
PHYSICAL REVIEW E 90, 022808 (2014)

Dynamical immunization strategy for seasonal epidemics
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The topic of finding an effective strategy to halt virus in a complex network is of current interest. We propose
an immunization strategy for seasonal epidemics that occur periodically. Based on the local information of the
infection status from the previous epidemic season, the selection of vaccinated nodes is optimized gradually.
The evolution of vaccinated nodes during iterations demonstrates that the immunization tends to locate in both
global hubs and local hubs. We analyze the epidemic prevalence using a heterogeneous mean-field method, and
we present numerical simulations of our model. This immunization performs better than some other previously
known strategies. Our work highlights an alternative direction in immunization for seasonal epidemics.
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I. INTRODUCTION

Epidemic spreading in complex networks has received
considerable attention for the past two decades [1–8]. The
immunization strategy to halt virus is an important topic
in epidemic spreading research, and most of the previous
literature in this field has focused on the selection of vaccinated
nodes before the outbreak of an epidemic [9–19]. Numerous
immunization strategies have been proposed, such as uniform
immunization (nodes are vaccinated randomly) [9,14] or
targeted immunization (most highly connected nodes are vac-
cinated) [10,14]. Targeted immunization is a highly effective
vaccination strategy [8], but it requires global information
about the network, thus making it impractical in real cases.
Cohen et al. proposed acquaintance immunization strategy
[11], based on the immunization of a small fraction of random
neighbors of randomly selected nodes. Its principle can be
described as a higher-degree node that is easier to choose from
a random link. Without specific knowledge of the network,
this method is efficient for networks of any broad-degree
distribution, and it allows for a relatively low threshold of
immunization. In addition, some other novel immunization
strategies have been proposed in the past decade [16–19], and
they have applications in different cases.

However, many infectious diseases outbreak seasonally,
which is not fully discussed in the previous literature as far
as we know [20,21]. The periodic change of temperature,
humidity profiles, or even the succession of school terms
and holidays can lead to periodic phenomena of epidemics.
Previous data have shown that outbreaks in rubella, whooping
cough, and influenza reveal obvious seasonality [22]. A simple
explanation of epidemics presenting seasonal phenomena is as
follows: After spreading extensively, a virus dies out because
infected individuals have recovered and produced antibodies.
But in the next epidemic season, the mutated virus propagates
again, rendering a new outbreak of the epidemic. This process
then occurs repeatedly.
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Herein, we propose an immunization strategy for seasonal
epidemics to give a better description of this phenomenon.
We merely adopt uniform immunization on the network at
first. Before the start of the next epidemic season, we adjust
the vaccinated nodes according to the infection status of
their neighbors in the previous epidemic season. This process
does not require global information of the network, and it
achieves better performance than uniform immunization and
acquaintance immunization under the same circumstances.

In this paper, we adopt the susceptible-infected-recovered
(SIR) model [22–24] as the epidemic spreading model, and
we analyze the epidemic prevalence using a heterogeneous
mean-field method [25]. We introduce some parameters to
investigate the evolution of vaccinated nodes during iterations,
which is the main focus of the paper, and we find that some
nodes in the network will be selected multiple times, although
not always continuously. As epidemic season continues, the
selection of vaccinated individuals tends to be stable. Those
nodes include both global hubs, who possess most connections,
and local hubs, who are influential in their communities. In
addition, we also present some numerical results of our strategy
on certain real social networks. The proposed strategy can
be applied efficiently in real cases, and it highlights a new
direction in immunization of seasonal epidemics.

The strategy will be introduced in detail in Sec. II. The
analytical results and numerical simulations are presented in
Secs. III and IV, respectively. Finally, conclusions are drawn
in Sec. V, and relevant prospects are discussed.

