we calculated the power
spectrum of the order parameter ψ(�r,t) defined as

P (k,t) = 〈|ψ(�k,t)|2〉av, (23)

where the bracket denotes an angular average over �k. This is
shown in Fig. 8(c) for the incommensurate case. The main peak
occurs very close to q0 = 1.0 and there is very little spread
indicating that the wave vectors in two domains differ very
little in spite of the presence of dislocations. This shows that
the presence of dislocation does not change the magnitudes of
k vector significantly. In this case it is difficult to relate the
velocity of the dislocation to wave-vector deviation caused
by the dislocation. However, the existence of the second
peak at k ≈ 4.0 is somewhat surprising. It is seen only in
the incommensurate case, when both the dislocation and the
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FIG. 7. (Color online) Evolution of (a) total number of defect points ND(t) and (b) excess free energy 
F (t). (c) Plot of d(
F )/dt with

F . Continuous lines are a guide to the eyes.

grain boundary are present. It vanishes along with the grain
boundary, and thus represents a short scale modulation of
stripes caused together by the grain boundary and dislocation.
The second peak is not seen for the commensurate lattice. The
same calculation for the commensurate case again shows a
single sharp peak at q0 = 1.03.

C. Grain boundary: Three domains

In order to generate more complex configurations we
decrease ξ in the initial condition given by Eq. (22). In
this section we take the initial state with ξ = 0.01 and �n =
(
√

3/2,1/2) as shown in Fig. 9(a). Now the nucleation occurs
on three fronts: one front is along the line �n · (�r − �r0) = 0,
while the other two fronts are due to periodic boundary
conditions along horizontal and vertical directions. They occur
along the portions of the boundaries where the fields at
the opposite edges do not match. A stripe pattern of three
domains in directions governed by gradients in these regions
quickly emerges with somewhat wide walls, Fig. 9(b). At
this stage the stripes are quite straight. The horizontal grain
is the smallest and it shrinks in time t = 10 800, which is
much longer than the time for the development of stripes
[Fig. 9(c)]. Between the other two domains there are two kinds
of domain walls. One set of opposite walls are rather straight in
which θ1 ≈ π/2 and θ2 is fairly acute. Such walls occur quite
commonly in other simulations, which is because their energy
∝(| cos θ1| + | cos θ1|) is lower. The other set of opposite walls
are like low angle grain boundaries with both angles θ1 and θ2

small. These are somewhat broad and meandering with a high
density of dislocations and small stripes lying between.

These two kinds of walls relax differently. The walls relax
as stripes from two sides connect through a curved segment.
For the straight walls this process is frustrated as the number
of stripes ending on two sides are different. This is so, as
the projected distance on the wall is λ/ sin θ , one sees that
the number of stripes hitting the wall from two sides is
different when θ1 �= θ2. Thus, as seen in Fig. 9(c), alternate
stripes connect leaving a string of dislocations. In subsequent
evolution, stripes in both domains become progressively wavy
as if the local curvature from the connection site is diffusing
[see Fig. 9(d)]. This also results in slow rotation of the wall
which reduces the angle between the stripes on two sides.
This process also leads to a slow reduction in the number
of dislocations in the wall which occurs at the ends of the
wall. However, the coarsening through these processes is not
monotonic as new regions of disorder are introduced and
curvature of stripes increases in some regions and decreases
in others. The entire process is not completed till time
t = 210 000 [see Fig. 9(f)], though the number of domains
is reduced to one as in some regions the curved stripes get
smoothly connected.

