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Signatures of chaos in time series generated by many-spin systems at high temperatures
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Extracting reliable indicators of chaos from a single experimental time series is a challenging task, in particular,
for systems with many degrees of freedom. The techniques available for this purpose often require unachievably
long time series. In this paper, we explore a method of discriminating chaotic from multi-periodic integrable
motion in many-particle systems. The applicability of this method is supported by our numerical simulations of
the dynamics of classical spin lattices at high temperatures. We compared chaotic and nonchaotic regimes of
these lattices and investigated the transition between the two. The method is based on analyzing higher-order time
derivatives of the time series of a macroscopic observable—the total magnetization of the spin lattice. We exploit
the fact that power spectra of the magnetization time series generated by chaotic spin lattices exhibit exponential
high-frequency tails, while, for the integrable spin lattices, the power spectra are terminated in a non-exponential
way. We have also demonstrated the applicability limits of the above method by investigating the high-frequency
tails of the power spectra generated by quantum spin lattices and by the classical Toda lattice.
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I. INTRODUCTION

The problem of detecting deterministic chaos in an ex-
perimental time series is of fundamental interest for the
foundations of statistical physics [1,2]. It also arises in other
contexts [3,4], e.g., in biomedical applications [5]. In the
context of statistical physics, the presence of many degrees
of freedom poses a formidable challenge to the investigations
of chaos in various systems such as, for example, lattices of
nonlinearly coupled oscillators [6,7]. An often encountered
difficulty for the time series analysis is to determine whether
a given many-particle system is chaotic by accessing the time
evolution of only one degree of freedom. In such a case, the
primary indicator of chaos, namely, the Lyapunov instability
in the many-dimensional phase space cannot be investigated
directly. A notable example in this regard was an attempt of
Ref. [8] to identify microscopic chaos in the measured trace of
a Brownian particle. The approach of Ref. [8] was to analyze
the rate of information entropy (IE) production by this trace.
The limiting value of this rate in the chaotic systems is known
to be equal to the sum of the positive Lyapunov exponents. The
results of Ref. [8] were consistent with the possible presence
of microscopic chaos, but, at the same time, were criticized as
leaving open the possibility that the same signatures might be
produced by nonchaotic systems [9,10].

Detection of microscopic chaos means that (i) it should be
discriminated from a stochastic noise process characterized
by the infinite limiting rate of IE-production and (ii) it should
be discriminated from a multi-periodic integrable motion
characterized by the zero rate of IE-production. The difficulty
here is that extracting the true limiting behavior of the rate
of IE-production in many-particle systems typically requires
unachievably long time series. In the present paper, we focus
primarily on issue (ii) above for time series of magnetization
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produced by a macroscopic system of classical spins. We also
investigate the classical Toda lattice and quantum lattices of
spins 1/2.

We propose a method to discriminate chaos from a
multi-periodic nonchaotic motion in a short very accurately
measured time series. We consider a many-dimensional Hamil-
tonian system, where both chaotic and nonchaotic motions are
smooth in time, and the nonchaotic motion is characterized
by a sufficiently large number of frequencies that cannot
be resolved by the Fourier transform of the time series.
The method is based on analyzing the higher-order time
derivatives of the time series. It exploits the fact, which we
demonstrate numerically, that the power spectra of time series
generated by chaotic many-spin Hamiltonian systems have
exponential high-frequency tails. To the best of our knowledge,
the existence of such tails in generic chaotic systems has never
been proven rigorously, but otherwise reported in the studies of
non-Hamiltonian or low-dimensional chaotic systems [11–13].
In contrast, the power spectra of many integrable systems,
including integrable spin systems, are normally terminated
faster than an exponential function, and their high-frequency
behavior is non-universal. Taking time derivatives of a time
series progressively suppresses the low frequency parts of the
power spectra and amplifies the high-frequency part, thereby
producing a number of clearly detectable signatures of the
exponential tail of the power spectrum.

Particularly intriguing is the possibility to apply this method
to the time series obtained by monitoring large quantum
systems. Should a quantum time series produce the same
signatures of chaos as expected for classical systems, such a
result would shed a new light on the notion of quantum chaos.
It would also be consistent with the previous studies linking the
generic functional form of the long-time relaxation in classical
and quantum spin systems to microscopic chaos [14–17].

Much of the content of this paper concerns the applicability
limits of the above method of detecting chaos. Postponing
the discussion of this issue until Sec. IX, we just mention
here that, since there is no known quantitative connection
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between the high-frequency tails of the power spectra and
the values of the Lyapunov exponents, using the shape of
these tails as a criterion of chaos has limitations. Rigorously
speaking, the exponential shape of the high-frequency tails of
the power spectra is neither necessary nor sufficient condition
of chaos. In this paper, the applicability of the above criterion
can be considered as reliably established only for classical spin
lattices with nearest neighbor interaction at high temperatures.
However, we expect that this exponential shape can be used
as an empirical criterion of chaos also for a broader class of
many-particle systems, whose dynamics is sufficiently similar
to that of the classical spin lattices.

