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Disorder-enhanced exciton delocalization in an extended dendrimer
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The exciton dynamics in a disordered extended dendrimer is investigated numerically. Because a homogeneous
dendrimer exhibits few highly degenerate energy levels, a dynamical localization arises when the exciton
is initially located on the periphery. However, it is shown that the disorder lifts the degeneracy and favors
a delocalization-relocalization transition. Weak disorder enhances the delocalized nature of the exciton and
improves any quantum communication, whereas strong disorder prevents the exciton from propagating in
accordance with the well-known Anderson theory.

DOI: 10.1103/PhysRevE.90.022818 PACS number(s): 89.75.Fb, 03.67.Hk, 71.35.−y, 71.23.An

I. INTRODUCTION

A dendrimer is an engineered polymer whose hyper-
branched structure on a nanoscale looks like the fractal patterns
that occur in the plant kingdom [1–4]. It consists of several
dendritic branches, called dendrons, that emanate out from a
central core. Each dendron is formed by long molecular chains
organized in a self-similar fashion. It exhibits branching points
where the chain splits into two or three chains, increasing the
generation number, and its periphery is occupied by functional
terminal groups. Consequently, the dendrimer involves a series
of chemical shells whose flexibility, porosity, and surface
functionalization can be used to perform many applications [4].

In that context, it has been suggested that exciton-mediated
energy transport could be exploited to design artificial light-
harvesting complexes [5–23]. The main idea consists in the
functionalization of the terminal groups by chromophores that
favor light harvesting. As in natural photosynthetic antenna,
the absorbed light yields Frenkel excitons that propagate along
the dendrons. The excitons converge toward the central core,
where chemical fuel is finally produced [24,25].

However, besides practical interests, a dendrimer consti-
tutes a physical realization of a complex network. Studying the
exciton dynamics is thus of fundamental importance because
of its formal resemblance with a continuous time quantum
walk (CTQW) [26]. During the past few years, CTQW in
complex networks has become a very popular research topic
owing to its potential use in the development of algorithms
in quantum information processing [27–31]. Therefore, to
judge the efficiency of a CTQW, the fundamental question is
whether the exciton propagates coherently or localizes along
the network. Although this problem still remains open, recent
research suggests that the localized or delocalized nature of
the exciton depends on general features such as the network
topology, the initial implementation of the CTQW, and the
presence of disorder [26].

In an extended dendrimer, when the initial wave function is
either uniformly distributed over the periphery or localized on
the central core, quantum interferences arise because multiple
scatterings occur each time the exciton tunnels from one
generation to another. As a result, the exciton localizes when
the generation number exceeds a critical value, indicating
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that only small-size dendrimers allow efficient communication
between the core and the surface [32]. By contrast, in a compact
dendrimer, the exciton delocalizes coherently between the
periphery and the core, its dynamics being mapped onto that
of a linear chain [33]. Its behavior results from the interplay
between the dispersion and the occurrence of quantum recur-
rences, making possible quantum communication. However,
when the exciton is initially located on a single surface site,
its propagation is stopped and it remains confined over the
few sites that surround the excited site [33]. As shown by
Mulken et al. [34], this specific localization takes place in finite
networks with a few highly degenerate eigenenergies that yield
specific quantum interferences. Not restricted to dendrimers,
this effect was observed in star graphs [35] and Apollonian
networks [36].

As in solid-state physics, localization may also arise when
the network is perturbed by random defects. But the influence
of the disorder is quite subtle. Indeed, at first sight, in accor-
dance with the well-known concept of localization transition
due to Anderson [37,38], the disorder acts as a negative
ingredient. For instance, disordered site energies completely
stop the CTQW in linear chains [39], discrete rings [40], and
binary trees [41]. Similarly, the disorder prevents efficient
communication between the roots of two glued trees [42,43].
In other cases, the disorder behaves as a positive ingredient
that enhances the delocalized nature of the exciton. For
instance, in tree graphs similar to dendrimers, a weak disorder
yields extended states through fluctuation-enabled resonances
between states that initially may appear to be localized [44,45].
In a Watts-Strogatz network with small-world behavior [46],
the efficiency of a CTQW is enhanced when the rewiring
probability turns on [47]. Finally, when bonds are randomly
added to a star graph, the CTQW spreads more [48].