The first step in the relaxation of the low angle walls is the
annihilation of smaller stripes which interweave dislocations.
The stripes from two sides cannot connect here as the curvature
required will be rather large. So the relaxation occurs by
annihilation of dislocations and rotation of walls locally. This
process also causes a waviness of stripes as the local curvature
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FIG. 8. (Color online) (a) Motion of end points Xmax and Ymax of the left domain wall. (b) Motion of intermediate points Xin and Yin of the
left domain wall. Continuous lines are a guide to the eyes. (c) Power spectrum P (�k) vs k.
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FIG. 9. Six panels show patterns evolving from the initial
condition in Eq. (22) on a 513 × 513 lattice at different times:
(a) t = 0, (b) t = 300, (c) t = 10 800 and (d) t = 30 000, (e) t =
150 000 (f) t = 210 000. Parameters of the initial state are ξ = 0.01,
�n = (

√
3/2,1/2), and �r0 is the center of the square cell.

is transported away. The defected regions diffuse and also
reappear at another location. Notably defected regions which
appear often have walls in which one angle is nearly π/2 (see
Fig. 9), implying energy dissipation. So again some of these
structures have frustration with regards to relaxation. These
walls also do not relax till t = 210 000 (see Fig. 9), the longest
time of our simulation.

We have done many other simulations by varying the
direction of �n and ξ . The variation of �n changes the sizes
of the three domains seen above, but one sees similar general
features. It seems that several processes quite distinct from the
standard picture of curvature driven motion are operative and
they have different time behavior and time scales. Further,
whether a grain will annihilate seems to depend on the
stripe orientations surrounding it, implying a global feature
originating from long-range orientational order. In general a
domain enclosed by a single domain is annihilated rather fast
for a variety of shapes.
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FIG. 10. (Color online) (a) Evolution of total number of defect
sites ND(t) and number of defect sites NGB1(t) in the domain wall of
horizontal stripes. (b) Early evolution of excess free energy 
F (t).
Inset show a plot of 
F (t) with ND(t). (c) Plot of d(
F )/dt with

F at early times. (d) Evolution of total defect sites ND(t) over a
longer range of time. Inset show a plot of 
F (t) with t for the same
range.

We substantiate some of these remarks quantitatively. First
we study the small time regime (t < 10 000) when three
domains are present. The dynamics is dominated by the decay
of the domain with horizontal stripes [see Figs. 9(b) and 9(c)]
as this occurs at a faster time scale which is of the same order
as the decay time of the domain in the commensurate case
above. Figure 10(a) shows the decay behavior of the total
number of defects ND(t), and defects NGB1(t) contained in
this domain wall. Figure 10(b) shows the decay behavior of
the excess free energy and the inset shows the variation of

F with ND(t). The defect numbers which are larger here
show much more fluctuation. The free energy is expectedly
somewhat smoother. The force curve shown in Fig. 10(c) is
more or less constant apart from the initial and final states of
the domain. For the long-time regime (10 000 < t < 30 000)
shown in Fig. 10(d) one clearly sees that the defect population
does not decrease and keeps fluctuating. On the other hand, the
excess free energy does decrease very slowly in accordance
with the picture described above.

Finally, we describe the time evolution of the stripe curva-
ture. We evaluate the local curvature C(�x,t) = 2π |∇ · �n|/q0

in the entire region in which the stripes are formed using
an amplitude filter [13,16]. The spatial average of stripe
curvature C̄(t) is shown in Fig. 11(a). In the first phase when
a domain is getting annihilated C(t) decreases till t = 10 000
(not shown). In the second phase C̄(t) increases as stripes
across other walls connect and this local curvature diffuses
leading to waviness along the length of involved stripes. This
is followed by a regime in which the relaxation becomes very
slow and frustrated. In Fig. 11(b) we show the curvature
distribution P (C,t) among sites with well formed stripes.
The distribution broadens with time indicating that the stripes
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FIG. 11. (Color online) (a) Evolution of average stripe curvature
with time. (b) The distribution of stripe curvature at various times.

are getting curved over larger regions with time. This sort
of behavior for curvature seems generic in configurations
where domain-wall relaxation is frustrated and the neighboring
domains are not oriented in directions favorable to annihilation
of the intervening domain.

V. GENERATION OF TOPOLOGICAL DEFECTS

In this section we study the evolution of initial states
which have the topology of isolated defects. The motivation
behind this study is to test the invariance of the topological
properties of the order parameter through dynamical evolution.
Topological properties of the order parameter can be studied
only when some kind of order has been established in the
system. However, the initial condition may not have the hint
of this order and characteristic indices such as winding number
may not be defined. Nevertheless, it seems physically possible
to guess some initial states which lead to final states with a
specified topological defect. We present some examples below.