The rest of the paper is organized as follows. In Sec. II,
we define an integrable and a nonintegrable models of
classical spin clusters. In Sec. III, we demonstrate the chaotic
character of the nonintegrable cluster by calculating its largest
Lyapunov exponent. In Sec. IV, we consider rather long time
series for the two clusters and demonstrate that one cannot
discriminate between the chaotic and nonchaotic time series on
the basis of the numerically accessible rate of IE-production.
In Sec. V A, we proceed with calculating the higher-order
time derivatives for the two time series and show that their
seventh derivatives already look qualitatively different so that
one can discriminate the chaotic from the nonchaotic time
series simply by visual inspection. We further introduce several
quantitative criteria characterizing this difference. In Secs. V B
and V C, we also demonstrate the utility of our method by
applying it to noisy time series and to a very short time
series. In Sec. VI, we illustrate the qualitative change of the
exponential tail of the power spectrum during the transition
to integrability. Finally, we investigate the applicability of the
above method beyond classical spin lattices, and report both
supporting and contradicting evidence obtained by calculating
the high-frequency tales of the power spectra generated by the
completely integrable Toda lattice (Sec. VII) and by quantum
spin 1/2 lattices (Sec. VIII). The overall discussion of the
applicability of the method is given in Sec. IX.

II. LATTICES OF CLASSICAL SPINS

Lattices of classical spins are generically chaotic but the
interaction constants can also be chosen such that the spin
dynamics becomes nonchaotic [18,19].

We initially consider two 6 × 6 × 6 spin clusters
characterized by the nearest-neighbor (NN) interaction
Hamiltonian

H =
NN∑
i<j

JxSixSjx + JySiySjy + JzSizSjz, (1)

where (Six,Siy,Siz) are the components of the ith classical spin
normalized by the condition S2

ix + S2
iy + S2

iz = 1, and Jx,Jy

and Jz are the coupling constants. For the integrable cluster,
we select the Ising Hamiltonian characterized by Jx = Jy = 0
and Jz = 1, while, for the chaotic cluster, we select Jx =
−0.65,Jy = −0.3,Jz = 0.7. The characteristic time scale of
the dynamics of both clusters is made equal since, in both
cases, J 2

x + J 2
y + J 2

z = 1.
In the Ising case, which is the only integrable case of cubic

classical spin clusters with nearest neighbor interactions [18],

the motion is integrable because the z-component of each spin
is a constant of motion, while the x- and the y-components
simply precess in the local fields created by the frozen
z-components of the neighbors. Therefore, the nonchaotic
time series to be computed below is characterized by the
superposition of 216 different frequencies.

Despite the rather finite size of the above clusters, we
expect the numerical results reported in the rest of the paper
to represent lattices of infinite size. The reason is that the
timescales relevant to the reported phenomenology, namely,
the inverse largest Lyapunov exponent and the inverse char-
acteristic frequency scales of the power spectra are intensive
quantities: they stop changing rather quickly as the size of
the system increases. For the power spectra of nonconserved
projections of the total magnetization, this was demonstrated
numerically in Ref. [14]. The intensive character of the largest
Lyapunov exponents for classical spin lattices with nearest
neighbor interactions is rigorously justified in Ref. [19].

III. NUMERICAL PROCEDURES

The equations of motion for the Hamiltonian (1) were
solved numerically using the discretization routine of
Ref. [14]. This routine conserves the energy of the system
exactly. The typical discretization time step �t was 0.01. The
discretization errors were controlled by examining the effects
of the change of �t on the Lyapunov exponents and on the
power spectra of the time series. The initial orientations of
spins were chosen randomly. Therefore, the energy of the
system was close to zero.

We computed the largest Lyapunov exponent for both
clusters using the method of Ref. [20]. The method consists
of choosing a small initial distance d0 between two phase
space trajectories, letting them diverge during time τ and
then resetting this distance back to d0 along the displacement
direction just before the reset, and so on, repeating the above
manipulation many times. If the system is chaotic, the spread
of the two trajectories is eventually controlled by the largest
Lyapunov exponent, which can be calculated as the limiting
value of the expression

λmax = 1

kτ

k∑
j=1

log

(
dj

d0

)
, (2)

where j is the reset index, k is the total number of resets, and
dj is the distance between the two trajectories just before the
j th reset.

For a fixed value of τ , integrable systems can also produce
small but finite value of λmax because of the polynomial spread
of the trajectories. However, for the polynomial spread, λmax ∼
1/τ (up to a logarithmic prefactor), while for the exponential
spread the value of λmax should not depend on τ .

The dependences of λmax on τ for the two clusters are
shown in Fig. 1. For the Ising cluster, λmax approaches zero
approximately as 1/τ as expected for an integrable system.
The chaotic cluster exhibits τ -independent value λmax = 0.63.
The insets of Figs. 1(a) and 1(b) show that distance growth
between two resets is exponential in the chaotic case, and
slower than exponential in the integrable case.
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FIG. 1. (Color online) Numerical values of the maximum Lya-
punov exponent λmax for the chaotic (a) and the integrable (b) systems
as a function of the reset time τ (dots). The lines represent the fits by

a constant in (a) and by function log(1+τβ )
τ

in (b). The insets illustrate
the growth of the distance between a pair of trajectories during five
reset intervals.

IV. RATE OF INFORMATION ENTROPY PRODUCTION

In this and the next section, we try discriminate two time
series of the total magnetization, Mx , for the chaotic and
nonchaotic clusters introduced in Sec. II. The length of each
time series is T = 1000. The two time series look very similar
as illustrated in Figs. 4(a) and 4(b).