In the present paper, a simple model is thus introduced
for describing the interplay between the initial localization
of a CTQW and the presence of disorder inherent to any
realistic network. To proceed, we investigate the exciton
dynamics in a small-size extended dendrimer. Although the
exciton localizes when it is initially created on a surface
site of a homogeneous dendrimer, it is shown that the
disorder favors a delocalization-relocalization transition. A
weak disorder enhances the delocalized nature of the exciton
and improves the quantum communication, whereas a strong
disorder prevents the exciton from propagating and stops any
CTQW.
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FIG. 1. (Color online) Polyphenylacetylene extended dendrimer
D58. Each circle defines a phenyl ring, whereas a connecting line
stands for an acetylene group involving two single bonds and one
triple bond.

The paper is organized as follows. In Sec. II, the disordered
dendrimer is introduced and the exciton Hamiltonian is
defined. Then, the relevant observables required for charac-
terizing the dynamics are described. The problem is solved
numerically in Sec. III, where a detailed analysis of the
influence of the disorder is performed. The numerical results
are finally discussed in Sec. IV.

II. THEORETICAL BACKGROUND

A. Exciton Hamiltonian

The simple network we consider is the extended polypheny-
lacetylene dendrimer D58, displayed in Fig. 1. It is built
from linearly connected diphenylacetylene units and involves
N = 58 phenyl rings. The connectivity of the branching points
is equal to three so that D58 has a threefold symmetry around
its central core. It consists of three dendrons, d1, d2, and d3, and
it is formed by four generations. The first generation involves
nine phenyl rings organized into three shells that encircle
the central core. The second generation consists of 12 rings
distributed into two shells. The third and the fourth generations
involve a single shell built with 12 and 24 rings, respectively.

The phenyl rings define sites for a network model that
describes the dynamics of Frenkel excitons [5–12]. Each site
x = 1, . . . ,N is occupied by a two-level system that accounts
for the electronic properties of a phenyl ring. Let |x〉 denote
the first excited state of the xth two-level system and �ωx the
corresponding energy. Within the local basis {|x〉}, the exciton
dynamics is governed by a tight-binding Hamiltonian written
as [5–12] (in unit � = 1)

H =
∑

x

(
ωx |x〉〈x| +

∑
x ′

�xx ′ [|x〉〈x ′| + |x ′〉〈x|]
)

, (1)

where �xx ′ is the exciton hopping matrix. It reduces to a
constant � when x and x ′ correspond to nearest neighbor
phenyl rings connected by a diphenylacetylene leg; otherwise
it vanishes.

According to the standard Anderson model [37,38], the
disorder is introduced by assuming that the site energies {ωx}
are independent random variables uniformly distributed on the
interval [ω0 − W/2,ω0 + W/2]. The symbol 〈· · · 〉, denoting
an ensemble average over the disorder, ω0 is the mean value
〈ωx〉 of each site energy. Similarly, W measures the strength of
the disorder and it defines the corresponding variance 〈(ωx −
ω0)2〉 = W 2/12.

B. Quantum dynamics

In this work, we consider the particular situation in which
the exciton is initially localized on the surface site x0 = 45 (see
Fig. 1). Note that the case of an initial wave function uniformly
distributed over all the surface site has been investigated
recently [32]. The exciton dynamics is described by the
evolution operator U (t), whose behavior is governed by the
Schrödinger equation, as

iU̇xx0 (t) = ωxUxx0 (t) +
∑
x ′

�xx ′Ux ′x0 (t). (2)

The matrix element Uxx0 (t) defines the exciton wave function
on site x at time t provided that the exciton was located on
site x0 at t = 0. Equation (2) can be solved easily by diago-
nalizing the system Hamiltonian, Eq. (1), for each disordered
configuration. For a specific configuration, let |χk〉 denote the
kth eigenstate of H and ωk the corresponding eigenvalue, with
k = 1, . . . ,N . The evolution operator is expressed in terms of
the stationary wave functions χkx = 〈x|χk〉 as