II. DYNAMICAL IMMUNIZATION STRATEGY

We consider a connected and undirected network with
N nodes. In every epidemic season, there are two stages:
the vaccinating process and the epidemic spreading process.
During the vaccinating process, we select some nodes using
a certain strategy and we vaccinate them. Vaccinated nodes
cannot be infected nor can they spread epidemic to others.
After vaccinating, the epidemic begins to spread, following
the dynamics of the SIR model. Each unvaccinated node in the
network can be in one of the three states (susceptible, infected,
or recovered). Susceptible nodes are still healthy. They catch
the disease via direct contact with infected nodes at a rate β.
Infected nodes will recover and become recovered nodes with
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FIG. 1. An illustration of our dynamical immunization strategy.
First in (a), we randomly assign node 1 as the vaccinated node.
After the epidemic spreading process, the system state is shown
in (b). White nodes stand for susceptible nodes while black nodes
denote recovered nodes. We calculate the W value of node 1 and its
neighbors, i.e., node 2 and node 3. Since W (1) = 2, W (2) = 4, and
W (3) = 2, node 2 replaces node 1 as the new vaccinated node in the
next epidemic season, as shown in (c).

a rate μ. Without loss of generality, we set μ = 1 henceforth.
Initially, we set an unvaccinated node as the epidemic seed,
and other unvaccinated nodes are susceptible nodes. We focus
on the proportion of recovered nodes, r∞, when the epidemic
process dies out in one epidemic season, i.e., when no infected
nodes are left in the system.

We denote the vaccinated proportion by v. In the first
epidemic season, vN vaccinated nodes are selected randomly.
That is to say, we perform a uniform immunization strategy on
the network initially. We define W (u) as the number of infected
nodes among the set �(u) ∪ {u}, where �(u) denotes the set
of u’s neighbors. In the second epidemic season, we adjust the
vaccinated nodes according to the epidemic spreading result
in the first season. For every vaccinated node u in epidemic
season S − 1, we calculate W (u) and W (v) for all v ∈ �(u) in
epidemic season S. Of all these nodes, we vaccinate the node
who has the maximal value of W since the W value implies the
epidemic status of the node. Thus, the new vaccinated node
derived from node u is arg maxy∈�(u)∪{u} W (y). An illustration
of our strategy is shown in Fig. 1.

Note that if two different vaccinated nodes (u and v) induce
the same new vaccinated node w in the next epidemic season,
we then select one node at random, say u, and set the new
vaccinated node that u induces as arg maxy∈�(u)∪{u}\v W (y).
However, if the new node that node u induces is already
immunized, we then seek the node who has the second largest
W value (in u and u’s neighbors), and this procedure can be
repeated. Of all these cases, if no appropriate neighbor can be
chosen, the vaccinated node remains unchanged.

After the selection of vaccinated nodes, the epidemic
spreads again. The epidemic spreading process in this season
is independent of the previous results, i.e., the epidemic seed
is randomly selected from unvaccinated nodes, and other
unvaccinated nodes are all susceptible. After the epidemic, we
then select new vaccinated nodes according to the epidemic
results. The vaccinating process and the epidemic spreading
process occur in cycles.

In every vaccinating process, we calculate the W value
for 〈k〉vN nodes on average. Calculating the W value for
every node requires its 〈k〉 neighbors’ information. Therefore,
the complexity of our algorithm is O(N ), meaning that this
strategy can be applied to networks with large size.

What we need to point out is that the time scale for seasonal
epidemics between outbreaks is of year order, and the network
topology can be changed to a certain extent. Our model ignores
this aspect and assumes the structure is static.

Obviously, we do not need the information from the entire
network structure during the immunization process. Therefore,
it is a local strategy.

III. THEORETICAL ANALYSIS

In this section, we establish a simple theoretical framework
of our strategy. Here we adopt a heterogeneous mean-field
method [25] in which nodes are characterized by their degrees.
The first and second moments of the network are 〈k〉 =∑

kP (k) and 〈k2〉 = ∑
k2P (k), where P (k) is the degree

distribution of the network. The proportion of susceptible,
infected, and recovered nodes at time t is s(t), i(t), and r(t),
respectively. Due to the immunization property, the proportion
of vaccinated nodes remains unchanged. Thus, we have
s(t) + i(t) + r(t) = 1 − v. Let v

(S)
k represent the probability

that a node with degree k is chosen to be vaccinated at season
S. Naturally, it holds that

∑
P (k)v(S)

k = v.
At season S = 1, we apply uniform immunization, i.e.,

v
(1)
k ≡ v. The introduction of a density v of immune individuals

chosen at random is equivalent to a simple rescaling of the
epidemic spreading rate as β to β(1 − v), i.e., the rate at
which new infected nodes appear is decreased by a factor
proportional to the probability that they are not immunized.
We denote the density of susceptible, infected, and recovered
nodes in the degree class k at epidemic season S by s

(S)
k , i

(S)
k ,

and r
(S)
k , respectively. The SIR model evolution reads [26]

di
(1)
k

dt
= β(1 − v)ks

(1)
k �(1) − i

(1)
k ,

ds
(1)
k

dt
= −β(1 − v)ks

(1)
k �(1), (1)

dr
(1)
k

dt
= i

(1)
k .