In the present section, we investigate the rates of the (ε,τ )-
information-entropy production [1,21–23] for the two time
series. For this purpose, we “coarse-grained” the time and the
magnetization axes in steps of τ and ε, respectively, to obtain
a newly discretized version of the time series (a stream of
symbols). The (ε,τ ) Shannon information entropy for patterns
of length N is given by HSh(ε,τ,N ) = − ∑

Pi log Pi, where i

is the index of distinct patterns, and Pi is the pattern probability.
The Shannon (ε,τ )-entropy per unit time is defined as
limN→∞ hSh(ε,τ,N ), where hSh(ε,τ,N ) = 1

τ
[HSh(ε,τ,N +1)

− HSh(ε,τ,N )]. For a chaotic system, hSh(ε,τ,N ) is expected
to approach the constant value equal to the sum of the
positive Lyapunov exponents in the limit T → ∞, N → ∞,
ε → 0, and τ → 0. However, for many-dimensional systems,
the above limit is, typically, impossible to reach in practice,
because, as N increases or ε decreases, any finite time series
quickly becomes too short to fairly represent the statistics
of all possible patterns of length N . When this happens,
each pattern, that occurs, occurs only once, and, as a result,
hSh(ε,τ,N ) → 0. We, nevertheless, calculated hSh(ε,τ,2) in
order to check if there is any indication of chaos before the
effect of the finite length of the time series sets in. The results
presented in Fig. 2 are nearly identical for both chaotic and
nonchaotic time series.
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FIG. 2. (Color online) Comparison between IE rates hSh(ε,τ,N )
produced by the chaotic system (solid lines) and by the integrable
system (dashed lines) for N = 2 and different values of τ .
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FIG. 3. (Color online) Comparison between hCP(ε,τ,N ) with
τ = 0.1 and various values of N for the chaotic time series (solid
lines) and the integrable time series (dashed lines). Curves reaching
higher maximum values of hCP correspond to the smaller values
of N .

Similar results were also obtained for the Cohen-Procaccia
(CP) entropy [24]. The magnetization axis was not discretized
for the calculation of the CP (ε,τ )-entropy. Instead, the
distance between two patterns of length N was computed
as the maximum of the differences between each pair of
time-discretized points. To calculate the CP (ε,τ )-entropy,
HCP(ε,τ,N ), we selected a group of R = 100 reference pat-
terns of length N randomly, and then obtained the probability
of each of them by counting the number of all other patterns
occurring in the time series which are within distance ε from
that reference pattern. The CP (ε,τ )-entropy was computed
using the formula

HCP(ε,τ,N ) = − 1

R

∑
{R}

logPi. (3)

The limiting rate of the CP (ε,τ )-entropy production is defined
as limN→∞ hCP(ε,τ,N ), where

hCP(ε,τ,N ) = 1

τ
[H(ε,τ,N + 1) − H(ε,τ,N )]. (4)

As in the case of Shannon entropy, we were not able
to approach the true limit limN→∞ hCP(ε,τ,N ) numerically.
Instead, we obtained hCP(ε,τ,N ) for the values of N up
N = 19. In Fig. 3, we show the CP (ε,τ,N )-entropy plots
corresponding to the same data set as those analyzed in Fig. 2.
We used τ = 0.1 (10 discretization time steps) for one pattern
element and varied N from 10 to 19 in different plots. It
is evident from Fig. 3 that one cannot distinguish integrable
from chaotic dynamics on the basis of numerically accessible
behavior of hCP(ε,τ,N ).

V. HIGHER-ORDER TIME DERIVATIVES OF THE
MAGNETIZATION TIME SERIES

A. Long time series without noise

We demonstrate in this section that one can easily distin-
guish chaotic from nonchaotic time series of Mx(t) by looking
at its derivatives of the nth order, which we denote as M (n)

x (t). In
Figs. 4(c) and 4(d), we exemplify this statement by presenting
the time evolution of the seventh time derivative M (7)

x (t)
for the seemingly indistinguishable time series appearing in
Figs. 4(a) and 4(b). (The plots for the lower-order derivatives
are given in Appendix A.) For the chaotic time series, M (7)

x (t)
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FIG. 4. (Color online) Time series of Mx(t) for 6 × 6 × 6 spin
clusters. Figures in the left column represent the chaotic cluster:
(a) fragment of the time series Mx(t); (c) the corresponding seventh
time derivative M (7)

x (t); and (e) the power spectra P (ω) (blue) and
P (7)(ω) (red). (b), (d), and (f) in the right column represent the same
quantities for the integrable Ising cluster. The black dashed line in
(e) depicts fit to P (7)(ω) of the form P0 ω14e−γω, where P0 and γ

are fitting parameters. The power spectra were obtained as described
in Appendix B. In (e), they were also smoothed out. The tails of the
power spectra at ω/2π > 4 in (e) and ω/2π > 0.6 in (f) are affected
by the spectral leakage from lower frequencies due to the finite length
of the time series.

fluctuates noticeably faster than Mx(t) and has a rather random
appearance, while, for the nonchaotic time series, M (7)

x (t) has
the appearance of a slowly modulated periodic signal with
period of the order of the characteristic time of Mx(t).