Uxx0 (t) =
N∑

k=1

χkxχ
∗
kx0

e−iωkt . (3)

From the knowledge of both the evolution operator and the
eigenstates, different observables can be computed. First, we
focus our attention on the exciton density Px|x0 (t) = |Uxx0 (t)|2.
It represents the probability of observing the exciton on site x

at time t and provides key information on the way the energy
flows along the network. Then, in finite-size networks, Px|x0 (t)
does not converge to a stationary value because a unitary
dynamics arises [49]. Instead, it fluctuates around a long time
average distribution called the limiting probability P̄x|x0 . It is
defined as

P̄x|x0 =
N∑

k=1

N∑
k′=1

χkxχ
∗
k′xχk′x0χ

∗
kx0

δωk,ωk′ , (4)

where δωk,ωk′ = 1 if ωk = ωk′ and zero otherwise. The limiting
probability gives a good estimate of the time-dependent
probability and is a key quantity to prove the localized nature
of the exciton [33]. Finally, we study the time-dependent
participation ratio R(t) = 1/

∑N
x=1 |Uxx0 (t)|4 that represents

the number of sites visited by the exciton during the quantum
walk [47,50]. Equal to unity when the wave function is
localized on a single site, it reaches N when the exciton
becomes uniformly distributed over the dendrimer.
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The exciton density, the limiting probability, and the
time-dependent participation ratio are the central objects of
the present study. They give information about the way the
excitonic wave function propagates along the network after
its initial implementation. Their knowledge allows us to
characterize the influence of the disorder and thus to know
whether the exciton localizes or delocalizes, as illustrated in
the next section.

III. NUMERICAL RESULTS

In Figs. 2–4, we first present numercial results ob-
tained for three specific energy landscapes drawn by ran-
domly distributed site energies for W = 0.0 (ordered den-
drimer), W = 0.5 (weakly disordered dendrimer), and W = 5.0
(strongly disordered dendrimer), respectively.

Figure 2 shows the time evolution of the probability Pd (t)
to observe the exciton on the dendron d = d1, d2, and d3.
When W = 0.0 [Fig. 2(a)], the exciton remains localized on
the excited dendron. The probability Pd1 (t) exhibits small-
amplitude high-frequency fluctuations around a limiting value
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FIG. 2. (Color online) Time evolution of the probability Pd (t) to
observe the exciton on the dendron d = d1 (black curve), d = d2 (red
[dark gray] curve), and d = d3 (blue [light gray] curve) for different
disorder strengths: (a) W = 0.0, (b) W = 0.5�, and (c) W = 5.0�.

P̄d1 = 0.9428. The probabilities to observe the exciton on d2

and d3 are identical due to the threefold symmetry. They
slightly oscillate around a negligible limiting value equal
to 0.02561. In other words, after the initial excitation of
the periphery of d1, 94.28% of the exciton population stays
confined on d1 and only 5.22% of the population reaches
the two other dendrons, reflecting an inefficient quantum
communication. Note that the population of the central core
remains very small during the simulation (not drawn), its
limiting value being approximately equal to 0.48%. This result
contrasts with previous calculations, which revealed that 84%
of the exciton population can reach the central core when
the initial wave function is uniformly distributed over the
periphery of the dendrimer [32].

