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Control mechanisms for the global structure of scalar dispersion in chaotic flows
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Scalar dispersion has complex interactions between advection and diffusion that depend on the values of the
scalar diffusivity and of the (possibly large) set of parameters controlling the flow. Using a spectral method
which is three to four orders of magnitude faster than traditional methods, we calculate the fine-scale structure
of the global solution space of the advection-diffusion equation for a physically realizable chaotic flow. The
solution space is rich: spatial pattern locking, an order-disorder transition, and optima in dispersion rates that
move discontinuously with Peclét number and boundary condition type are some of the discoveries. We uncover
the mechanisms which control pattern locking and govern the global structure of dispersion across the parameter
space and Peclét number spectrum.
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I. INTRODUCTION

Dispersion of a passive scalar φ (heat, chemical species,
etc.) is important in a variety of phenomena from epidemiology
to geophysics and across length scales from the molecular
to the celestial [1,2]. Transport of φ proceeds simultane-
ously through organized motion—a flow v(χ )—and through
disorganized motion—molecular diffusion—vastly different
modes and scales of transport. We write v(χ ) because the
flow depends on a set of parameters χ , which govern the
underlying symmetries and dynamics of the organizational
template upon which disordered phenomena play out [3]. In
any parametrized dynamical system an important and natural
need is characterization of the major qualitative changes as
these parameters vary. In the context of scalar dispersion,
this raises the following natural question: what features of the
underlying organized flow inform the behavior of dispersion
throughout the flow parameter space?

For flows which admit chaotic advection for certain values
of the flow parameters χ , it is well known that the nontrivial
Lagrangian flow structure can impart complex distributions of
the scalar φ, leading to accelerated dispersion and significantly
altered transport dynamics. What is less well understood,
however, is how transitions in the Lagrangian topology of
the advection template from regular to chaotic dynamics
impact dispersion dynamics across the flow parameter space?
Moreover, having complete parametric solutions is crucial
for transport optimization in chaotic flows or for the inverse
problem of estimating parameter values from observations
[4]. However, complete parametric solutions are difficult to
compute due to the cost of evolving a solution for each
point on a fine grid throughout a (possibly) large-dimensional
parameter space.

In this paper we investigate how the properties of the under-
lying advection template govern the parametric distribution of
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scalar dispersion in regular and chaotic flows, across a range of
time scales from diffusion-dominated to advection-dominated
systems. We consider the global structure of transport of
reoriented unidirectional duct flows as an example of the
much larger class of flows which possess variable control
parameters χ which govern the transition from regular to
chaotic Lagrangian dynamics. Such reoriented duct flows
are particularly relevant to continuous mixers (including
microfluidic mixers and industrial mixers such as the Kenics
mixer [5], SMX mixer [6], RAM mixer [7], and idealizations
thereof) which consist of a uniaxial duct flow, upon which
a systematically reoriented transverse flow is superposed.
The flow control parameters χ govern both the reoriented
transverse and uniaxial duct flows, and it is the interplay of
these flows which lead to chaotic dynamics for particular
values of χ . Whilst reoriented duct flows represent a subset
of all chaotic flows, the mechanisms studied herein which
control the global structure of scalar dispersion are universal
to all flows, both regular and chaotic.

We first explore the global structure of scalar advection and
mechanisms controlling the transition from regular to chaotic
dynamics, and subsequently utilize these insights to under-
stand those factors which control scalar dispersion. To obtain
complete parametric solutions for scalar transport in a chaotic
flow we utilize a composite spectral method which is three to
four orders of magnitude faster than other methods of similar
accuracy [8]. We then uncover the mechanisms which control
the global structure of scalar dispersion across this parameter
space and the relative time scales of advection and diffusion.

II. GLOBAL STRUCTURE OF SCALAR ADVECTION

Speetjens, Metcalfe, and Rudman [9] show that the general
form of a duct flow subject to cellwise reoriented transverse
forcing may be represented (in an appropriate frame of refer-
ence) as a piecewise constant flow in cylindrical coordinates
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r , θ , z (with z the axial coordinate along the duct):

v3D(r,θ,z) = vz(r)êz + vr,θ

(
r,θ − �

⌊
z

L

⌋)
, (1)

where vz, vr,θ respectively are the axial and transverse flows, êz

is the unit vector in the z direction, L is the axial length of each
flow cell, � is the reorientation angle between cells, and �x�
is the floor function which represents the integer part of x. As
such, reoriented duct flows may be idealized as a series of flow
cells which are piecewise constant in z, with transverse flow
reorientation occurring instantaneously at each cell boundary.
Although in practice some degree of flow reorientation occurs
at each cell boundary, the size and impact of this transition
region is found to be small [7] for viscous-dominated flows
relevant to mixing applications.

