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Nonlinear waves in networks: Model reduction for the sine-Gordon equation
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To study how nonlinear waves propagate across Y- and T-type junctions, we consider the two-dimensional
(2D) sine-Gordon equation as a model and examine the crossing of kinks and breathers. Comparing energies
for different geometries reveals that, for small widths, the angle of the fork plays no role. Motivated by this, we
introduce a one-dimensional effective model whose solutions agree well with the 2D simulations for kink and
breather solutions. These exhibit two different behaviors: a kink crosses if it has sufficient energy; conversely a
breather crosses when v > 1 − ω, where v and ω are, respectively, its velocity and frequency. This methodology
can be generalized to more complex nonlinear wave models.
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I. INTRODUCTION

The propagation of nonlinear waves in networks is a very
common problem. Examples are the nerve impulse traveling
in arrays of neurons [1], the motion of the pulse wave in the
arterial circulatory system [2], or the propagation of waves
in the electrical power grid [3]. In general the problem is
difficult to tackle because both the equation of motion and the
geometry are complex. A first direction is to consider a simpler
geometry like a Y junction (see Fig. 1). Another simplification
is to study what happens for a linear wave equation. In this
context, a number of researchers have examined so-called
quantum graphs where the Schrödinger equation is solved on
a network. See Ref. [4] for a review. For these linear systems,
the scattering formalism can be employed and this gives the
reflection and transmission coefficients for a harmonic wave.
This is detailed specifically for a Y junction and for the
Klein-Gordon linear wave equation in Ref. [5].

In many cases however, the nonlinearity cannot be ne-
glected. For fluid systems, note the works by Bona and
Cascaval [6] and Mugnolo and Rault [7] who used the
Benjamin-Bona-Mahoney (BBM) shallow water equation to
describe a fluid network. The authors used the fact that the
BBM equation is unidirectional; hence, most of the energy
is propagated downstream. For the Boussinesq equation in a
junction, Nachbin and Da Silva Simoes [8] used a conformal
map technique. However, all these studies do not provide
a simple understanding of the behavior of the waves; in
particular, one cannot see easily how energy travels across
the network.

To address these issues, a first step is to consider a
simpler model. For instance, before tackling the propagation
of shallow water waves in a river basin, for which there are
two variables, the water elevation and the potential flow, it is
useful to consider a simpler nonlinear hyperbolic equation.
The sine-Gordon equation is precisely a simple nonlinear
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hyperbolic equation that admits localized solutions. It is also
a Hamiltonian system in any dimension, integrable in one
dimension so that one can compare the numerical solutions
with their exact counterpart as they propagate in a one-
dimensional (1D) channel. Finally, the sine-Gordon equation is
an excellent model of an extended Josephson junction between
two superconductors [9]. Here, to simplify the issue and to
keep the Hamiltonian framework, we exclude external actions
on the network, like a current or a magnetic field, that are
commonly used in Josephson junction arrays.

Consider the two-dimensional (2D) sine-Gordon equation
defined in a Y junction such as that shown in Fig. 1. A first
work on the problem is by Gulevich and Kusmartsev [10]
who examined numerically how kinks propagate in such a
system, in the context of Josephson junctions. They showed
that the kink needs a sufficient velocity to cross the branch.
Here we follow up on this and define a 2D symmetric junction
parametrized by the angle θ between the branches and by the
widths w1 and w2 of the branches. This setup can describe
a Y junction up to a T junction (θ = 180◦). We solve the
2D problem using the FreeFem + + finite element library
[11]. It is important that the energy is conserved by the code;
for this we found a suitable time discretization. The study of
the propagation of a kink in the junction yielded the immediate
result that for small widths there is no dependence of the
velocity on the angle of the fork for the full 2D simulation. We
therefore introduce a 1D effective partial differential equation
to capture the essential features of the 2D propagation. This
model incorporates the junction, using the ideas of graph
Laplacian [12]; its solutions agree well with the 2D solutions.
For the kink propagation in a junction we confirm the existence
of a critical velocity given approximately by the simple energy
conservation argument. Below this velocity, the kink gets
reflected by the fork. Above it, it passes through the junction
and splits into two kinks that propagate in the two different
branches. For breathers there are two parameters, ω the
frequency and v the velocity. For a given velocity v, junction
crossing is only possible above the frequency ω ≈ 1 − v,
indicating a nonlinear resonance. After the breather passes
through the junction it gives rise to new breathers in the
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FIG. 1. Sketch of the computational domain �.