In a weakly disordered dendrimer (W = 0.5�), a different
behavior occurs, as displayed in Fig. 2(b) for a particular
configuration of the disorder. Indeed, Pd1 (t) shows small-
amplitude oscillations around a slowly varying function.
This function scales as a periodic function whose period is
approximately equal to 400�−1. Consequently, after half a
period, Pd1 (t) deviates significantly from unity. It decreases
to 0.5539 for t = 197.80�−1, indicating that about half of
the density left the excited dendron. In fact, this particular
configuration yields a coherent transfer between d1 and d3. The
probability Pd3 (t) behaves as a sine function whose maximum
value, which occurs at t = 197.80�−1, is equal to 0.3997. In
that case, the population of d2 remains negligible, its maximum
value being equal to 0.0370. Note that such a behavior survives
in the intermediate disorder regime. For instance, for the
same disordered configuration but with W = 2.0�, a coherent
exciton transfer still arises between d1 and d3, although
the role played by d2 is no longer negligible (not drawn).
However, in a strongly disordered dendrimer (W = 5.0�),
the localized nature of the exciton recurs [Fig. 2(c)]. The
probability Pd1 (t) shows small-amplitude fluctuations around
a limiting value close to unity. Approximately 95.31% of the
exciton population remains confined on the excited dendron
whereas the population of d2 and d3 reaches 1.81% and 2.70%,
respectively.

The behavior of the time-dependent participation ratio R(t)
is illustrated in Fig. 3. When W = 0.0, as time elapses, R(t)
first increases from unity. It reaches 6.10 for t = 3.0�−1

[Fig. 3(a)]. Then, it exhibits high-frequency small-amplitude
oscillations around a limiting value equal to 4.15, indicat-
ing that the exciton localizes over few sites that surround
the excited site. Note that the maximum value of R(t) is
equal to 6.57 and it occurs at t = 89.6�−1. As shown in
Fig. 3(b) for W = 0.5�, a different behavior occurs for a
weakly disordered configuration. Indeed, R(t) shows high-
frequency small-amplitude oscillations around a slowly vary-
ing sinelike function. The participation ratio is now able to take
larger values. It reaches 23.00 for t = 226.0�−1, indicating
that the exciton can visit almost half of the sites of the
dendrimer. Note that we have verified that such a behavior
remains for a disorder strength ranging between 0.5� and
2.5�. For instance, for W = 2.0�, R(t) reaches 25.12 for
t = 652.8�−1 (not drawn). Finally, in the strong disorder limit
(W = 5.0�), R(t) behaves as in a homogeneous dendrimer. It
fluctuates around a limiting value equal to 4.29 and it reaches
a maximum value equal to 8.12 for t = 420.2�−1.
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FIG. 3. (Color online) Time evolution of the time dependent
participation ratio R(t) for (a) W = 0.0 and for (b) W = 0.5� (red
curve) and W = 5.0� (blue curve).

The limiting probability is displayed in Fig. 4 for different
W values. When W = 0.0 [Fig. 4(a)], the distribution exhibits
peaks that reveal that the exciton is mainly localized over a few
sites that surround the excited site. The distribution is rather
large on the sites 45 and 46. Then, it is relatively important
on sites 27, 28, 43, 44 and, to a lesser extent, 19 and 13.
These eight sites define the so-called excited region where the
probability of observing the exciton is equal to 83.24%.

In the weak disorder regime (W = 0.5�), for a particular
configuration of the disorder, the probability to observe the
exciton in the excited region represents no more than 58.88%.
In that case, the limiting distribution broadens and additional
peaks occur [Fig. 4(b)]. These peaks account for two different
features. First, the exciton is now able to explore a larger
region inside the excited dendron. In particular, it can reach
the surface sites 47, 48, 49, and 50, the limiting probability
of occupying these sites being equal to 9.20%. Then, and this
is what is noteworthy, the probability to observe the exciton
on the other dendrons is no longer negligible. For instance,
the probability that the exciton occupies the periphery of d3

is equal to 11.36%. Similarly, specific peak reveals that the
exciton can reach the branching points 10, 21, and 22 with
higher probability. Finally, in the strong disorder regime (W =
5.0�), the localized nature of the limiting distribution recurs
[Fig. 4(c)]. As in a homogeneous dendrimer, the probability of
observing the exciton in the excited region reaches 87%. Note
that the exciton mainly localizes on three sites, namely sites
45, 46, and 28.