A. Focus

A focus is the simplest of topological defects with winding
number of +1. An initial state which generates a single focus
is intuitively the one where the field is nonzero in a localized
region small compared to the cell. So we have taken them to
be Gaussian of the following form:

ψ(x,y,0) = exp

[
− (x − x0)2

ξ 2
x

− (y − y0)2

ξ 2
y

]
. (24)

In Fig. 12 we show results with ξx = ξy = 28.6. One sees
from Fig. 12(b) that focus develops very rapidly covering the
entire domain in a time t = 600. Thereafter the forcing due
to boundaries is the main evolution which occurs through
the formation of domain walls between focus and stripes
compatible with periodic boundary conditions [see Figs. 12(c)
and 12(d)]. The two sets of walls form across a diagonal where
the boundary induced stripe direction is in conflict with focus.
There are π/2 walls where one of the angles θ1 or θ2 is ≈ π/2
in intermediate stages. Finally, some walls cannot annihilate
without changing the winding number of the inner domain
and so do not relax. The winding number of the configuration
remains +1.

If the seed is made anisotropic with ξx = 19.6, ξy = 28.6,
the focuslike stripe front moves more rapidly in the x direction

FIG. 12. Patterns evolving from the initial condition in Eq. (24)
with ξx = ξy = 28.6 are shown at different times: (a) t = 0, (b) t =
600, (c) t = 3000, and (d) t = 12 000. The last two panels show the
late stage configurations for an anisotropic seed with ξx = 19.6,ξy =
28.6 at times (e) t = 90 000 and (f) t = 180 000.

and longer domain walls along the diagonal emerge. The late
time configurations are shown in Figs. 12(e) and 12(f).

B. +1/2 disclination

In order to generate a convex n = 1/2 isolated defect, the
angular part of the initial state is taken to be the static solution
of the phase equation given by Passot and Newell [4]. The
initial state is

ψ(x,y,0) = f (x,y)

1 + f 2(x,y)
ξ

, (25)

where

f (x,y) = √
r cos(α/2), (26)

where r and α denote the polar coordinates. The evolution in
initial stages is shown in [Figs. 13(a) and 13(b)]. The growth
of +1/2 disclination is clear, but already by t = 10 the effect
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FIG. 13. Generation and evolution of a convex disclination using
the initial state of Eqs. (25) and (26). Panels show the patterns at
different times: (a) t = 6, (b) t = 30, (c) t = 300, and (d) t = 15 000.

of boundary conditions begins to emerge. By t = 300 [see
Fig. 13(c)] the boundary induced domains begin to dominate
and one is left with two domains with one containing the
disclination. The evolution is largely due to motion of domain
walls and generation and annihilation of dislocations. At
t = 15 000 [see Fig. 13(d)] disclination is absorbed by the
vertical domain. At this point the evolution becomes very
slow as it requires motion of walls between perpendicularly
aligned domains. Their motion occurs as long as the walls
have curvature. The curvature becomes zero with evolution and
thereafter a stable configuration is reached. The mechanism of
motion is again through dissociation of stripes in the vicinity
of the wall into spots.

C. −1/2 disclination

Next we present an initial state which gives rise to a concave
−1/2 disclination. The state is given by using the following
f (x,y) in Eq. (25):

f (x,y) = r3/2 cos(3α/2). (27)

This form is also suggested by the static solution of the phase
equation [4]. The emergence of the disclination is clearly
seen in Figs. 14(a) and 14(b). The boundary-induced domains
begin to impinge on the disclination structure at t = 300 [see
Fig. 14(c)]. This leads to formation of several domains with
sharp walls and some melted triangular regions [see Fig. 14(c)].
The wall which results in connection of parallel stripes on the
opposite sides of the domain move fastest causing the shrinking
of the intervening domain. Then there are π/2 walls and
low-angle dislocation-dominated walls which make the further
evolution very slow. For the wall along the x axis the stripes

FIG. 14. Generation and evolution of a concave disclination using
the initial state of Eqs. (25) and (27). Panels show the patterns at
different times: (a) t = 6, (b) t = 30, (c) t = 300, and (d) t = 90 000.

from two sides make equal angles which allow reconnections.
Here also after the intermediate evolution one is left with two
domains with π/2 walls and low-angle dislocation-dominated
walls. The long-time evolution is governed by generation of
waviness in stripes through diffusive transport of curvature
and rotation of walls along with generation of new regions of
dislocations [see Fig. 14(d)].