branches. We characterize these using their energy density and
estimate their velocity and frequency. We always observe an
upshift of the frequency and a slight downshift of the velocity.

The article is organized as follows. In Sec. II we derive the
1D effective model from the 2D sine-Gordon equation defined
in the fork. In Sec. III we recall the energies for the kink
and the breather and show how they can be used to estimate
a critical velocity. Section IV introduces energy conserving
discretizations for the finite element 2D problem and the 1D
effective equation. Their solutions are compared in Sec. V
for both kink and breather initial conditions. Conclusions are
presented in Sec. VI.

II. THE 1D EFFECTIVE SINE-GORDON MODEL

We consider the 2D sine-Gordon equation

ϕtt − �ϕ + sin ϕ = 0, (1)

on a bounded domain � ⊂ R2 with Neuman boundary
conditions,

∇ϕ · n = 0,

where n is an exterior normal. The t subscript indicates the time
derivative and � is the usual Laplacian in spatial coordinates.
This equation conserves the energy:

E =
∫

�

[
1

2
ϕ2

t + 1

2
|∇ϕ|2 + (1 − cos ϕ)

]
dx dy. (2)

This can be checked easily by multiplying Eq. (1) by ϕt ,
integrating over the domain, and using the Stokes formula
for the spatial operator.

Since the boundary conditions of the 2D problem are
homogeneous Neuman it is natural to assume that the solution
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FIG. 2. (Color online) Sketch of the tree geometry for the 1D
effective model.

is uniform in the transverse direction. In other words we keep
only the first transverse Fourier mode. Then Eq. (1) reduces in
each branch to a 1D sine-Gordon equation,

ϕi
tt − ϕi

xx + sin ϕi = 0, i = 1,2,3, (3)

where the label i corresponds to the three branches as shown
in Fig. 2. These equations are coupled at the apex by two
conditions; one is the continuity of ϕi ,

ϕ1(x = l) = ϕ2(x = 0) = ϕ3(x = 0) , (4)

and the other is the flux conservation or the Kirchoff law,

−w1ϕ
1
x + w2ϕ

2
x + w3ϕ

3
x = 0, (5)

where ϕi
x is the normal velocity in branch i. Let us now briefly

justify this flux relation. For that, consider the fork domain
F obtained by taking the normals at the different branches as
close as possible to the fork as shown in Fig. 3. Integrating the
2D equation, Eq. (1), on F yields∫

F

(ϕtt + sin ϕ)dxdy −
∫

∂F

∇ϕ · nds = 0, (6)

where n is the normal to the edge of the domain ∂F . The second
term is equal to the left-hand side of Eq. (5). The first one is
of order w2, where w is the typical width of the branches. In
the limit of small w, such that wi → 0 with w2/w1 and w2/w1

constant, the first term vanishes while the second one remains,
yielding Eq. (5)

The numerical scheme used to solve this 1D effective model
is described below (see Sec. IV); it is a finite difference
approximation. The junction corresponds to the four nodes
highlighted in Fig. 2; these are labeled as 1, 2, and 3 for the
three branches and are connected to the central node 4. The
outer nodes are the last nodes updated by the partial differential
equation solver; let us name the value of the solution there ϕ1,
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FIG. 3. The fork region F .