The previous results were obtained for a particular energy
landscape drawn by specific randomly distributed site energies.
By carrying out various simulations, we clearly observed that
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FIG. 4. Limiting probability P̄x|x0 for (a) W = 0.0, (b) W =
0.5�, and (c) W = 5.0�.

most weakly disordered configurations enhance the exciton
delocalization, whereas most strongly disordered landscapes
favor relocalization. Nevertheless, for a fixed W value,
different configurations may give rise to different dynamical
behaviors. Therefore, to determine the general effect produced
by the random defects, an ensemble average over the disorder
is now realized.

Figure 5 shows the W dependence of the average limiting
probability 〈P̄d1〉 that the exciton occupies the excited dendron.
As observed previously, 〈P̄d1〉 = 94.28% when W = 0.0,
indicating that the exciton remains confined on d1 and localizes
on the excited region. However, when the disorder switches
on, different regimes take place. For a very weak disorder,
a delocalization process suddenly arises, giving rise to a
discontinuity in the curve 〈P̄d1〉 vs W . The probability 〈P̄d1〉
decreases from 94.28% for W = 0.0 to 82.97% for W =
0.001�. In the same time, 〈P̄d2〉 and 〈P̄d3〉 suddenly increase
from 2.61% for W = 0.0 to 8.29% for W = 0.001�. As W

increases again, the exciton delocalization is enhanced so that
〈P̄d1〉 slightly decreases, whereas 〈P̄d2〉 and 〈P̄d3〉 increase.
Such a behavior occurs provided that W remains smaller than
1.1�. Then, when W ranges between 1.1� and 1.6�, 〈P̄d1〉
becomes almost independent of the strength of the disorder.
It reaches a minimum value equal to 76.50%. Similarly, 〈P̄d2〉
and 〈P̄d3〉 reach a plateau whose value is approximately equal
to 11.33%. When W exceeds 1.6�, a relocalization process
takes place so that 〈P̄d2〉 and 〈P̄d3〉 decrease to the detriment
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FIG. 5. (Color online) W dependence of the average limiting
probability 〈P̄d1 〉 that the exciton occupies d1. The average was carried
out by considering 104 disordered configurations. The inset shows the
average limiting probability of observing the exciton on d2 and d3.
Dashed red (gray) curves correspond to the analytical law discussed
in the text [see Eq. (5)].

of 〈P̄d1〉 that increases. For W ≈ 3.0�, one recovers the
average limiting probabilities obtained for W = 0+, that is,
for a very weak disorder. Then, when W ≈ 5.5�, the average
limiting probabilities behave as in a homogeneous dendrimer.
Finally, for a strong disorder (W > 5.5�), the exciton strongly
localizes in the close neighborhood of the excited site. For
instance, for W = 10.0�, 〈P̄d1〉 = 99.31%, with 83.56% of
the population being localized on three sites: x = 45, 46,
and 28.

Provided that W > 0, the previous behavior is quite well
captured by the following law (see dashed curves in Fig. 5):〈

P̄d1

〉 ≈ 1 − a(W + b)2e−W/W ∗
(5)

with a ≈ 0.09, b ≈ 1.33, and W ∗ ≈ 1.27. Because the limiting
probability that the exciton occupies the central core remains
very small whatever the value of W (not drawn), one obtains
〈P̄d2〉 = 〈P̄d3〉 ≈ (1 − 〈P̄d1〉)/2. Note that we have verified that
the limiting population of the central core is a continuous
function of W . Equal to 0.48% for W = 0.0, it first increases
with W and reaches a maximum value equal to 0.97% for
W ≈ 1.4�. Then, when W increases again, it decreases and
tends to zero.