The initial conditions are i
(1)
k (0) = i0, r

(1)
k (0) = 0, and

s
(1)
k (0) = 1 − i0 for any k. In the equation above, �(1) stands for

the average density of infected individuals at vertices pointed
by any given edge at S = 1. Assuming the network structure
is uncorrelated [27], we have

�(1) =
∑

k(k − 1)P (k)i(1)
k (t)

〈k〉 . (2)

Using the method presented in Ref. [28], we can obtain that
the total epidemic prevalence in season S = 1 is [26]

r (1)(∞) =
∑

k

P (k)(1 − e−β(1−v)kφ∞ ), (3)
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where φ∞ satisfies

φ∞ = 1 − 1

〈k〉 − 1

〈k〉
∑

k

(k − 1)P (k)e−β(1−v)kφ∞ . (4)

Moreover, the immunization threshold (for uniform
immunization) is [26]

vc = 1 − 〈k〉
β(〈k2〉 − 〈k〉) . (5)

Using the numerical method, we can calculate r
(1)
k by

Eq. (1). Since we have assumed that the network is uncor-
related, the probability that an individual has a neighbor with
degree k is η(k) ≡ kP (k)/

∑
kP (k). Therefore, the probability

that a node with degree k has l recovered neighbors is
(kl)(p

(1))l[1 − (p(1))](k−l), where p(1) = ∑km

i=1 η(i)r (1)
i , and km

is the maximal degree of the network. Due to the property
of binomial distribution, the expectation of the number of
recovered neighbors that a node with degree k has is kp(1),
and the probability that the node itself is a recovered node is
r

(1)
k . Thus we have W

(1)
k = kp(1) + r

(1)
k , where W

(S)
k is the W

value of the node with degree k in season S. For convenience,
we assume that the probability that a node is chosen to be the
new vaccinated node is proportional to its W value. Therefore,
we derive that the probability that a node with degree k is
immunized in the epidemic season S = 2 is

v
(2)
k =

(
kp(1) + r

(1)
k

)
v

∑(
kp(1) + r

(1)
k

)
P (k)

. (6)

Then, the dynamical equation of epidemic spreading in
season S = 2 is

di
(2)
k

dt
= β

(
1 − v

(2)
k

)
ks

(2)
k �(2) − i

(2)
k ,

ds
(2)
k

dt
= −β

(
1 − v

(2)
k

)
ks

(2)
k �(2), (7)

dr
(2)
k

dt
= i

(2)
k .

Similarly, we can obtain r
(2)
k for k = 1,2, . . . ,km and r

(2)
∞ =∑

k P (k)r (2)
k . The iterative process can be applied recursively,

and a series of r
(S)
∞ (S = 2,3, . . . ) can be obtained by Eq. (8):

di
(S)
k

dt
= β

(
1 − v

(S)
k

)
ks

(S)
k �(S) − i

(S)
k ,

ds
(S)
k

dt
= −β

(
1 − v

(S)
k

)
ks

(S)
k �(S), (8)

dr
(S)
k

dt
= i

(S)
k ,

where v
(S)
k satisfies

v
(S)
k =

(
kp(S−1) + r

(S−1)
k

)
v

∑(
kp(S−1) + r

(S−1)
k

)
P (k)

, (9)

and p(S−1) = ∑km

i=1 η(i)r (S−1)
i .

We adopt some Barabási-Albert (BA) networks [29] to
verify our results. The BA network is a classic heterogeneous
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FIG. 2. (Color online) The comparison between simulation val-
ues and theoretical values for r (S)

∞ . Results of the BA network with
N = 100, 500, and 1000 are shown in (a), (b), and (c), respectively.
The black circles denote the simulation value while the blue dashed
line denotes the theoretical value. Inset of (a): The relationship of
r

(S)
k and time step t . The left figure is for S = 1 while the right figure

is for S = 5. Top curves (red squares) stand for k = 20, and bottom
curves (green triangles) stand for k = 2. Epidemic parameters are
β = 0.1 and v = 0.1. Each simulation point is the average value of
102 experiments.

network topology, and it has highly skewed degree distribution.
Because it is not a trivial process to solve Eq. (8) in extremely
large networks, here we select networks with N = 100, 500,
and 1000 [shown in Figs. 2(a), 2(b), and 2(c), respectively].