ϕ2, and ϕ3 for each branch. The value at the central node ϕ4

can be computed from the interface conditions (4) and (5).
Using a forward finite difference approximation for ϕi

x we get
the following from Eq. (5):

−w1(ϕ4 − ϕ1) + w2(ϕ2 − ϕ4) + w3(ϕ3 − ϕ4) = 0,

where we have assumed the same space step on the three
branches and used the notation ϕi ≡ ϕ(xi). We have also
omitted the j index corresponding to the different branches.
We then obtain

ϕ4 = w1ϕ1 + w2ϕ2 + w3ϕ3

w1 + w2 + w3
. (7)

III. THEORETICAL CONSIDERATIONS

In 1D the sine-Gordon equation is integrable (see, for
example, Ref. [1]). It has two families of localized exact
solutions, the kink,

ϕ(x,t) = 4 arctan {exp[γ (x − vt)]} , (8)

and the breather [13],

ϕ(x,t) = 4 arctan

[ √
1 − ω2 cos[ωγ (t − vx)]

ω cosh[
√

1 − ω2γ (x − vt)]

]
, (9)

where the Lorentz factor γ is given by

γ = 1√
1 − v2

. (10)

Let us first consider the kink, its energy is

Ek = 8γ. (11)

The energy of the breather depends also on the frequency, it is
given by

Eb = 16γ
√

1 − ω2. (12)

In two dimensions the equation is not integrable. In addition
there is the complication of the boundaries. Therefore the
only relations that can be used are conservation laws, and
in particular the conservation of energy. When the kink is in
branch 1, its energy is 8w1γ because it is homogeneous in
the transverse direction. Similarly in branch 2, it has energy

8w2γ2. The conservation of energy reads

w1
8√

1 − v2
1

= 2w2
8√

1 − v2
2

, (13)

where we assume w2 = w3. This expression gives a critical
velocity v1 for which v2 = 0:

vk =
√

1 −
(

w1

2w2

)2

. (14)

This formula was derived in Ref. [10] and compared success-
fully to the 2D numerical results for a fixed angle and widths
w3 = w1, 0 < w2/w1 < 1. In the next section we confirm this
estimate by numerical simulations and show its limitations.

A similar argument for the breather yields the following
result for the parameters {v1,ω1} in the bottom branch and the
parameters {v2,ω2} in the top branches:

v2
1 − 1

ω2
1 − 1

=
(

w1

2w2

)2
v2

2 − 1

ω2
2 − 1

. (15)

This gives a critical velocity v1 for which v2 = 0:

vk =
√

1 − ω2
1 − 1

ω2
2 − 1

(
w1

2w2

)2

. (16)

The practical application of the previous formula is difficult
because ω2 remains unknown. Note however that for small
amplitudes, i.e., in the linear limit, ω1 = ω2 so that we recover
Eq. (14) for the critical velocity.

IV. NUMERICAL METHODS

We now describe the numerical methods used to solve the
2D and the 1D effective problems. Equation (1) is solved using
the finite element method. For that recall the standard scalar
product in L2(�):

(ϕ,ψ) ≡
∫

�

ϕψdxdy.

Using this scalar product we project the operator on a test
function and use the Green’s theorem to integrate the Laplacian
[14]. The second derivative in time is approximated by
the standard three-step discretization. We also average the
Laplacian over the current and the following time steps. The
final semidiscrete scheme is the following weak formulation:

1

�t2
(ϕn+1 − 2ϕn + ϕn−1,ψ)

+ 1

2
[∇(ϕn+1 + ϕn),∇ψ] + (sin ϕn,ψ) = 0, (17)

where ψ ∈ L2(�) is the test function; �t is the time step;
and ϕn−1, ϕn, and ϕn+1 are, respectively, the solution at
times steps tn−1, tn, and tn+1, where tj = j�t . For the spatial
discretization we use a nonstructured triangular mesh with P2

finite element space. The computations are performed using
the FreeFem + + open-source software [11]. The boundary
conditions are set to be homogeneous Neuman:

∇ϕ · n = 0,
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FIG. 4. (Color online) Relative energy |En − 〈En〉|/〈En〉 as a
function of time for the 2D finite element solution of a breather
propagating in a 2D domain.

where n is the exterior normal to the boundary of the domain
�.