To illustrate the way the disorder enhances the propagation
of the exciton, Fig. 6 displays the W dependence of the
average limiting probability 〈P̄s3〉 of observing the exciton
on the surface of the dendron d3. In a homogeneous dendrimer
(W = 0.0), 〈P̄s3〉 = 0.48%, indicating that it is unlikely that
the exciton reaches the surface of d3 from the excited site. By
contrast, when W switches on, a discontinuity occurs in the
curve so that 〈P̄s3〉 suddenly increases to 5.02% for W = 0.1�.
Then, when W increases again, 〈P̄s3〉 increases until it reaches
a maximum value equal to 5.73% for W ≈ �. At this step,
one clearly sees the key role played by the disorder. The
limiting probability of observing the exciton on the surface
of d3 is multiplied by more than one order of magnitude when

W/
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FIG. 6. (Color online) W dependence of the average limiting
probability 〈P̄s3 〉 of observing the exciton on the surface of the
dendron d3. The average was carried out by considering 104

disordered configurations. The dashed red (gray) curve corresponds
to the analytical law discussed in the text.

compared with what happens in a homogeneous dendrimer.
Finally, in the strong disorder limit, 〈P̄s3〉 becomes a decreasing
function of W . It behaves as in a homogeneous dendrimer
when W ≈ 6.6� and it finally tends to zero in the very
strongly disordered regime. Note that, for W > 0, such a
behavior is quite well captured by the law 〈P̄s3〉 ≈ a(W +
b)2 exp(−W/W ∗), with a ≈ 0.03, b ≈ 1.26, and W ∗ ≈ 1.06
(see dashed curve in Fig. 6).

Finally, Fig. 7 displays the W dependence of Pmax that
represents the average of the maximum value of the prob-
ability P56|45(t) to observe the exciton on site x = 56 (see
Fig. 1). Note that the simulation was carried out over a time
interval fixed to 5 × 103�−1. When W = 0.0, Pmax = 0.58%,
indicating that the communication between two ends of a
homogeneous dendrimer is very inefficient. However, when
W switches on, Pmax suddenly increases so that a better
exciton propagation takes place. As observed in Figs. 5 and 6,
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FIG. 7. (Color online) W dependence of the average of the
maximum value of the probability P56|45(t) to observe the exciton
on site x = 56. The simulation was carried out using 5 × 104 time
steps over a time interval fixed to 5 × 103�−1. The average was
realized by considering 5000 disordered configurations. The dashed
red curve corresponds to the analytical law discussed in the text.
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a discontinuity occurs in the curve Pmax vs W . Therefore,
when W = 0.01�, Pmax is multiplied by a factor equal to
4.3 and it reaches 2.48%. Then, when W increases again,
Pmax increases. When W ranges between � and 1.4�, Pmax

reaches a maximum plateau whose value is approximately
equal to 3.60%. In the strongly disordered regime, Pmax

becomes a decaying function of W . When W ≈ 4.7�, one
recovers what happens in a homogeneous dendrimer. Then,
in the very strongly disordered regime, Pmax converges to
zero by exhibiting an exponential tail. Once again, when
W > 0, this behavior is quite well represented by the law
Pmax ≈ a(W + b)2 exp(−W/W ∗), with a ≈ 0.03, b ≈ 0.79,
and W ∗ ≈ 0.91 (see dashed curve in Fig. 7).

IV. DISCUSSION AND CONCLUSION

The numerical results clearly show that the exciton dy-
namics exhibits different facets depending on the strength
of the disorder. In a homogeneous dendrimer, a dynamical
localization arises when the exciton is initially located on a
surface site. Similarly to what happens in a compact dendrimer
[33], the exciton localizes over the few sites that define the
excited region which surrounds the excited site. Consequently,
the efficiency of any quantum communication protocol linking
two ends of the dendrimer will be rather poor, with the
corresponding CTQW being confined in the neighborhood of
its initial implementation. When the dendrimer is perturbed
by random site energies, a threshold value W ∗ ≈ 1.25� of the
strength of the disorder discriminates between two regimes.
Surprisingly, a weak disorder (W < W ∗) hinders the local-
ization mechanism that naturally occurs in a homogeneous
network. It enhances the propagation of the exciton so that
the particle becomes able to explore a larger region around
the excited site. It thus improves the quantum communication
and facilitates the spreading of a CTQW. By contrast, in the
strong disorder regime (W > W ∗), the dynamical localization
recurs in accordance with what is expected from the Anderson
theory. The exciton becomes trapped over a few sites around
the excited site, the size of the excited region decreasing with
the strength of the disorder.