Due to their uniaxial nature, the Lagrangian topology
of these incompressible three-dimensional (3D) steady duct
flows is formally analogous to that of a time-dependent
one degree-of-freedom Hamiltonian system [10], and the 3D
steady advection-diffusion equation (ADE) governing scalar
dispersion can also be transformed into an analogous transient
2D system under the assumption of negligible axial diffusion
[11]. Hence the class of reoriented duct flows may be recast as
a set of transient 2D flows of the form

v2D(r,θ,t) = 1

vz(r)
vr,θ

(
r,θ − �

⌊
t

τ

⌋)
, (2)

by transforming the z coordinate into psuedotime t , which
is regularized by the uniaxial flow vz > 0 for all r (ignoring
the degenerate equilibrium points v = 0 of measure zero on
the duct boundary). As such, the Hamiltonian structure of
advection in reoriented duct flows is clearly shown by the
transform (2), which preserves the Lagrangian topology and
associated symmetries. Furthermore, the 2D transient form
serves as a convenient basis for visualization and elucidation
of the global structure of dispersion. Henceforth in this study
we use the 2D rotated arc mixing (RAM) flow shown in Fig. 1
(which is the 2D transient analog of the 3D steady RAM flow
[7]) as an illustrative model flow which is representative of the
class of all reoriented duct flows.

The 2D RAM flow confines fluid to a disk of radius R that
has one boundary arc on which there is a constant tangential
boundary velocity R�; boundary velocity is zero outside this
arc of opening angle �, shown here at π/4. Figure 1(b) shows
the streamlines for this steady cavity flow v̄(x). To generate
chaotic particle orbits, the arc is displaced instantaneously
through an angle � after every dimensionless time interval

FIG. 1. Rotated arc mixer (RAM) flow (a) geometry and param-
eters; (b) streamlines for Newtonian Stokes flow [12].

τ = t� to reorient the flow. In the limit of vanishing Reynolds
and Strouhal numbers, the RAM flow can be considered as a
piecewise steady flow comprised of the periodically reoriented
base flow shown in Fig. 1(b):

v(x,t) = v̄
(

r,θ − �

⌊
t

τ

⌋)
. (3)

Hence the 2D RAM flow parameters are χ = {τ,�}; these
parameters control the Lagrangian dynamics of the flow, which
have been extensively studied [7,9]. Whilst the details of
specific reoriented duct flows may vary, the parameters of
reorientation angle and frequency are common to all such
flows; hence the 2D RAM possess qualities which are generic
to all reoriented duct flows. The RAM is one of many
experimentally realizable chaotic flows; however, studies of
such flows have not extensively explored their dispersion
properties as a function of the control parameters.

For all reoriented duct flows, the time-dependant Hamilto-
nian H (r,θ,t) corresponds to the transient stream function
ψ(r,θ,t) = ψ0(r,θ − ��t/τ�), where ψ0(r,θ ) is the stream
function [12] of the steady flow shown in Fig. 1(b). In the
limit τ → 0, the generally time-dependent Hamiltonian H

coincides with the time-averaged steady Hamiltonian H̄ ,

H̄ = 1

jτ

∫ jτ

0
H (r,θ,t)dt = 1

j

j∑
i=1

ψ0(r,θ − i�), (4)

for rational �/2π = p/j (with integers p, j ), whereas
for �/2π irrational, the time-averaged Hamiltonian is axis
symmetric:

H̄ = lim
T →∞

1

T

∫ T

0
H (r,θ,t)dt = 1

2π

∫ 2π

0
ψ0(r,θ )dθ. (5)

In the limit t → 0 the Hamiltonian system is completely
integrable, consisting of nested islands defined by the level
set of H̄ , which coincide with the Poincaré section for
the steady flow. Isopleths of H̄ (and hence the Poincaré
section) are either axis symmetric for irrational �/2π , or
j -fold rotationally symmetric for rational �/2π = p/j . The
distribution of rational numbers is Cantor set along the τ → 0
axis. Breakdown of this integrable state is necessary for the
attainment of chaotic advection, and the flow parameter τ

controls the size of the perturbation away from the integrable
state. For small but finite τ the weak transient perturbation
away from H = H̄ can lead to breakup of rational orbits and
as τ → 1 total disintegration of the integrable state. Although
integrable orbits break up at finite τ , symmetry locking of
Poincaré sections for rational �/2π persists for finite τ ,
leading to symmetry-locked “tongues” similar to frequency-
locked Arnol’d tongues [13]. These symmetry-locked tongues
in (τ,�) space emanate from rational values of �/2π at the
τ → 0 limit, and widen with increasing τ until they collide
with neighboring tongues, where the competing resonances
break the underlying symmetry, leading to a period-doubling
route to chaos. This behavior is generic to all reoriented
unidirectional duct flows.