The total discrete energy is calculated as

En = 1

2

∫ [(
ϕn+1 − ϕn−1

2�t

)2

+ |∇ϕn|2 − 2(1 − cos ϕn)

]
dxdy. (18)

This quantity is conserved up to order O(h4), where h is the
typical space step. There is no trend in the relative error on
the total energy |En − E0|/E0 in the course of the computations
as shown in Fig. 4. This plot corresponds to the breather of
velocity v = 0.8 and frequency ω = 0.3 crossing the fork (see
Sec. V). For a kink the error is even smaller. In the numerical
simulations presented below, we used the mesh with a typical
size �x ≈ 0.05 and the time step �t = 0.0075. Because of
the implicit nature of Eq. (17), we could take a much bigger
time step. However, we preferred to keep it small enough in
order to reduce the time discretization error.

The 1D effective problem is solved using the finite
difference method. The scheme employed reads

ϕn+1
j + ϕn−1

j − 2ϕn
j

�t2

− ϕn
j+1 + ϕn

j−1 − 2ϕn
j

�x2
+ sin ϕn

j = 0, (19)

where n and j are, respectively, the time and space indices.
Despite the simplicity of Eq. (19) it can be shown that it is a
symplectic Euler method derived for the sine-Gordon equation
recast in Hamiltonian form [15]. Consequently, the 1D scheme
is stable and conserves energy. Typical values of the space step
and the time step are �x = 0.05 and �t = 0.01.

FIG. 5. (Color online) Motion in a T junction. Snapshots of a
kink starting in branch 1 with the velocity v1 = 0.75. The times are
t = 1350 (top) and t = 3000 (bottom).

V. NUMERICAL RESULTS

We first consider the propagation of a kink in the Y and
T junctions. As expected the kink gets reflected if it does not
have enough energy (velocity). Also the motion depends very
weakly on the angle. To illustrate this fact, we show in Fig. 5
a kink propagating in a T junction and crossing it. We take the
same kink and run it into a Y junction. This is shown in Fig. 6.
One can see that the time intervals for propagation are about
the same. This is confirmed by examining the evolution of the
energy in the branches 1 (bottom) and 2 (left) (see Fig. 7). Note
also that a very small amount of energy, typically 5% of the
total energy, is left in branch 1 once the kink has crossed over
into branches 2 and 3. The solution of the 1D effective model
is plotted with points in Fig. 7; it agrees very well with the 2D
solution and this confirms the informal asymptotic reduction
from 2D to 1D of the previous section.
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FIG. 6. (Color online) Motion of a kink in a 90◦ Y junction.
Snapshots of a kink starting in branch 1 with the velocity v1 = 0.75.
The times are t = 900 (top), t = 1500 (middle), and t = 3500
(bottom). The widths are w1 = 1 and w2 = w3 = 0.7.

We now compare systematically the 2D solution with that
of the 1D effective equation. To validate this approximation,
we conduct a parametric study choosing w1, w2, and w3 such
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FIG. 7. (Color online) Time evolution of the energy for the kink
motion in branches 1 and 2 for the T junction, shown as the solid
line (red online), and for the Y junction, shown as the dashed line.
The energy for the 1D effective model is plotted with points. The
parameters are the same as those in Figs. 5 and 6.

TABLE I. Kink critical velocities for the 2D model, the 1D
effective model, and the energy estimate as a function of α. The
widths of the branches are w1 = 1 and w2 = w3 = w1 + α.