To interpret these features, let us mention that the diversity
of the dynamics mainly results from the sensitivity of the
exciton eigenstates to the energy landscape drawn by the
random site energies. Indeed, in accordance with the laws of
quantum mechanics, the dynamics is governed by the evolution
operator Uxx0 (t) that defines the probability amplitude that
the exciton tunnels from x0 to x during time t [see Eq. (3)].
This amplitude is the sum over the elementary probability
amplitudes associated with the different paths that the exciton
can follow to tunnel. A given path defines a transition through
a stationary state |χk〉. It involves the weight of the localized
states |x〉 and |x0〉 in the eigenstate |χk〉 and depends on
the eigenenergy ωk through a phase factor. Consequently,
the way any observable evolves in time will result from the
quantum interferences between the paths followed by the
exciton. Depending on whether the dendrimer is homogeneous
or disordered, different eigenstates will produce specific
interference patterns so that various regimes will arise ranging
from a localized regime to a delocalized regime.

In a homogeneous dendrimer, the Hamiltonian H exhibits
two kinds of eigenstates. First, eight nondegenerate energy
levels characterize eigenstates that are totally symmetric with
respect to the threefold symmetry around the central core. In
such a state, the exciton wave function is uniformly distributed
over each shell that forms the dendrimer. As shown previously,
these states can be mapped onto those of a linear chain
involving eight sites, each site referring to a particular shell
of the dendrimer [32]. Then, the remaining 50 eigenstates are
grouped into 13 degenerate energy levels. The degeneracy of
most of these levels is equal to two or three. Nevertheless, three
highly degenerate energy levels stand out, the corresponding
energies being equal to ω0, ω0 + √

2�, and ω0 − √
2�. The

degeneracy of the level with energy ω0 is equal to 14, whereas
the degeneracy of the levels with energy ω0 ± √

2� reduces
to six.

In that context, the behavior of the exciton depends on the
way the initial state decomposes on the eigenstates. When the
initial wave function is uniformly distributed over a particular
shell, only the totally symmetric eigenstates are excited. The
dynamics can be mapped onto that of a finite-size chain so
that the excitonic wave delocalizes from shell to shell. Its
behavior is thus governed by reflection effects, by lattice
dispersion, and by the occurrence of quantum recurrences
[32]. A different behavior occurs when the exciton is initially
localized on a surface site. In that case, although the initial state
still decomposes on the eight totally symmetric eigenstates,
we have verified that it mainly involves eigenstates that
belong to the three highly degenerate energy levels. Such
a decomposition selects particular paths that the exciton
follows to propagate. Therefore, it turns out that specific
quantum interferences between these particular paths give
rise to the localization of the exciton, as observed in the
previous section. The propagation is stopped and the exciton
remains confined over the few sites that surround the excited
site. This specific localization is not restricted to extended
dendrimers. As shown by Mulken and coworkers [34] using
general arguments, it occurs in complex networks whose
density of states contains few highly degenerate eigenvalues.
The degeneracies of the eigenvalues dominate the temporal
behavior so that a quantum walk has a large probability of
staying where it was implemented, resulting in a low transport
efficiency.

For understanding the influence of the disorder, a systematic
analysis of the excitonic eigenstates was performed for
different disordered configurations. These studies allowed us
to highlight general trends and to propose a simple scenario
for explaining our results, especially in the weakly disordered
regime. In that regime, the dynamics mainly results from the
modification of the highly degenerate eigenstates responsible
for the dynamical localization in the homogeneous case.
Indeed, weak disorder only slightly modifies the nondegen-
erate totally symmetric states whose extended nature remains
owing to the finite size of the dendrimer. By contrast, it
strongly affects the degenerate states whose modification
cannot be taken into account using perturbation theory, even
if the disorder is extremely weak. In that context, it turns
out that the weak disorder breaks the threefold symmetry
around the central core. It raises the degeneracy of the three
highly degenerate energy levels, resulting in the occurrence