The clear difference between Figs. 4(c) and 4(d) can be
understood from the fact that the power spectrum of the
original time series, P (ω), and the power spectrum of the
nth time derivative P (n)(ω) are related as P (n)(ω) = ω2nP (ω).
Both P (ω) and P (7)(ω) for each time series are presented in
Figs. 4(e) and 4(f). In the nonintegrable case, P (ω) has an
exponential tail of the form

P (ω) = P0e
−γ |ω|, (5)

where γ and P0 are constants. As a result, for sufficiently
large n,

P (n)(ω) ∼= P0ω
2ne−γ |ω|. (6)

We propose to use this dependence as a criterion of chaos
in classical spin systems. Figure 4(e) includes the fit to
P (7)(ω) of the form P0 ω14e−γ |ω|. The important aspect of this
dependence is not that it becomes exponential at sufficiently
large frequencies, but that, before it becomes exponential,
it has the universally shaped broad maximum shifting with
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FIG. 5. (Color online) Statistical characteristics of the time series
of M (n)

x (t) for the chaotic and the integrable systems: (a) ratios Rn of
the RMS value of M (n)

x (t) to the RMS value of M (n−1)
x (t); (b) relative

width Wn of the power spectrum P (n)(ω) with respect to the width of
P (ω).

n to increasingly high frequencies. In contrast, the power
spectrum for the integrable cluster is terminated sharply at
a certain maximum frequency ωmax. As a result, the shape
of ω2nP (ω) for sufficiently large n becomes narrowly peaked
around ωmax. Therefore, ωmax becomes the carrier frequency
for the modulations observed in Fig. 4(d), while the inverse
width of this peak characterizes the modulation time scale.

We further propose two ways to quantify the above
criterion. The first of them involves the root-mean-square
(RMS) values of M (n)

x (t), denoted as M
(n)
RMS. In Fig. 5(a), we

plot the quantity Rn ≡ M
(n)
RMS/M

(n−1)
RMS as a function of n. For

the nonchaotic time series, Rn exhibits saturation, while for
the chaotic time series it increases nearly linearly without
apparent limit. The second way is to look at the evolution of
vn defined as the square root of the variance for the positive-ω
part of P (n)(ω) [v0 corresponds to P (ω)]. In Fig. 5(a), we plot
Wn ≡ vn/v0. Here the difference is that, in the chaotic case,
Wn asymptotically increases with n, while in the nonchaotic
case it decreases, asymptotically approaching zero.

The fact that the higher-order derivatives look more random
for the chaotic time series also has quantifiable consequences
in terms of the rate of the (ε,τ )-entropy production. In
particular, we notice some qualitative difference between
the chaotic and the integrable cases, when we compare the
CP (ε,τ )-entropy rate for the 7th derivative with the CP
(ε,τ )-entropy rate for the original time series. This comparison
is presented in Fig. 6. It indicates that for the integrable
system, the maximum value of hCP(ε,τ,N ) for fixed τ and N is
smaller for the higher-order time derivative than for the original
time series, which implies that the derivative produces less
information. The situation is opposite for the chaotic system.

B. Noisy time series

In general, the effect of noise imposes a considerable
limitation on the ability of the method introduced in the
previous section to distinguish integrable from chaotic time
series. In this section, we estimate the acceptable level of noise
for the above method to work properly and present a practical
example of how to deal with the white noise.

Let us consider a chaotic system with an intrinsic power
spectrum having an exponential tail of the form (5). Let us now
add an additive white noise with power spectrum P (ω) = Q0

to the original time series. The cutoff frequency at which
the noise intensity becomes comparable with the intrinsic
exponential tail is given by ωc = 1

γ
log P0

Q0
. The frequency at
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FIG. 6. (Color online) hCP(ε,τ,10) calculated for both Mx(t)
(blue) and M (7)

x (t) (red) as described in the text. The values of ε

for hCP(ε,τ,10) associated with the seventh derivative were rescaled
by dividing the true values by the following factors: 1.13 × 104 in
the chaotic case and 1.31 × 103 in the integrable case. These factors
were chosen such to make the spread between the maximum and the
minimum values of M (7)

x (t) equal to that of the corresponding Mx(t),
thereby, in effect, compensating for the different dimensions of Mx(t)
and M (7)

x (t).

which the power spectrum of the nth derivative exhibits a peak
is given by ωmax = 2n/γ . The effect of the noise on our method
will be tolerable as long as ωmax < ωc, i.e.,

2n < log

(
P0

Q0

)
. (7)

In an experiment, Q0 = δM2δt , where δM is the RMS
amplitude of either an external physical noise or the noise
due to finite accuracy of measurements, and δt is the time
resolution of measurements. Assuming also that P0 ∼ P (0) ≈
M2

RMSτ , where MRMS is the RMS of the time series and τ is
the characteristic time scale of M(t), we obtain from Eq. (7)

δM < MRMS

(
τ

δt

)0.5

e−n. (8)

When inequality (7) is satisfied, one possible way to deal
with the noise is simply to filter it out by cutting the power
spectrum at the critical frequency ωc. In Fig. 7, we demonstrate
that such a procedure indeed preserves the distinction between
the higher-order time derivatives of chaotic and integrable time
series. Figures 7(a) and 7(b) represent noisy versions of the
time series shown in Figs. 4(a) and 4(b) respectively. The
noisy time series were obtained from the original ones by
adding Gaussian white noise uncorrelated between adjacent
time steps and characterized by root-mean-square amplitude
equal approximately to 1/8 of the root-mean-square amplitude
of the original signal. The resulting value for Q0 was such that
P0/Q0 ≈ 10−6, so that ωc = 1Hz. Figures 7(c)–7(f) illustrate
how the filtering of the noisy time series before taking the time
derivatives remedies the effect of the noise. In Figs. 7(c) and
7(d), we compare the original time series without noise and
the filtered noisy time series. In Figs. 7(e) and 7(f), we do the
same for the fourth-order time derivatives.