In the main plot of Fig. 2(a), we compare the simulation
value with the theoretical value. The numerical results are
relatively consistent with the simulation. The insets in Fig. 2(a)
present the relationship between r

(S)
k (t) and the time step t .

The left figure is for S = 1, while the right figure is for S =
5. The top curves (red squares) stand for k = 20, and the
bottom curves (green triangles) stand for k = 2. Compared
with uniform immunization (S = 1), our method significantly
decreases the epidemic prevalence for higher-degree nodes.
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It can be observed that there is a discrepancy between the
theoretical values and simulations. This discrepancy might
be caused by analytical approximations (especially in the
calculation of the W value). In addition, the mean-field method
in which nodes with the same degree are regarded as the same,
as well as the numerical solutions of the equations, may also
inevitably introduce some errors.

IV. SIMULATION RESULTS

In this section, we further investigate our strategy using
numerical simulations. To start with, we perform our strategy
in a BA network with N = 100 to make it visually clear.

Figure 3 shows the evolution of vaccinated nodes. The
dark red (solid) nodes denote vaccinated nodes while the

FIG. 3. (Color online) A demonstration of immunization for
S = 1–6 [(a)–(f)]. Here we adopt a BA network with N = 100
and 〈k〉 = 3.94. Epidemic parameters are β = 0.1 and v = 0.1. The
size of the node implies its degree. Dark red (solid) nodes stand
for vaccinated nodes, while light blue (hollow) nodes stand for
unvaccinated nodes. We merely show the immunization situation,
neglecting the epidemic spreading results.
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FIG. 4. (Color online) The curves of average degree (a), average
k-shell (b), and average path length (c) in the BA network. The
dashed lines represent the value of the entire network, and the circles
represent the corresponding value among vaccinated nodes. The
epidemic prevalence is shown in (d). Network structure is shown
in Fig. 3. Epidemic parameters are β = 0.1 and v = 0.1.

light blue (hollow) nodes denote unvaccinated nodes. Figure 4
presents some statistical properties of the entire network and
the vaccinated nodes from S = 1 to 6, including the averaged
degree, the average k-shell number [30], and the average path
length [28]. The degree and the k-shell number describe the
importance of a node, and the average path length among
nodes implies their closeness [8]. As illustrated in Fig. 4, for
vaccinated nodes, the average degree and the average k-shell
obtain their maximal values (average path length obtains its
minimal value) at S = 2, but the epidemic prevalence obtains
its minimal value at S = 6. It shows that, in this case, a higher
average degree and a higher average k-shell number do not
necessarily lead to a better immunizing effect. In addition, the
selection of vaccinated nodes in our strategy is not a periodic
process, but rather an optimizing process. Comparing Fig. 3(b)
with Fig. 3(d), we may find that hubs are prone to be selected as
vaccinated nodes in the second epidemic season. Nevertheless,
it is not the best status because vaccinated nodes are too
centralized, and numerous peripheral nodes are not covered.
The situation is improved as the evolution continues. As can
be seen from Fig. 3(f), in the sixth epidemic season, some
“local hubs,” which do not have the highest degree value but
may connect some communities or peripheral nodes closely,
are included. Thus, our method is not only concerned with
connections or k-shell numbers of a node, but it also considers
the nodes who have important locations in the network [31,32].

However, the simulation on a network with only 100 nodes
is obviously inconclusive. We need to enlarge the network size
and adopt networks with more realistic structures. Thus we
adopt four real networks [33]: (i) Wikipedia Vote Network:
Wikipedia is a free encyclopedia written collaboratively by
volunteers around the world. Nodes in the network represent
Wikipedia users, and a directed edge from node i to node
j indicates that user i voted on user j . (ii) Epinions Social
Network: This is a who-trusts-whom online social network
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TABLE I. The statistics of four real networks.