022818-6



DISORDER-ENHANCED EXCITON DELOCALIZATION IN . . . PHYSICAL REVIEW E 90, 022818 (2014)

of states a priori localized on various parts of the dendrimer.
However, two main situations occur depending on the energy
landscape drawn by the random defects. On the one hand,
for many disordered configurations, these states are explicitly
localized. As a consequence, when the exciton is initially
located on a surface site, its state preferentially decomposes
on a localized state so that, as time elapses, the exciton stays in
the neighborhood of the excited site. The spectral localization
of the initially highly degenerate states thus favors a dynamical
localization, as in the homogeneous case. On the other hand,
for specific configurations, quasiresonances occur between
particular site energies. Therefore, states initially localized
on different parts of the dendrimer hybridize, resulting in
the formation of new eigenstates whose extended nature is
more pronounced. As a consequence, when the exciton is
initially located on a surface site, its state now decomposes
on a more extended state so that it becomes able to explore a
larger region of the dendrimer. When an average is performed
over the disorder, both kinds of configurations contribute to the
dynamics, resulting in a global enhancement of the delocalized
nature of the exciton when compared with what happens in a
homogeneous network.

When the strength of the disorder increases, a
delocalization-relocalization transition takes place. This tran-
sition results from the interplay between different mechanisms
and it cannot be explained in a simple manner. For instance,
we have observed that when the initial state of the exciton
decomposes on an explicitly localized state in the weakly
disorder regime, the transition originates in disorder-induced
resonances. When W increases, the energy of the localized
state shifts so that resonances occur with either almost totally
symmetric extended states or states localized on other regions
of the dendrimer. When one approaches the resonance, the
hybridization gives rise to more extended states so that
the delocalized nature of the exciton is enhanced when W

increases from zero. Nevertheless, when increasing W again,
that is when W becomes larger than a threshold value, one
deviates from the resonance so that the localized nature of
the exciton recurs. But of course, this mechanism alone
does provide a clear understanding of the whole transition.
Nevertheless, one thing is certain: In the strong disorder limit,
the well-known Anderson localization takes place because all
the exciton eigenstates clearly localize.

To conclude, let us mention that the transition observed
in the present study is quite similar to the so-called

inverse Anderson transition observed for noninteracting par-
ticles moving in lattices whose dynamics is governed by flat-
bands [51–53]. In a flatband, localized states dominate the dy-
namics in the weakly disordered regime so that the localization
is not a consequence of the strength of the disorder but of the
flatband (vanishing group velocity effect). However, when the
strength of the disorder reaches a critical value, the localized
states melt into extended states, resulting in a localization-
delocalization transition. Note that in our case, this transition
arises suddenly once the disorder turns on, that is, for a
vanishing critical value of the strength of the disorder. Then,
for stronger values of the disorder, an Anderson delocalization-
relocalization transition appears, as observed in the present
study.

V. CONCLUSION

Based on the well-known Anderson model, the dynamics
of an exciton in a disordered extended dendrimer was studied
numerically. The properties of the exciton were described
using a standard tight-binding model in which the site energies
are random variables. The corresponding time-dependent
Schrödinger equation was solved numerically assuming that
the exciton is initially located on a surface site of the
dendrimer.

In a homogeneous network, it was shown that the dynam-
ics is controlled by three highly degenerate energy levels.
Because of the degeneracy, specific quantum interferences
arise between the different paths followed by the exciton to
tunnel. These interferences favor a dynamical localization
so that the exciton remains confined over the few sites that
surround the excited site. When the dendrimer is perturbed
by random defects, we observed two regimes, depending on
the strength of the disorder. In the weakly disordered regime,
symmetry breaking raises the degeneracy of the relevant states.
The disorder enhances the propagation of the exciton, which
becomes able to explore a larger region around the excited
site. These results corroborate the recent idea that, in some
cases, weak disorder improves the quantum communication
and facilitates the spreading of a quantum walk. Unfortunately,
such an effect does not survive in the strongly disordered
regime. In that case, the spectral localization of the eigenstates
favors the recurrence of the dynamical localization, as expected
from Anderson theory.
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