C. Short time series

In the power spectrum of the nonchaotic time series shown
in Fig. 4(f), one can distinguish some discrete frequencies,
which is already an indication of integrability. The chaos
indicators extracted from the derivatives of the power spectrum
are mainly intended for the situations when this discreteness
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FIG. 7. (Color online) (a) and (b) represent noisy versions of the
time series shown in Figs. 4(a) and 4(b), respectively. The notations
are also the same as in Fig. 4. Plots (c) and (d) show the same time
series after being filtered at the cutoff frequency 1 Hz (solid blue lines)
and compare them to the original noise-free time series (dashed gray
lines). (e) and (f) show the fourth-order derivatives of the filtered time
series (solid blue lines) and compare them to the derivatives of the
original noise-free time series (dashed gray lines).

is not discernible due to either too large number of discrete
frequencies or too short length of the time series. In Fig. 8,
we illustrate the effectiveness of our method by applying it
to a very short time series of length T = 10 produced by
two 4 × 4 square lattice spin clusters with the same nearest
neighbor coupling coefficients as the previously considered
two clusters. Detecting chaos from such a short time series
using just the power spectrum of Mx(t) is difficult, because it
is contaminated by the oscillations and the power-law decays
associated with the short length of the time series. However,
taking the seventh derivative reveals the expected qualitative
difference between the chaotic and integrable systems and the
good quality fit of form (6).

VI. TRANSITION TO INTEGRABILITY IN CLASSICAL
SPIN SYSTEMS

In this section, we illustrate how the exponential tail of the
power spectrum behaves during the transition from chaotic
dynamics associated with generic nonintegrable Hamiltonian
to the nonchaotic dynamics associated with the Ising Hamil-
tonian.

It was shown recently [18] that the maximum Lyapunov
exponents of classical spin lattices exhibit a power-law
decrease to zero as the system’s Hamiltonian approaches the
Ising limit. One could have expected a similar behavior for
1/γ in Eq. (5). However, we found out that it is not 1/γ that
decreases, but rather the prefactor P0.
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FIG. 8. (Color online) Time series of Mx(t) for 4 × 4 spin lat-
tices. The notations and the interactions constants are the same as
in Fig. 4. (a)–(d) now represent the entire time series used to obtain
(e), (f).

The above result is presented in Fig. 9, where we plot power
spectra for a family of Hamiltonians gradually approaching the
Ising limit. These Hamiltonians were selected from a larger set
of Hamiltonians used in Ref. [18] for the survey of the largest
Lyapunov exponents. The values of λmax corresponding to the
power spectra in Fig. 9 are given in the inset of that figure.
These values cover more than two orders of magnitude. The
smaller λmax, the closer the Hamiltonian to the Ising limit. It
can be seen in Fig. 9 that the values of γ remain nearly the
same during the approach to the Ising limit, while P0 decreases
by approximately four orders of magnitude.
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FIG. 9. (Color online) Power spectra for 50 realizations of
Jx, Jy, Jz in the vicinity of the Ising limit subject to the constraint
J 2

x + J 2
y + J 2

z = 1 for a cubic spin lattice consisting of 16 × 16 × 16
spins. The specific realizations of Jx, Jy, Jz were selected from
the data set used in Ref. [18]. The corresponding values of λmax

decrease monotonically by more than two orders of magnitude from
the upper power spectra to the lower power spectra. The values of λmax

themselves are shown in the inset. They were computed in Ref. [18].

VII. THE TODA LATTICE

We found a nongeneric completely integrable many particle
classical system that exhibits an exponential tail in its power
spectrum, namely, the Toda lattice [25]. The Toda lattice
consists of N particles in one dimension characterized by
coordinates qi and interacting according to the potential
V (qi,qi+1) = c e−α(qi−qi+1), where c and α are constants.

We numerically investigated a Toda lattice consisting of
32 particles with periodic boundary conditions and c = 1 and
α = 1. In this case, the equations of motion are

q̇i = pi, (9)

ṗi = eqi−qi−1 − eqi+1−qi . (10)

We computed the power spectrum for the time series of
the coordinate of a single particle for two sets of initial
conditions. The first set corresponds to the random choice
of initial coordinates and momenta, subject to the constraint
that the total momentum equals zero. The second set of initial
conditions is given by

qi(0) = A sin

(
2πi

N

)
, i = 1, . . . ,N (11)

and pi(0) = 0. The power spectra for the two time series are
depicted in Figs. 10(a) and 10(b), respectively. In the first
case, the power spectrum has a nearly exponential tail at high
frequencies, while in the second case it does not exhibit a pure
exponential decay.

We analyzed the integrals of motion In in both cases. These
integrals can be defined as the eigenvalues of the matrix L

given by

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 a1 0 . . . an

a1 b2 a2

0 a2 b2
. . .

...
. . .