The origin and persistence of symmetry locking in reori-
ented duct flows is revealed by consideration of the evolution
of the offset angle φ between the material coordinate θm and
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the forcing angle θf [14]:

φ = θm − θf . (6)

Symmetry locking occurs when the time average 〈φ〉 of the
offset angle is steady, corresponding to rotationally symmetric
structures in the advection map. For an arbitrary offset angle
�, the forcing relative to a rational angle 2πp/j in the
neighborhood of � is

θf =
(

2π
p

j
− �

)
�t/τ�, (7)

whilst the material coordinate θm evolves as

θ̇m = R�� t
τ
�[v̄θ (r,θ )], (8)

where v̄θ (r,θ ) is the angular velocity component of the steady
duct flow v̄(x). The time-averaged material coordinate evolves
as

〈θ̇m〉 ≡ lim
T →∞

1

T

∫ T

0
R�� t

τ
�[v̄θ (r,θm)]dt, (9)

which for a Fourier expansion in θ of v̄θ yields

〈θ̇m〉 = lim
T →∞

1

T

∫ T

0

[
a0(r) +

∞∑
k=1

ak(r) cos k

(
θm + �

⌊
t

τ

⌋)

+ bk(r) sin k

(
θm + �

⌊
t

τ

⌋)]
dt, (10)

where ak(r), bk(r) are the (r-dependent) Fourier expansion
coefficients. For base flows v̄(x) which possess a reflection-
reversal symmetry [such as the RAM base flow, Fig. 1(b)
about θ = 0], the sine coefficients bk are zero. As the floor
function may only take on integer values, and using (6), the
integral (10) may be expressed as

〈θ̇m〉 = lim
N→∞

1

N

N∑
n=1

a0(r) +
∞∑

k=1

ak(r) cos k

(
φ + n2π

p

j

)
.

(11)

This sum admits a resonance condition, where the time-
averaged contribution in (11) is nonzero only for wave numbers
k which satisfy

k = mj, (12)

for all integers m > 0. At resonance Eq. (11) simplifies to

〈θ̇m〉 = ω̄ +
∞∑

m=1

amj (r) cos(mjφ), (13)

where ω̄ is the areal average of a0(r). Hence the time-averaged
locking variable φ evolves as

〈φ̇〉 = 〈θ̇m〉 − 〈θ̇f 〉

=
� − 2π

p

j

τ
+ ω̄ +

∞∑
m=1

amj (r) cos(mjφ),
(14)

which is of similar form to mode locking in the classic circle
map which gives rise to Arnold tongues. Stable solutions of
the locking equation (14) (corresponding to symmetry-locked
regions with 〈φ〉 steady) occur at values of φ for which 〈φ̇〉 =

FIG. 2. (Color online) Distribution of the fraction fj for
j = 1,2, . . . ,10 (distributions narrow with increasing j ) of locked
orbits in the RAM flow as a function of flow parameters � and τ for
locking angles 2πp/j .

0 and d〈φ̇〉/dφ < 0, whilst unstable solutions correspond to
d〈φ̇〉/dφ > 0. As 〈φ̇〉 is periodic in φ, Eq. (14) admits stable
solutions under the condition∣∣∣∣

� − 2π
p

j

τ
+ ω̄

∣∣∣∣ < Aj (r), (15)

where Aj (r) is the maximum value of
∑∞

m=1 amj (r) cos(mjφ)
over φ ∈ [0,2π ]. As such, given control parameters �, τ , the
fraction fp,j of j -fold symmetry-locked orbits which satisfy
(15) is

fp,j (�,τ ) =
∫ 1

0
H

(∣∣∣∣
� − 2π

p

j

τ
+ ω̄

∣∣∣∣ − Aj (r)

)
dr, (16)

where H is the Heaviside step function.
The distribution of the fraction of locked orbits for the

2D RAM flow with � = π/4 is shown in Fig. 2. Similar
to frequency locking in Arnol’d tongues, the strength of
symmetry locking decreases with the resonance j , such
that low-j tongues dominate. For the 2D RAM flow ω̄ =
−�/(3π ), and so the symmetry-locked tongues emanate from
the τ = 0 axis at an angle of arctan(−1/ω̄) = arctan 12. Hence
the distribution of the fraction of symmetry-locked orbits
(not accounting for symmetry breaking due to competing
resonances) across the RAM flow parameter space is given
by the sum

f (�,τ ) = min

⎛
⎝1,

∞∑
j=1

j−1∑
p=1

fp,j (�,τ )

⎞
⎠ . (17)

The distribution of locking intervals over the 2D RAM flow
parameter space as predicted by (17) for � = π/4 is illustrated
in Fig. 3, where collision of the symmetry-locked tongues at
τ ∼ 1 is clearly shown. The labeled points in Fig. 3 correspond
to the Poincaré sections shown in Fig. 4, where (a), (b), (c)
represent integrable solutions with j = 2,3,4-fold rotational
symmetry, respectively, which lie on � = 2πp/j tongues.
Figure 3 demonstrates that accumulation of symmetry-locked
tongues does not occur at a single critical value of τ , but for
τ � 1 symmetry breaking occurs due to competing resonances
and the symmetry-locked integrable state is destroyed. The
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FIG. 3. (Color online) Map of the fraction f (�,τ ) of symmetry-
locked orbits in the RAM flow parameter space Q, ranging from
f = 0 (pink) to f = 1 (red).