D. Saddle

Finally, we generate a saddle configuration which is a
disclination with winding number −1. The initial state [see
Fig. 15(a)] used for this is

ψ(x,y,0) = x2 − y2

2
exp(−|x2 − y2|/α). (28)

This simulation uses zero-flux boundary conditions in place of
periodic boundary conditions used above. This forces stripes to
be perpendicular to the boundary which leads to a geometrical
frustration for patterns in a square. Since the large gradient
occurs along the lines y = ±x, one sees growth of stripes along
the diagonals and a rapid emergence of four domains with four
domain walls, Fig. 15(b). The winding number of the pattern
is −1, which is compatible with the boundary conditions. Here
the interior walls have no frustration and quickly relax to two
large domains with stripes oriented along diagonals, Fig. 15(c).
Further, boundaries force another set of walls at the edges and
defective regions in the corner. The inner domain grows till
one is left with defects only near the edges, Fig. 15(d). No
substantial coarsening occurs thereafter as this would require
rotation of stripes of a large domain.
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FIG. 15. Generation and evolution of a saddle on a 1025 × 1025
lattice with 
x = π/8 using the initial state of Eq. (28). Panels show
the patterns at different times: (a) t = 0, (b) t = 300, (c) t = 12 000,
and (d) t = 27 000.

VI. CONCLUSIONS

In this paper we have studied the time evolution of stripe
patterns through numerical studies of the Swift-Hohenberg
equation. Though a lot of work on the coarsening of stripe
patterns has been reported, this system has many different
features due to the nature of its order parameter which need
further understanding. Here we have studied initial states
which together with boundary conditions produce simple
configurations and allow study of various defects in relative
isolation. This approach yields qualitative and quantitative
results which we summarize below.

(i) The most common defects are domain walls followed
by dislocations and disclinations. Disclinations annihilate the
fastest as generically the boundary conditions around them are
not compatible with their topological requirement.

(ii) Domain walls are characterized by two angles that the
stripes on two sides make with the wall. The walls with one of

the angles near π/2 are fairly common as they are energetically
favored.

(iii) We see two distinct mechanisms for domain relaxation.
The first process involves dissociation of portions of stripe near
the wall into spots to which a stripe from the other side connects
and advances. This process requires some curvature in the wall.
For example, this mechanism operates in the annihilation of
domains that are enclosed by a larger domain. Such domains
annihilate rather rapidly with wall speeds insensitive to their
local curvature. An interesting factor which slows this process
drastically is incommensuration. The frustration of the process
is released by the formation of dislocations.

(iv) The second mechanism occurs by reconnection of
stripes across the wall through curved segments. This process
is generically frustrated in the sense that it leaves a string of
dislocations. The local stripe curvature also diffuses making
stripes progressively wavy. The average stripe curvature shows
a nonmonotonic dependence on time.

(v) The above mechanism is considerably slower and in
many situations is not completed for as long as we have
observed. The defected regions slowly diffuse, rotate, and even
reappear at other locations. The defect numbers, excess free
energy, and stripe curvature fluctuate with time around some
base values.

(vi) The motion of a straight and perturbed front was studied
and its velocity tracked. Results matched very well with the
theoretical predictions [38,39].

(vii) A variety of isolated topological defects were gener-
ated and the effect of boundaries on their stability examined.
Their annihilation leads to dislocations and domain walls.

In the earlier work in which coarsening was studied
with random initial conditions, rather definite scaling laws
were found for the correlations of the stripe order and the
orientational order. Here we find that dynamics of isolated
defects is quite different and dependent on several features
associated with overall configuration and presence of other
defects.
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