α 2D vc 1D vc vk From Eq. (14)

0.3 0.98 0.99 0.92
0.1 0.965 0.955 0.89
0 0.92 0.94 0.86
−0.1 0.885 0.85 0.83
−0.3 0.73 0.71 0.7

that w1 = 1 and w2 = w3 = w1 + α, where α = −0.3, −0.1,
0.1, and 0.3. The results for the critical velocity as well as
the estimate (14) are reported in the Table I. The 2D and 1D
models are very close even for α > 0. On the other hand the
energy estimate is a lower estimate for α > 0. The 2D and
1D effective results reveal that the kink crosses the junction
but that there are oscillations. The front seems to oscillate and
then reshape as it enters more into branches 2 and 3. We do
not see this effect when α � 0. Despite this, the values are all
within a 10% interval of error. To check the 2D-1D reduction
even further, we conducted simulations with the large width
w1 = w2 = w3 = 10 for large and small velocities. We found
that for the small velocity v1 = 0.75 the kink gets reflected
and significant transverse oscillations occur. These transverse
oscillations are the ones that propagate along the equal phase
contour lines; they were studied by Gulevitch et al. [16] who
showed that their dispersion is ω = k. In this situation, the
angle becomes important and of course the 2D and the 1D
models disagree. On the other hand, for the large velocity
v1 = 0.96, the kink crosses and the transverse oscillations
remain small. Then the 2D and the 1D models are very
close.

For the breather, things are more complicated because of
the additional parameter, the frequency. The energy criterion is
not sufficient, the breather needs to have the adapted frequency
in order to cross. To illustrate this, we consider a breather of
initial velocity v1 = 0.4 and different frequencies. Figure 8
shows the energy E1 in branch 1 as a function of time for
frequencies ω1 = 0.5,0.7,0.725, and 0.75. The breather does

4
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100 200 300 400

E
1

t

0.5 0.5
0.7

0.7 0.725

0.75

0.75

FIG. 8. (Color online) Energy in branch 1 as a function of time
for the 1D model and a breather of initial velocity v1 = 0.4 and
frequencies ω1 = 0.5,0.7,0.725, and 0.75. Notice the crossing for
ω1 = 0.75. The widths are w1 = w2 = w3 = 1.
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FIG. 9. (Color online) Parameter space (v,ω) for the crossing of
breathers for the 2D and the 1D models. The crosses (red online)
indicate crossing and the squares reflection. The widths are w1 =
w2 = w3 = 1.

not cross until the frequency reaches 0.75; for this frequency
the initial energy is smaller than for ω1 = 0.5. The initial
energy will not determine crossing, the initial frequency will.
Another interesting effect is that for ω1 = 0.725 the energy
E1 almost goes to 0 in the time interval [200; 300]—as if the
breather crossed the junction—and then it returns almost to its
initial value, indicating reflection. We checked the position of
the breather and found that it stays with an interval of size 10
close to the junction. This long oscillation close to the junction
could indicate a nonlinear bound state associated with the
fork.

Figure 9 shows the crossing vs noncrossing in the parameter
space (v,ω). The crossing (reflection) of the breather is
indicated by the + (×) sign. The calculations were done both
with the 1D effective model and with the full 2D equations
and the results always agreed. For sufficiently large velocities,
the breather crosses independently of its frequency. On the
other hand, for frequencies close to one, the breather crosses
even for small velocities. This situation is close to the linear
case for which we expect always some energy transfer to
the other branch [5]. There is always a small reflection from
the fork. For example, we show the time evolution of the
energy of a breather in Fig. 10. Notice how the energy in
branch 1 does not drop to zero like for the kink. There is a
remainder. The small scale oscillations present in Fig. 10 are
the ones seen in Fig. 8; at this time we do not know their
origin.

To characterize the breathers in the other branches is
difficult because the wave oscillates. We found that plotting
the energy density,

dE = 1
2ϕ2

t + 1
2ϕ2

x + 1 − cos ϕ, (20)

gives a good indication of the position of the breather. Let
us analyze in more detail the specific configuration where a
breather of speed v = 0.8 and frequency ω = 0.3 crosses the
junction. Figure 11shows the energy density for three different
times in branch 1 (top panel) and in branch 2 (bottom panel)
after the breather has passed the junction. Then the energies in
branch 1 and branch 2 are, respectively, E1 = 2.16 and E2 =
13.23. The velocities estimated by a least-square fit on the
center of mass of the breather density are, respectively, v1 =
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FIG. 10. (Color online) Time evolution of the energy in branches
1 and 2 for a breather for the 2D partial differential equation, shown
as the solid line (red online), and the 1D effective model, shown as
the dashed line. The parameters are w1 = w2 = w3 = 1, v1 = 0.8,
ω1 = 0.3, and x0 = 10.