. . . an−2

an an−1 bn

⎤
⎥⎥⎥⎥⎥⎥⎦

, (12)
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FIG. 10. (Color online) (a) The power spectra of a Toda lattice
consisting of 32 particles with random initial conditions. (b) Same
for the initial conditions chosen according to Eq. (11). (c) and (d)
represent the integrals of motion In as a function of time for the
initial conditions of (a) and (b), respectively.
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where ai = e
qi+1−qi

2 and bi = pi, [26]. We notice in Figs. 10(c)
and 10(d) that In do not depend on time as expected which
verifies the accuracy of our numerical simulation. Secondly,
we notice that In are randomly distributed in the first case,
while they are more uniformly distributed in the second case.
The dependence of In on the initial conditions and the possible
similarity to the repulsion of energy levels in quantum systems
is an interesting issue which extends beyond the scope of the
present article. In Appendix C, we also report our brief investi-
gations of a Toda lattice with a truncated exponential potential.

Even though the power spectrum in Fig. 10(a) exhibits
a nearly exponential tail, we suspect that such a behavior
is not typical for integrable systems. The Toda lattice is an
exceptional integrable model, because, despite being inte-
grable, it is not separable [27]. In contrast, the Ising model for
classical spins is separable and thus, in our opinion, represents
the typical behavior of an integrable many-particle system.
We have not tried to formulate a constraint on the integrable
Hamiltonians that would exclude the exponential tails of the
power spectra.

VIII. QUANTUM SPIN SYSTEMS

It is natural to ask whether exponential tails of power spec-
tra can discriminate integrable from nonintegrable quantum
systems. If yes, can this be done on the basis of the time series
analysis of a single macroscopic observable? In this section,
we address the above issue by investigating the power spectra
of integrable and nonintegrable quantum spin systems.

One difference between quantum and classical time series is
that the spectrum of the former consists of discrete frequencies
for both integrable and nonintegrable systems. Nevertheless,
for large quantum systems, the power spectra become effec-
tively continuous because the spacings between the energy
levels become exponentially small, and the timescale on
which the discreteness of the spectrum is observable becomes
exponentially long.

Experimentally, the power spectra for quantum spin sys-
tems can be obtained with the help of nuclear magnetic
resonance (NMR) by performing the Fourier transform of the
free induction decay signal [28]. The tails of thus obtained
NMR power spectra of CaF2 were found in Ref. [29] to
have exponential shape. This suggest that the signatures
of chaos in terms of higher-order time derivatives of the
magnetization time series may be obtainable from the direct
monitoring of the equilibrium fluctuations of nuclear spin
polarization in solids. Such fluctuations were measured by
several NMR groups [30,31] although not yet with high
enough accuracy. From the theoretical perspective, our recent
work [32] indicates that the time series for the expectation
values of the quantum mechanical operator of the total nuclear
magnetization in a pure quantum state also has the power
spectrum given by the Fourier transform of the NMR free
induction decay.

In Fig. 11, we present the power spectra of four quantum
spin-1/2 lattices, integrable and nonintegrable, computed from
the time series of the expectation value of the total magnetiza-
tion operator Mx at the infinite-temperature equilibrium. The
Hamiltonians of these lattices have the form given by Eq. (1)
with Sx , Sy , and Sz denoting the quantum spin-1/2 operators.
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FIG. 11. (Color online) Power spectra for different quantum spin
1/2 lattices computed from the time series representing the expec-
tation values for the operator M̂x . The lengths of the time series
are greater than 2000. The initial states are selected randomly from
the respective infinite-temperature ensembles. The systems are (a)
Nonintegrable 16-spin chain with nearest neighbor coupling coeffi-
cients Jx = 0.267, Jy = 0.535, and Jz = −0.802 and next-nearest-
neighbor coupling of strength 30% of the nearest-neighbor coupling.
(b) Square 5 × 4 lattice with XXZ coupling coefficients Jx = Jy =
0.433 and Jz = −0.356 (c) Integrable XXZ chain consisting of 16
spins with coupling coefficients Jx = Jy = 0.612 and Jz = −0.5.
(d) Integrable XX chain consisting of 16 spins with coupling
coefficients Jx = Jy = 0.707 and Jz = 0.

Figures 11(a) and 11(b) correspond to two nonintegrable
lattices. The first case is an anisotropic Heisenberg spin chain
consisting of 16 spins with Jx = 0.267, Jy = 0.535, and Jz =
−0.802 and next nearest neighbor coupling of strength 30% of
the nearest neighbor coupling. We see clearly an exponential
tail in its spectrum. The second case is a two-dimensional 5 × 4
quantum spin lattice with XXZ coupling coefficients (Jx =
Jy = 0.433 and Jz = −0.356). Here the power spectrum is not
purely exponential. This case may require further investigation
to exclude finite-size effects.

In Figs. 11(c) and 11(d), we show the power spectra for
two integrable models. The first model is a Bethe-ansatz XXZ
integrable spin chain consisting of 16 spins with coupling
coefficients Jx = Jy = 0.612 and Jz = −0.5. We notice that
its power spectrum has an exponential tail. Such a behavior
representative of classical chaotic systems is not entirely
surprising in this case given that in Ref. [15] it was found that
this chain exhibit another generic signature of chaos, namely,
the exponential tails of time correlation functions. The second
case is an XX spin chain consisting of 16 spins with coupling
coefficients Jx = Jy = 0.707 and Jz = 0. We observe that
the power spectrum of this model is a Gaussian function of
frequency. This result is expected since the correlation function
〈Mx(t)Mx〉 is known to be Gaussian [33].