Name N 〈C〉 〈k〉 〈k2〉 vc (β = 0.1) vc (β = 0.05)

Wiki-Vote 7115 0.14 29.4 4554.8 0.935 0.870
Epinions 75879 0.14 16.4 3172.1 0.955 0.909
Slashdot 77360 0.06 23.5 6428.8 0.963 0.927
Enron 36692 0.50 22.5 6812.1 0.967 0.934

of a general consumer review site Epinions.com. Nodes in
the network represent Epinions users and edges represent
trust relationships. (iii) Slashdot Social Network: Slashdot
is a technology-related news website known for its specific
user community. The network contains links between the
users of Slashdot. (iv) Enron Email Network: Enron email
communication network covers email communication within
an email dataset. Nodes of the network are email addresses,
and if an address i sent at least one email to address j , the
graph contains an edge from i to j .

Although these four networks are online social networks
or email networks, they have spreading properties similar to
actual interpersonal networks that are hard to obtain [34–36].
The statistics of these four networks are listed in Table I, where
〈C〉 stands for the average clustering coefficient of the network
[4]. We treat all directed links as undirected links. It should be
pointed out that we do not consider the directionality because
the actual background of epidemic spreading is undirected. It is
shown in the table that vc is too large to be obtained, implying
that the total immunity is hard to reach. This is a reflection of
the finding that a heterogeneous network is an ideal substrate
for epidemic spreading [2,37].

We now compare our method with other classic immu-
nization strategies, such as uniform immunization, targeted
immunization, and acquaintance immunization. Note that
these immunization strategies are independent of the epidemic
season. We average the results of 100 experiments and show
the results for Wiki-Vote network, Epinions network, Slashdot
network, Enron network, the above BA network with N = 100,
and a BA network with N = 100 000 in Figs. 5(a)–5(f), respec-
tively. Generally, our method performs better than uniform
immunization and acquaintance immunization after a few
seasons, but it is inferior to targeted immunization. Comparing
Figs. 5(e) and 5(f), we could conclude that the larger the
network size is, the more efficient the targeted immunization is.
Yet the fact that it requires global information makes it imprac-
tical in real cases. Thus, our strategy compromises between
immunization efficiency and limited information. It should
also be pointed out that as v increases, the difference between
our algorithm and targeted immunization is becoming smaller.
However, it is unrealistic that v is very large in real cases.

As is shown in Fig. 5, the epidemic prevalence of our
method gradually decreases to a steady state, but not mono-
tonically. The fluctuation can be interpreted as follows. In
a particular epidemic season S, some influential spreaders
(i.e., who play important roles in the spreading process)
are vaccinated. Therefore, it is relatively difficult for their
neighbors to be infected in the next epidemic season S + 1,
and they are not chosen to be the vaccinated nodes due to the
fact that they have fewer infected neighbors. While the new
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FIG. 5. (Color online) The relationship between epidemic preva-
lence r (S)

∞ and epidemic season S for different immunization strate-
gies. Black circles stand for our dynamical immunization method.
Three lines represent uniform immunization (blue, solid), acquain-
tance immunization (green, dashed), and targeted immunization (red,
dash-dotted) from top to bottom. Results of Wiki-Vote network,
Epinions network, Slashdot network, Enron network, BA network
with N = 100, and BA network with N = 106 are shown in (a)–(f),
respectively. Epidemic parameters are β = 0.1 and v = 0.1. Each
point is the average value of 102 experiments.

vaccinated nodes are less influential than those nodes, the
infected populations of epidemic season S + 1 increase. In the
epidemic season S + 2, those influential nodes are set to be
vaccinated nodes again, which lessens the risk of the epidemic.

Then we introduce recurrence rates Q1(S) and Q2(S) to
investigate the overlapping of vaccinated nodes. Here Q1(S)
is the proportion of nodes vaccinated in both epidemic seasons
S and S − 1 (S = 2,3, . . . ), and Q2(S) is the proportion
of nodes vaccinated in both epidemic seasons S and S − 2
(S = 3,4, . . . ). For example, if there are G common nodes
that are vaccinated both in epidemic seasons S and S − 1, then
Q1(S) = G/(vN ). These parameters reflect the fluctuation
of the evolution and are graphically presented in Fig. 6. As
epidemic season continues, Q1(S) rises while Q2(S) shows a
decreasing trend in general. But when S is large enough, Q2(S)
is prone to increase and finally maintains a relatively steady
level. This implies that some nodes have a higher probability
of being vaccinated repeatedly.