−0.75 and v2 = 0.6. They are lower than the initial velocity to
accommodate for the crossing of the breather. The frequencies
of the breathers in branches 1 and 2 can be estimated; they are,
respectively, ω1 = 0.996 and ω2 = 0.75. All these parameters
are very different from the initial breather parameter, making
the scattering of a breather much more complex than the one
of a kink.
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FIG. 11. Snapshots of the energy density of a breather at different
times in branches 1 (top) and 2 (bottom). The times are indicated
on the plots. The parameters are w1 = w2 = w3 = 1, v1 = 0.8, and
ω1 = 0.3. The initial position of the breather is x0 = 10.
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FIG. 12. (Color online) Snapshots of the breather analytical so-
lution (dashed line) together with the numerical solution (continuous
line), in branch 1 before the collision [panels (a) and (b)], in branch
1 after the collision [panels (c) and (d)], and in branch 2 [panels (e)
and (f)]. The corresponding times are t = 20.2, 40.4, 80.8, 90.9 for
panels (a)–(d) and t = 80.8, 90.9 for panels (e) and (f).

Using the parameters above we can plot the fitted breathers
and compare them with the numerical solution. Figure 12
shows, in the top panel, branch 1 before the breather crosses.
There the analytical solution matches perfectly the numerical
one. The middle and bottom panels show, respectively, branch
1 after the crossing and branch 2. Here the agreement is not
as good but remains quite acceptable. The reflected breather
in branch 1 (middle panel) has a small amplitude of about 0.2.
Its frequency as seen from Table II is 0.99 so that it is very
close to the dispersion curve ω = √

1 + k2. This can explain
the dispersion observed.

To conclude this study we examine systematically the
influence of the breather frequency on its crossing. We took
v1 = 0.8 and chose ω1 = 0.3, 0.5, 0.7, and 0.9. The results are
reported in Table II.

TABLE II. Velocities and frequencies for the crossing of a
breather of initial velocity v1 = 0.8 and different frequencies ω1 =
0.3 and 0.5 (top rows) and ω1 = 0.7 and 0.9 (bottom rows). The
columns indicate the branches, 1, 1-return and 2. The label “1-return”
corresponds to branch 1 after the collision.

Branch
index i 1 1-return 2 1 1-return 2

ωi 0.3 0.99 0.79 0.5 0.99 0.87
vi 0.8 0.8 0.56 0.8 0.8 0.65
Energy E 25.42 2.1 11.66 23.07 2.12 10.48

ωi 0.7 0.998 0.93 0.9 0.999 0.98
vi 0.8 0.85 0.73 0.8 0.85 0.8
Energy E 19.03 1.91 8.57 11.61 1.23 5.192

VI. CONCLUSION

We analyzed numerically and theoretically how a 2D
sine-Gordon kink or breather crosses a Y or T junction.
Comparing the energies in the different branches for both cases
revealed that the angle of the junction plays almost no role in
the dynamics for thin trees. This suggested to introduce a 1D
effective model where, at the junction, we satisfy continuity
of the solution and flux conservation. The solutions of this
effective model accurately reproduce the 2D solutions.

The parameters for the kink to cross obey the simple relation
obtained from the conservation of energy. There is a critical
velocity below which no crossing is possible.

Breather crossing is more complex because there are two
parameters: the velocity v and the frequency ω. For equal
widths of the branches, we observe crossing when v > 1 − ω.
Then the breather gives rise to two other breathers in the two
upper branches that we characterize using the energy density
and the value of the energy. These new breathers are slower
than the initial condition and are also upshifted in frequency.
We always observe a small reflection at the crossing into the
first branch.

This study can be extended by considering more branches.
Another interesting extension would be to add a source at the
junction, enabling us to control the crossing. It would be useful
to understand how to transpose this to another application, like
the reflection of shallow water waves.
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