The above numerical results imply that making a clear
distinction between the power spectra of integrable and
nonintegrable quantum systems may be a challenging task,
even though, in view of NMR spectra of CaF2, an exponential
tail of the spectrum may still be a generic feature of noninte-
grable quantum systems. This is consistent with the broader
subtlety of the interplay between the onset of chaos and the
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classical-to-quantum transition (see, e.g., Refs. [34–36]). We
further remark in this regard that our very recent investigations
indicate that nonintegrable lattices of spins 1/2 do not exhibit
exponential sensitivity to small perturbations unlike their
classical counterparts [37].

IX. CONCLUDING REMARKS

In this article, we have demonstrated that examining the
behavior of higher-order time derivatives of the time series
of total magnetization is an effective way to distinguish
between chaotic and integrable classical spin systems. The
utility of the above method is likely to be limited by the
experimental noise [13], but this limitation can be partially
overcome with the help of an appropriate high-frequency
filtering described in Sec. V B. The influence of the noise
can be further decreased by measuring fluctuations of total
magnetization for larger samples.

The above criterion of chaos is related to the presence
or the absence of exponential high-frequency tails in the
power spectra corresponding to the time series considered. Our
findings indicate that microscopic chaos in systems of classical
spins at infinite temperature generically implies exponential
tails of power spectra. The reverse is also very likely to
be true given the results of Ref. [18], which indicate that
the Ising Hamiltonian is the only integrable nearest-neighbor
Hamiltonian for classical spin lattices, while our findings
clearly show that the power spectra corresponding to the
Ising Hamiltonian do not have exponential tails. We further
expect that our chaos-detection method remains valid for
classical spin lattices with longer-range interactions. In this
case, no survey of the largest Lyapunov exponents analogous
to that of Ref. [18] has been performed yet, but it can
be reasonably expected that only Ising Hamiltonians with
various long-range interactions remain integrable. In principle,
however, one should be able to artificially adjust Ising coupling
constants to make the resulting power spectrum acquire
apparent exponential tail.

We now discuss the extensions of the above criterion
beyond infinite temperature, beyond the magnetization time
series, to quantum spin systems and to classical non-spin
systems.

We expect that the above criterion remains applicable to
spin lattices at high enough finite temperatures. However, as
the temperatures become lower the criterion needs further
verification, in particular, in the proximity of magnetic phase
transitions and below. The concern here is that, if large parts
of the system exhibit slow non-ergodic behavior (for example,
fluctuations of different magnetic domains), then such a
behavior may lead to the resulting power spectrum becoming
decomposable into contributions from different parts of the
system with different exponential tails, which, in turn, may
lead to the overall nonexponential shape of the tails.

In this article, we mostly concentrated on the time series of
an extensive macroscopic observable—the total magnetization
of a spin lattice. One may wonder whether our results extend
to (i) local observables, such as individual spin coordinates,
and (ii) higher powers of the total magnetization such as
M2

x (t). We expect that, in case (i), the chaotic character of
spin dynamics still leads to the exponential tails of the power

spectra, but then there exist much simpler ways to discriminate
generic Hamiltonians from the Ising Hamiltonian, because, in
the Ising case, the one-spin motion is manifestly periodic.
In case (ii), the detection of the difference between chaotic
and nonchaotic systems in the time series of the higher
powers of the total magnetization would encounter serious
practical complication, due to the fact that the corresponding
power spectra represent multiple convolutions of the original
magnetization power spectrum. As a result, both the cutoff
of the power spectra in an integrable system and the onset
of the exponential tail in a chaotic system become shifted to
higher frequencies and lower intensities, and hence become
more difficult to observe. The above considerations imply that
the method of identifying chaos on the basis of the analysis of
higher-order time derivatives has most value for analyzing the
time series of extensive (i.e., additive) quantities such as the
total magnetization.

The extension of the above chaos criterion to quantum spins
1/2 is less clear at the moment. As mentioned in Sec. VIII,
the power spectra extracted from NMR experiments do exhibit
exponential tails. However, the results of our own numerical
investigations do not convey a consistent picture as far as
the exponential tails are concerned, possibly because of the
finite-size effects.

Regarding classical non-spin systems with many degrees
of freedom, we expect our criterion of chaos to be applicable
to time series of fast fluctuating variables (as opposed to
slow hydrodynamic variables) in classical models of simple
liquids at high enough temperatures (i.e., far enough from the
crossover to the glassy behavior).

We should further mention that our findings are consistent
with those of Refs. [11–13,38] and Ref. [39] for chaotic
classical systems with a few degrees of freedom. In Ref. [12],
the existence of an exponential tail in the spectra of chaotic
time series was attributed to the complex time singularities
which exist when the equations of motion are analytically
continued to the complex time plane. The positions of these
singularities in the real time axis correspond to the positions of
intermittent bursts of deep randomness in the time series whose
amplitudes depend exponentially on the imaginary part of the
complex time coordinate of the singularities [12]. The decay
constant of the exponential tail of the power spectrum is then
determined by the singularities closest to the real time axis.

Overall, as mentioned in the introduction, it is probably
unavoidable, that, for any generic criterion of chaos not based
of the direct observation of Lyapunov instabilities, one can
propose artificially constructed integrable counterexamples.
We have found two such counterexamples: the completely in-
tegrable classical Toda lattice and the Bethe-ansatz-integrable
spin 1/2 chains. Both show signatures of an exponential
tail in their power spectra. However, both of these systems
do not allow separation of variables and thus might not be
representative of the generic behavior of integrable systems.