Figure 6 shows the overlapping of vaccinated nodes in
epidemic seasons S and S − 1 (S − 2), but it does not
provide information about how many nodes are vaccinated
continuously. To illustrate this issue clearly, we introduce
AS ′ (S), which is defined as the proportion of nodes that have
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been immunized continuously from epidemic season S to S ′
(S < S ′). Plotting A10(S) for S = 2,3, . . . ,9 yields the curve
in Fig. 7. Here we set S ′ = 10, which is large enough for real
cases (the interval between two epidemics may be a year or so
in reality). We neglect the epidemic season S = 1 because it
is a uniform immunization.

However, if we remove the “continuous” condition and
concentrate on the total number of times that a node has been
vaccinated, we obtain Fig. 8. Here FS ′ (i) is defined as the
ratio of the number of nodes that have been immunized for i

times (not necessarily continuously) from the second epidemic
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and Enron network are shown in (a), (b), (c), and (d), respectively.
Epidemic parameters are β = 0.1 and v = 0.1. Each point is the
average value of 102 experiments.
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FIG. 8. The relationship between F10(i) and the number of
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(d), respectively. Epidemic parameters are β = 0.1 and v = 0.1. Each
point is the average value of 102 experiments.

season to epidemic season S ′ (S ′ > 2) to the total number of
nodes that have been immunized for at least one epidemic
season. The first epidemic season is also neglected because
of its randomness. Here we also set S ′ = 10. Naturally, we
have F10(1) + F10(2) + · · · + F10(9) = 1. In Fig. 8, we can
see that more than 10% of the nodes are vaccinated for four
epidemic seasons. Combining Figs. 7 and 8, we can see that
more than 10% of the nodes are vaccinated for four epidemic
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FIG. 9. (Color online) Main plot: The relationship between epi-
demic prevalence r (S)

∞ and immunization proportion v for different
infected rates β. Here S = 5. Blue triangles, green circles, and red
squares stand for the case of β = 0.10, 0.05, and 0.02, respectively.
Inset: The relationship between vaccinated threshold vc and β. Here
vc is the value of immunization proportion that makes r (5)

∞ < 0.005.
Results of Wiki-Vote network, Epinions network, Slashdot network,
and Enron network are shown in (a), (b), (c), and (d), respectively.
Each point is the average value of 102 experiments.
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seasons [F10(4) > 0.1], but few of them can be vaccinated
for more than four continuous epidemic seasons [A10(6) ≈ 0].
Therefore, we may draw the conclusion that there are some
“core individuals” in the evolution. In every epidemic season,
the vaccinated nodes are a group of “core individuals” (some
global hubs and some local hubs), with the existence of some
other nodes. Different “core groups” emerge repeatedly but
not continuously.

Now, we concentrate on the critical vaccinated proportion
that can halt virus. The vc obtained in Eq. (5) is actually
for uniform immunization and is extremely large (as shown
in Table I). Here we fix the infected rate β and vary the
immunization proportion v to observe the epidemic prevalence
r∞. As the main plot of Fig. 9 suggests, the curves represent the
relationship between r and v, which is almost linear initially
and then drops to zero. Obviously, increasing the immunization
proportion is an effective method to diminish the epidemic
prevalence. In the inset of Fig. 9, we draw the curve of
vaccinated threshold vc that varies by the infected rate β. This
provides an estimation of the immunization proportion that
inhibits epidemics totally. Obviously, the vaccinated threshold
of our method decreases dramatically compared with the
uniform cases.

In addition, as for the parameters discussed in Figs. 6–9,
the results of the BA network show a similar trend to those
four networks.

V. CONCLUSION AND OUTLOOK

To summarize, we have proposed a model to de-
scribe seasonal epidemics, and we have presented a related

immunization strategy. The selection of vaccinated nodes is
optimized gradually, based on the local information of the
network from the previous epidemic season. We establish the
theoretical framework of our model, which is in agreement
with the simulation. We also compare our method with other
immunization strategies and find that our method performs
better than uniform immunization and acquaintance immu-
nization. These findings suggest that our method provides
useful hints for immune strategy design. Meanwhile, we
discuss the evolution of vaccinated individuals, and we find
that the influential nodes are vaccinated repeatedly but not
continuously. As epidemic season continues, the selection of
vaccinated nodes tends to remain stable, and they are located
in both global and local hubs. We also present the numerical
relationship between epidemic prevalence and immunization
proportion.

In future research, we would like to discuss the relationship
between epidemic prevalence and network structure with our
strategy, especially for community structure and correlated
networks [4]. In addition, the property of “core individuals” is
also an interesting topic that can be studied in more depth.
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