FIG. 4. (Color online) Dominant strange eigenmodes (finite Pe)
and Poincaré sections (infinite Pe) for select points in the {τ,�} plane.

route to chaos occurs via breakup of rational tori and a series
of period-doubling bifurcations of elliptic points, leading to
globally chaotic and nonhyperbolic Lagrangian topologies
as shown in the Poincaré sections for points (d)–(g). Note
that all topologies within the (τ,�) space inherit a reflection
symmetry through the line −�/2 which is a manifestation of
the reflection-reversal symmetry of the 2D RAM base flow
[9,14].

The transition from regular to chaotic dynamics with
increasing τ is reflected in the map of stretching rates for
the steady 3D RAM flow shown in [7]; here the stretching
rate is zero for τ < τcrit(�), and plateaus to a maximum upper
bound for large τ away from � = 0. Whilst the quantitative
details of the global structure of scalar advection over the flow
parameter space may vary for different reoriented duct flows,
the qualitative picture of symmetry locking for rational values
of �/2π at low τ which expand and eventually collide at
higher τ to generate symmetry breaking and a route to chaos
is generic to all reoriented unidirectional duct flows. As such,
the global structure of scalar advection for reoriented duct
flows is well understood, and forms the structural template for
the organization of global dispersion.

III. GLOBAL STRUCTURE OF SCALAR DISPERSION

Dispersion of a passive scalar φ arises from the complex
interactions between organized fluid motion (advection) and
disordered molecular diffusion, leading to a dissipative dy-
namical system for the evolution of φ. As such, the advection
dynamics provide an organizational template upon which
dispersion plays out [1], and so the global structure of scalar
advection informs the global structure of scalar dispersion.
For the (generally unsteady) flow parametrized by χ , scalar
dispersion is described by the advection-diffusion equation
(ADE)

∂φ

∂t
+ v(χ ) · ∇φ = 1

Pe
∇2φ, (18)

subject to appropriate boundary and initial conditions. The
Peclét number Pe = LV/D reflects the relative time scales of
advection and diffusion, where L, V are characteristic length
and velocity scales, and D is molecular or thermal diffusivity.
For the 2D RAM flow Pe = R2�/D, giving the dispersion
parameter space as Q : {τ,�,Pe} = (0,∞)×[−π,π ]×[0,∞).
In general, the full parameter space of the ADE is Q : χ×Pe,
over which the qualitative and quantitative characteristics of
ADE solutions can vary significantly, depending upon the
nature of the advection dynamics considered in the previous
section, and the relative timescales of advection and diffusion
as quantified by Pe.

Studies have firmly established that fundamental solutions
of the ADE are given by “strange eigenmodes”—sets of
naturally persistent spatial patterns with decaying amplitude
which arise as a consequence of the ADE admitting an
inertial manifold to which all reasonable initial conditions are
attracted. First reported from simulations with random velocity
fields [15], strange eigenmodes have since been experimentally
observed [16] and rigorously derived [17], and are so named
due to the nontrivial spatial structure obtained in the singular
limit Pe → ∞.
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FIG. 5. (Color online) Persistence of a strange eigenmode (with
decaying amplitude removed) through one reorientation interval. At
t = 0 the moving boundary indicated by the arrow moves. Region (a)
has been stretched and folded; diffusion heals the pattern along folds.
Simultaneously advection stretches and makes new folds around the
region (b). The pattern at τ persists, albeit rotated by �.

For time-periodic velocity fields, strange eigenmodes
ϕk(x,t) are Floquet modes of the advection-diffusion operator
L2[ϕ] = −v · ∇ϕ + 1

Pe∇2ϕ, and φ is composed of a finite sum
of eigenmodes:

φ(x,t) =
K∑

k=0

αk(t) ϕk(x,t) eλkt → α0(t) ϕ0(x,t) eλ0t , (19)

where the sum is ordered by the magnitude of the real parts
of the eigenvalues λk of L2, with initial weights αk(0). The
nonmodel (time-dependent) form of αk(t) reflects the non-self-
adjoint nature of (18) [18], and so with time scalar energy is
transferred between modes in an irreversible cascade toward
k = 0. This behavior, in concert with the fact that λk have
negative real parts with Re(λk) � Re(λk+1) means that within
finite time only the most slowly decaying eigenmode (k = 0)
dominates. As such, the long-time dispersion rate is given by
Re(λ0), and the distribution of ϕ0 and λ0 over Q represents the
complete parametric solution of asymptotic dispersion.