Our investigation of the transition to the integrability in
classical spin systems presented in Fig. 9 indicates that the
log-scale slopes of the high-frequency tails of the power
spectra do not correlate with the values of Lyapunov exponents.
This, in turn, possibly suggests that it is effective ergodicity
of the single particle motion rather than Lyapunov instability
as such that is important for the onset of the exponential
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high-frequency tails of the power spectra. Here “effective
ergodicity” means that the trajectories of different particles
in the system observed over sufficiently long time lead
to the same probability distributions in one-particle phase
spaces. We further speculate that the systems not exhibiting
exponential high-frequency tails of the power spectra should
be suspect of lacking ergodicity, in the sense that different
parts of these systems produce different kinds of chaotic or
nonchaotic motions, which make independent contributions to
the tails of the power spectra, which, in turn may distort the
overall exponential shape of the tail even when the individual
contributions are exponential.

Note added in proof. We recently became aware of two
relevant publications [40,41] on the subject of chaos in spin
lattices.
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APPENDIX A: ADDITIONAL TIME DERIVATIVES FOR
THE EXAMPLE PRESENTED IN FIG. 4

In Fig. 4, we presented the fragments of two time
series Mx(t) of the total spin polarization for the chaotic
and the integrable 6 × 6 × 6 spin clusters together with
their respective seventh derivatives, M (7)

x (t). In Fig. 12
below, we show the plots for all the derivatives M (n)

x (t)
of the same two time series up to the ninth order. There
are several methods to efficiently compute the derivatives
of measured time series [42]. We used the standard
finite-difference numerical procedure for computing these
derivatives. Namely, if the discretized time series in a given
order was {· · · ,(ti ,M

(n)
x,i ),(ti+1,M

(n)
x,i+1),(ti+2,M

(n)
x,i+2), · · · },

then the next-order derivative was obtained as
{· · · ,(ti ,

M
(n)
x,i+1−M

(n)
x,i

ti+1−ti
),(ti+1,

M
(n)
x,i+2−M

(n)
x,i+1

ti+2−ti+1
), · · · }.

The numerical derivatives beginning with the ninth in the
integrable case and tenth in the chaotic case show signs of
numerical noise associated with the accumulated rounding
errors. In order to exclude this concern, the presentation in
Fig. 4 was limited to the seventh derivative.
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FIG. 12. (Color online) Plots of Mx(t) and its nine derivatives for the chaotic system (left) and the integrable system (right). Note: the ninth
derivative for the integrable case exhibits extrinsic noise due to numerical rounding errors.
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FIG. 13. (Color online) Comparison between two power spectra
for the same setting as in Fig. 4(e) obtained with single machine
precision (solid red line) and double machine precision (dashed blue
line).

APPENDIX B: DETAILS ON THE CALCULATION OF THE
POWER SPECTRA IN FIG. 4

The power spectra in Fig. 4 were obtained by calculating the
square of the absolute value of the Discrete Fourier Transform
of the respective time series multiplied by a smooth-shaped
window {wi} to mitigate the spectral leakage from low fre-
quencies to high frequencies due to the finite length of the time
series. That is, if the original time series is {· · · ,(ti ,M

(n)
x,i ), · · · },

then the modified time series is {· · · ,(ti ,wiM
(n)
x,i ), · · · }. We

used the 10% Tukey window [43] defined as

wi = 0.5

{
1 − cos

[
2πi

0.1Nt

]}
for 0 � i � 0.05Nt ,

wi = 1 for 0.05Nt � i � 0.95Nt,

wi = 0.5

{
1 − cos

[
2π (i − Nt )

0.1Nt

]}
for 0.95Nt � i � Nt,

where Nt is the index of the last discretized time point
in {t0, . . . ,ti , . . . ,tNt

}. This window smoothly suppresses the
time series to zero at t0 and tNt

to reduce the finite-length
effects.
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FIG. 14. (Color online) (a) λmax(kτ ) as defined in Eq. (2), com-
puted for a Toda lattice consisting of 32 particles with exponential
potential (blue), exponential potential truncated up to the third order
(red) and exponential potential truncated up to the fifth order (brown).
(b) The eigenvalues of the L matrix defined in Eq. (12) for the
third-order truncated potential.

We did not use the above procedure for the power series
presented in Fig. 8, because, in that case, the time series was
very short (T = 10), and, as a result, the window function wi

would contaminate the relevant part of the power spectrum.
We have also checked that the exponential tails of the

power spectra are not the consequence of the rounding errors
accumulated in the course of the numerical simulation routine.
For this purpose, we computed two power spectra for the same
system using either single or double machine precision. As
shown in Fig. 13, the two spectra coincide in the range of
frequencies not affected by the spectral leakage.

APPENDIX C: TRUNCATED TODA LATTICE

A truncation of the exponential potential for the Toda lattice
at any order higher than two leads to chaotic dynamics [44].
We illustrate this property numerically by computing λmax(kτ )
as defined in Eq. (2) for the exponential potential, third-
order truncated exponential potential, and fifth-order truncated
exponential potential as shown in Fig. 14(a). The initial
conditions were selected randomly in all cases. We note that
λmax(kτ ) decays steadily as a power-law in the first case,
indicating a vanishing Lyapunov exponent, while it saturates
at finite values of λmax(kτ ) in the last two cases. In Fig. 14(b)
we depict the values of In for the second case where we see
evidently that the eigenvalues of L are no longer constants of
motion.
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