Figure 5 (and the video online in Supplemental Material
[19]) illustrates the cooperation between advection and diffu-
sion as the pattern evolves through one reorientation interval.
Shown is the evolution of the dominant eigenmode over one
period τ with the exponentially decaying amplitude scaled
out. At t = 0 the boundary arc velocity indicated by the arrow
moves. Region (a) has been stretched and folded during the
previous interval, and during the subsequent interval diffusion
“heals” the pattern along this fold. Simultaneously advection
stretches and makes new folds around the region (b). The
pattern at τ resumes its original shape, rotated by �. Diffusion
heals the pattern wherever folds bring parts of the patterns
close together, and folding appears to play a larger role in
sustaining the pattern than normally credited.

To compare dispersion in the 2D RAM flow for Dirichlet
boundary conditions over a range of Peclét numbers, we

introduce the asymptotic transport rate

q ≡ Re(λ0)Pe

α2
0,1

, (20)

where α2
0,1/Pe is the asymptotic diffusion rate in the unit disk,

and α0,1 is the first zero of the zero-order Bessel function of
the first kind. Hence q quantifies the relative acceleration of
dispersion with respect to the reference case of diffusion only
(v = 0) in a disk for a fluid with fixed scalar diffusivity, such
that Pe scales as R�. Figure 6 shows a series of contour plots of
q calculated over 1.2×105 points over the τ -� plane for Pe =
101–105 under homogeneous Dirichet boundary conditions
[20]. Previous studies of the ADE in chaotic flows have
either used model flows that greatly simplified the projected
advection operator [21,22] or, when aimed at optimization,
have calculated solutions at O(101) points in Q [23,24, loc.
cit.]. Other fast methods, such as the matrix mapping method
[25–27] involve some degree of numerical diffusion which
differs from molecular diffusion and so do not fully quantify
scalar transport at finite resolution. Figure 6 shows a com-
plete parametric solution for scalar transport in a physically
realizable chaotic flow. Several features deserve comment.

The gross structure of the distribution of q across (τ,�)
space for all Pe in Fig. 6 corresponds with the fraction
of symmetry-locked orbits for the advection map (Fig. 3),
suggesting that the symmetry locking informs the strange
eigenmodes for τ � 1. Note that Fig. 3 only captures the
overlapped symmetry-locking regions of (τ,�) space, and
does not reflect symmetry breaking due to collision of tongues
or the transition to chaotic dynamics for τ � 1. For the
dispersion maps in Fig. 6, the symmetry-locked tongues arise
as ridges in q for all Pe, which also emanate from the τ = 0
axis at angle arctan(1/ω̄) = arctan 12 due to rotation of the
2D RAM flow with � = π/4 (note the apparent “bending”
of these tongues in Fig. 6 is due to the logarithmic scaling
of the τ axis). Symmetry locking of the strange eigenmodes
which reside on these tongues is illustrated in Figs. 4(a)–4(c),
where the eigenmodes for Pe = 102–104 inherit locking from
the corresponding Poincaré sections (a)–(c) which essentially
represent the singular limit Pe → ∞ of (18).

The strength of symmetry locking for j -fold symmetric
tongues decreases with j (as per Figs. 2 and 3), and likewise
the width of the tongues in the dispersion plots (Fig. 6)
decreases with increasing j . For large j , both Poincaré sections
and strange eigenmodes for all Pe approach an angularly
uniform distribution, namely the dominant Bessel mode for
the diffusion problem, and so the maximum dispersion rate on
the tongues rapidly weakens to q → 1 as j → ∞, as is the
case for irrational �/2π . Conversely, q is large on the ridges of
the low j dominant Arnol’d tongues, and there exists a value
of j (denoted jmax) at a given Pe for which q is maximum.
As expected, the strength of the tongues increases with Pe as
advection becomes more dominant, and jmax increases with
Pe (jmax = 2,3,4,5 for Pe = 102,103,104,105, respectively).
Whilst symmetry locking of eigenmodes persists for all Pe,
the location of optimal dispersion in the tongues depends upon
the interplay of advection and diffusion—higher values of Pe
can resolve smaller-scale structure (i.e., larger j ), as reflected
in Figs. 4(a)–4(c) for Pe = 102–103. The width of the locking
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FIG. 6. (Color online) Map of the asymptotic transport rate
q ≡ Re(λ0)Pe/α2

0,1 for Dirichlet boundary conditions, � = π/4 over
the control parameter space Q. Note the logarithmic scaling of q

contours—different for each Pe—and the τ axis.

FIG. 7. (Color online) Symmetry-locked intervals of dominant
strange eigenmodes in the RAM flow parameter space Q. k is the
wave number of the forcing and m is the azimuthal wave number of
the pattern. Dots show the k intervals over which patterns are locked.
(Inset) Locking is symmetric about � = 0.

intervals for the dominant strange eignemodes in the 2D RAM
flow is shown in Fig. 7, which correspond very well with the
locking analysis in the previous section.

For τ ∼ 1, the mode-locked tongues in Q interact to pro-
duce an order-disorder transition, which breaks the symmetry
of both the eigenmodes and underlying Poincaré sections.
This mode breaking leads to chaotic advection dynamics for
τ � 1, which corresponds to an order-disorder transition [see
Figs. 4(e)–4(g)] for the strange eigenmodes within Q. For
Pe � 103, optimal dispersion occurs in the chaotic region of the
parameter space Q, whereas optima occur in ordered regions
for Pe � 103. The observation that optimal transport at low
Pe occurs in regular flows may appear surprising; typically,
coherent structures and regular regions (e.g., islands, KAM
tori) in Poincaré sections are barriers to transport, and are
expected to yield suboptimal transport. The points labeled (d)–
(g) in Fig. 6 are disordered eigenmodes which corresponding
to local optima in q. With decreasing Pe (�103) these patterns
are not sustainable due to “healing” of the eigenmode during
evolution, as is clearly illustrated by the change in structure of
eigenmodes (d)–(g) in Fig. 4 between Pe = 104 and Pe = 103.
Note that at higher values of Pe (104–105), transport optima
converge to fixed regions of the parameter space Q at values τ

moderately higher than the order-disorder transition in which
regions correspond to the optimum mixing regions of the
flow [9] in the absence of diffusion. Whilst the dispersion
results presented are those for the 2D RAM flow, the general
structure of Q is generic to all reoriented duct flows, and
furthermore the mechanisms governing dispersion persist for
all advection-diffusion systems.

IV. MECHANISMS GOVERNING SCALAR DISPERSION

To uncover the mechanisms governing the global structure
of the dispersion rate distribution q across Q in Figs. 6
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and 4, we define the gradient variance of the dominant
eigenmode ‖∇ϕ0‖2, where ‖ · ‖ and ·̄ denote the L2 norm and
temporal averaging operations, respectively. Liu and Haller
[17] show that for purely real (i.e., neither subharmonic nor
quasiperiodic) eigenmodes

λ0 = 1

Pe

‖∇ϕ̄0‖2

‖ϕ̄0‖2
, (21)

and so scalar dispersion is governed by the distribution of
the scalar gradient ∇ϕ0. We focus attention on the dominant
eigenmode as this mode dictates scalar dispersion; the low
variance of ϕ0 (compared to ϕk for k > 0) ensures most of
the initial data is mapped onto this mode, and furthermore
the non-self-adjoint form of the ADE (18) imparts transfer of
energy from higher modes toward ϕ0 with time. Spectral ex-
pansion of the dominant eigenmode in terms of the Laplacian
eigenfunctions ωn(x) with eigenvalues −μ2

n facilitates study
of the distribution of scalar energy over different spatial scales

ϕ0(x,t) = eλ0t

∞∑
n

αn(t)ωn(x), (22)

as each wave number μn is associated with the length scale
μ−1

n , and the spectrum α2
1,α

2
2, . . . represents the distribution

of scalar variance over length scales decreasing with n. As
the variance and gradient variance respectively are

∑
n α2

n,∑
n μ2

nα
2
n, accelerated dispersion corresponds to maintenance

of high wave-number modes in the distribution or, in physical
space, the maintenance of small length scales. Substitution
of (22) into (18) yields an equation for evolution of scalar
variance

1

2

dα2
n

dt
=

∑
m

Hmn(t)αnαm − μ2
n

Pe
α2

n, (23)

where Hmn(t) is the antisymmetric spectral advection operator.
Accordingly, advection acts to increase gradient variance by
the transfer of variance from small to large wave numbers
(i.e., creation of striations via stretching and folding), whilst
diffusion acts to remove variance as μ2

n. Persistence of
eigenmodes means that the transfer of variance must balance,
and so it is the creation and maintenance of scalar variance
in the dominant eigenmode which controls scalar dispersion.
Whilst many flows can create high scalar variance, only those
which maintain high variance in the dominant eigenmode
generate significantly accelerated dispersion.

This is most clearly illustrated by the Batchelor scale
l = √

D/γ , which represents the minimum sustainable length
scale (i.e., striation width) for a given stretching rate γ . From
(23), the maximum sustainable wave number for a chaotic
flow with constant uniform stretching field scales as 1/

√
Pe.

Hence a moderate reduction in Pe can result in a dramatic
reduction in transport rate, as reflected by the change in energy
spectra (Fig. 8) for the mixing case (e) when Pe is reduced
from 104 to 103—wave numbers n ≈ 2000–3000 cannot be
sustained at lower Pe, where the appearance of healing events
significantly lowers the dispersion rate. Conversely, for the
completely integrable cases [Figs. 4(a)–4(c)], the structure is
only moderately altered between Pe = 103 and Pe = 104; in
this case the Poincaré section contains large-scale structures
which are robust with regard to changes in Pe.

FIG. 8. Energy spectra for mixing protocol (e) at Pe = 104

(black) and Pe = 103 (gray).

By this reasoning, for all flows only low wave-number
structures are sustainable at low Pe, and the maximum dis-
persion rate occurs for regular Lagrangian dynamics (e.g., the
symmetry-locked tongues in Fig. 6); however, with increasing
Pe higher wave-number structures are now sustainable (e.g.,
movement of optima into higher j -fold symmetric tongues
in Fig. 6). In the diffusion-dominated regime, eigenmode
structure (and hence dispersion rate) is informed by the
integrable Poincaré section (as per Fig. 4). At greater values
of Pe, a transition arises where optimum dispersion can now
occur in the chaotic region of the flow parameter space [e.g.,
Figs. 4(d)–4(g)]. In this region, the scalar structure is no longer
dictated by the gross structure of the Poincaré section, but
rather is informed by the distribution of stretching histories,
as quantified by the finite-time Lyapunov exponent (FTLE)
ν(ξ,t) in Lagrangian coordinates ξ . Tang and Boozer [28]
show that the structure of the FTLE field governs scalar
dispersion, whereby the curvature of sharp ridges which
define Lagrangian coherent structures (LCSs) [29] in the
FTLE field act as barriers to transport, as well as the usual
nonhyperbolic structures such as KAM tori (where ν = 0).
Hence the structure and dissipation rate of all eigenmodes
are “programmed” by the FTLE distribution, as illustrated
in Fig. 9.

The Poincaré section in Fig. 9(a) shows several small
islands. Nested KAM surfaces are situated around a period
1 elliptic point at the 11 o’clock position, and at the 5 o’clock
position a group of tori around a central island form an isolated
mixing region which in the absence of diffusion does not
exchange material with the surrounding fluid. Three periodic
points also occur at the 11, 3, and 7 o’clock positions which
are also associated with KAM tori and surrounding cantori.
The FTLE distribution is shown in Fig. 9(b), where red and
purple correspond to regions of zero and high stretch rate,
respectively. There exists zero stretching within the integrable
region of the domain and negligible stretching with the sticky
stochastic layer surrounding KAM tori. Along with these
topologically distinct regular regions, the LCSs shown in
Fig. 9(c) form transport barriers which clearly inform all
eigenmodes as per Figs. 9(d)–9(h). Most notably, strong LCSs
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FIG. 9. (Color online) (a) Poincaré section, (b) finite-time Lyapunov exponent distribution, (c) barriers to diffusive transport, and (d)–(h)
dominant five eigenmodes at Pe = 104, τ = 8, � = 4π/5, and � = π/4.

correspond very well with large transverse scalar gradients in
the eigenmodes.

The governing role of LCSs also explains the convergence
of dispersion optima in Q at large Pe; with increasing Pe
the optimum moves in Q as smaller and smaller striations
are sustainable in the dominant eigenmode, until eventually
the optimum mixing case (in the absence of diffusion) is
sustainable. At this value of Pe (i.e., Pe = 104–105 in Fig. 6),
the dispersion optima are localized to optimum mixing cases
which are further refined with increasing Pe. As such, solution
of the dispersion rate distribution q over the flow parameter
space Q to high resolution for large (i.e., 104–105) Pe via
the composite spectral method represents a highly efficient
means of investigating both dispersion and advective mixing,
especially compared to the computational cost of resolving this
space to high resolution using, e.g., particle tracking methods.

V. CONCLUSIONS

Using the composite spectral method, we have calculated
asymptotic solutions of the ADE for a chaotic flow over the
global parameter space Q for a range of Peclét numbers Pe =
101–105 in terms of dominant strange eigenmodes ϕ0(x,t)
and their associated dispersion rate λ0. By composing the
transient chaotic flow from a single steady velocity field to fully
exploit the inherent symmetry of the RAM flow, this approach
imparts significant numerical efficiency in exploration of the
dispersion parameter space. The global structure of solutions
over the parameter space is rich, exhibiting a fractal structure
with spatial symmetry locking akin to Arnol’d tongues
for quasiperiodic frequency locking, and an order-disorder
transition in the eigenmodes around τ ∼ 1 as symmetry-locked
tongues interact and resonances compete.

We show that this tongue structure is governed by symmetry
locking of the underlying advection map, and derive the
distribution of the fraction of locked orbits. This distribution
agrees very well with the symmetry-locked structures for the

dispersion problem, and the associated strange eigenmodes
inherit modal symmetry from the advection map. At low values
of Pe, dispersion optima arise on symmetry-locked tongues in
the nonchaotic region of Q, and with increasing Pe ∼ 103

the dispersion optima transition to the chaotic region of Q,
and finally converge around Pe ∼ 105 to localized regions
which correspond to optimum mixing cases. This behavior
is explained by the persistence of the dominant eigenmode,
such that the optimum dispersion at any Pe is determined by
the maximum sustainable scalar gradient within the dominant
eigenmode. At low Pe, optimum eigenmodes are ordered and
governed by the corresponding modally symmetric Poincaré
section, whereas at higher Pe, chaotic flows generate sustain-
able eigenmodes with small-scale structure. In this regime,
Lagrangian coherent structures (LCSs) of the flow form
transport barriers which directly inform the structure of all
eigenmodes.

Convergence of dispersion optima at high Pe indicates
that the composite spectral method is an efficient means of
determining both optimal dispersion and mixing across the
entire flow parameter space, and this method can be applied
to non-Newtonian and granular flows with velocities deter-
mined either numerically or experimentally, or to transport in
turbulent flows if the temporal field is decomposed via, e.g.,
proper orthogonal decomposition. These results show that the
global structure of dispersion is governed by the maximum
sustainable scalar gradient within the dominant eigenmode,
which at low Pe is determined by the gross structure of
the integrable Poincaré section, and at high Pe Lagrangian
coherent structures of the flow field.

APPENDIX

To construct many solutions of (18) over Q we utilize
the composite spectral method [8] which expands φ and
L2 in terms of basis functions ωn(x) of the Laplacian
operator L1, truncating the expansion at N terms, i.e.,
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φ(x,t) ≈ ∑N−1
n=0 �n(t)ωn(x). Whilst there exist a number of

efficient methods [25,26] based upon the matrix mapping
method to an approximate solution of the ADE (18), this
method is exact up to the truncation N . The spectral repre-
sentation of the ADE via the composite spectral method is

d�

dt
=

(
H(t) − 1

Pe
D

)
· � = A(t) · �, (A1)

where � is the vector of expansion coefficients, H(t) is the
spectral advection operator v(χ ) · ∇, and D is the diagonal ma-
trix of L1 eigenvalues. Advection transfers variance between
wave numbers via H(t), reflecting the potential for chaotic
flow to create small-scale structure; countervailing diffusion
irreversibly removes variance via D at a rate that increases with
wave number. As such, the persistence of strange eigenmodes
in time-periodic flows arises from the balance of scalar energy
flux generated by these processes over one flow period.

Evolution of the scalar field in (A1) is given by the
fundamental matrix solution S(t), where �(t) = S(t)�(0), and
so the spectral representation of the strange eigenmodes is
given by the eigenvectors of S(t) over one flow period. The
composite spectral method seeks to exploit any symmetries
in the underlying flow field to significantly increase computa-
tional efficiency. Whilst in general symmetries are not present
in all flows, they are present in many model and engineered
flows, for instance, with periodic forcing (e.g., lid-driven cavity
[30]) or reorientation (e.g., ridged micromixers [31]) of a small

number of steady velocity fields to yield a large number of
transient flows which vary markedly with χ . As shown below,
such decomposition can lead to significant computational
advantages.

In the case of the RAM flow, symmetries are given by the
periodically reoriented flow field v(x,t ; χ ), which for fixed �

can be constructed from the steady flow v̄ [Fig. 1(b)]:

v(x,t ; χ ) = R�� t
τ
�[v̄(x)], (A2)

where Rθ is the rotation operator and �x� is the floor function
which returns the integer part of x. Hence the fundamental
matrix solution S(t ;Q) for the RAM flow at integer multiples
of τ then is a product of the solution matrix for each of the q

orientations in τ :

S(nτ ;Q) =
n∏

i=1

Ri� · exp(Āτ ) · R−1
i� = [R� · exp(Āτ )]n,

(A3)

where Rθ is the rotation operator matrix and Ā is calculated
from the steady flow v̄ via (A1). In a frame rotating with the
window opening, the RAM flow is periodic with τ , and so the
fundamental matrix solution in this frame is then S(τ ;Q) =
R� · exp(Āτ ), facilitating direct calculation of eigenmodes in
this frame for window offset angles � which are irrational
with respect to π . As many of the leading strange eigenmodes
as desired are then calculated from the dominant eigenvectors
of (A3) using the Arnoldi method.
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