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Scale-free and economical features of functional connectivity in neuronal networks
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A form of activity that is highly studied in cultured cortical networks is the neuronal avalanche, characterized by
bursts whose distribution follows a power law. While the statistics of neuronal avalanches are well characterized,
much less is known about the neuronal interactions from which they arise. We examined statistical dependencies
between pairs of cells in spontaneously active cultures of cortical neurons using an information measure of
transfer entropy. We show that the distribution of transfer entropy follows a power law with a slope near 3/2.
Using graph-theoretic approaches of weighted networks, we demonstrate that this power law maximizes a measure
of global economy that accounts for both the efficiency of neuronal interactions as well as the overall traffic in
the network. Finally, we describe a pairwise Poisson model that captures the statistics of information transfer
in a population of spiking neurons. Using this model, we show that avalanches can occur in systems with weak
pairwise interactions, and that strong pairwise interactions can arise without avalanches, suggesting that these
two measures capture distinct properties of brain dynamics.
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I. INTRODUCTION

Neuronal networks of cortical neurons in vitro show com-
plex patterns of coordinated activity [1,2]. A hallmark feature
of this activity is the presence of network bursts, characterized
by large network events whose activity propagates across a
substantial portion of the neuronal tissue. The statistics of
these network bursts has been a subject of considerable study
in recent years. The term “neuronal avalanche” has been coined
to describe bursts that follow a power law distribution [3,4].
The presence of avalanches with a slope near 3/2 has led to
the possibility that networks of cortical neurons both in vitro
and in vivo operate near a critical state.

Despite a growing body of theoretical models that capture
the statistics of neuronal avalanches, there is no consensus on
the nature of neuronal interactions from which they emerge. In
fact, different computational models capture the statistics of
avalanches despite widely different patterns of connectivity—
while some models are fully connected [5], others are scale
free [6], random [7], modular [8], or nearest neighbor [9].

Experiments on cortical cultures in vitro do not grant us
access to the underlying synaptic connections across cells;
however, it is possible to study the statistical patterns of neu-
ronal interactions—also termed “functional connectivity”—
between neurons [10–12]. These interactions are highest for
cells whose activity arises in close temporal contiguity. Several
approaches have been proposed to estimate neuronal interac-
tions from the activity of a neuronal network, including (but
not limited to) Granger causality [12], Bayesian approaches
[11], partial directed coherence [13], and transfer entropy
[10,14–17].

Recently, important insights into the organization of neu-
ronal networks have been gained by combining analyses
of functional connectivity with techniques from statistical
physics and graph theory. One common approach is to estimate
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the strength of functional connectivity between neurons (also
termed “weights”), then construct a binary graph that throws
away strength values and retains only a yes or no assessment of
functional connections. This approach has revealed interesting
characteristics of functional connectivity, including a small-
world organization, characterized by a short characteristic path
length and high clustering coefficient [18].

An alternative approach is to retain strength values when
examining the patterns of functional connections. Analyses
of weighted networks have shown a scale-free distribution
of neuronal interactions [19], and have characterized causal
relationships between neurons [12] as well as the direction of
information flow across a network [10].

While the distribution of weights likely plays a key
role in routing information across a network, this exact
role remains unclear. Here we examine this question by
recording spontaneous activity from cultures of neocortical
neurons in vitro. As reported previously, these recordings
show avalanches characterized by a power law distribution of
neuronal activity [3,10,20]. We estimated functional connec-
tivity using an information-theoretic measure termed “transfer
entropy” [10,14,15,17]. From this measure, we derived a
weighted network of interaction between all pairs of neurons.
We analyzed this network using graph-theoretic approaches
that reveal a fundamental role of weight distributions in
channeling information across a network of interconnected
neurons. In addition, we describe a Poisson model that captures
the statistics of neuronal avalanches and examines the role of
pairwise interactions in generating this form of activity.

II. RESULTS

We recorded cell cultures using a 60-microelectrode array
[10,21,22] [Fig. 1(a)]. Spontaneous activity was characterized
by population bursts that recruited a large proportion of the
network [Fig. 1(b)]. To quantify spontaneous activity, we
examined the propagation of neuronal avalanches, defined as
bursts of activity spreading in time and across neurons (see
Methods).
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FIG. 1. (Color) Neuronal activity in cultures of neocortical neu-
rons. (a) Culture of cortical neurons plated on microelectrode array
(only a subset of array shown). Electrodes are spaced 200 μm apart.
(b). Spike raster showing the activity of a population of neurons. (c)
Distribution of the number of cells participating in avalanches, with
time windows of 10 ms (black), 15 ms (blue), and 20 ms (green). Red,
shuffled spikes (window of 10 ms). Dashed lines show best-fitting
power law obtained with maximum likelihood estimation.

A. Neuronal avalanches

A total of 36 236 avalanches were extracted in recordings
from eight cortical cultures. While these avalanches can be
described using several measures, here we focused on the
number of cells active per avalanche [20]. Most avalanches
activated only a small subset of neurons; however, a small
minority of avalanches recruited a large proportion of the
population. The overall distribution of neurons recruited
during avalanches resembled a truncated power law [Fig. 1(c)].
We employed a maximum likelihood method to compare the fit
of avalanches to a power law versus exponential distribution.
The estimation (α̂) of the slope α of a bounded discrete power
law is obtained as follows [23]:

α̂ = arg max
α

[
−α

(
n∑

i=1

ln xi

)
− n ln ζ (α,xmin,xmax)

]
, (1)

where xi is the ith element from the vector of all data X =
{x1,x2, . . . ,xn} and n is the size of the data vector. Here, the
nth element of X corresponds to the number of neurons active
during the nth avalanche recorded. The Hurwitz zeta function,
ζ (α,xmin,xmax), is given by

ζ (α,xmin,xmax) = ζ (α,xmin) − ζ (α,xmax), (2)

where

ζ (α,x) =
∞∑
i=1

1

(i + x)α
. (3)

Techniques for estimating lower and upper bounds from
raw data are covered elsewhere [23]; here, we set xmin and
xmax to the minimum and maximum values of observed data,
respectively. In related work, we have examined the robustness
of estimates to missing data [20] and shown that the above
method provides a more accurate estimate of power laws than
other approaches [23,24].

The above power law estimate can be compared to that of
an exponential function. The maximum likelihood estimator

of parameter λ for the exponential function is

λ̂ = arg max
λ

{
n[ln(λ) − ln(e−λxmin − e−λxmax )] − λ

n∑
i=1

xi

}
.

(4)

While estimates could be derived for cases other than the
power law and exponential distributions, fitting functions such
as a lognormal distribution is difficult and often inconclusive
[24] and therefore not included here. In order to compare the
fit of power law and exponential functions, we employed a
Bayesian information criterion as opposed to the usual log-
likelihood ratio that is typically used in this scenario [25,26].
In statistical analyses, the log-likelihood ratio is applicable
only when one of the functions considered is a special case
of the other [27]. The Bayesian information criterion (B) is
obtained by calculating the log probability of the power law
and exponential functions, respectively, given a dataset X [28]:

B1 = −L(α|X) + log(n)φ1,
(5)

B2 = −L(λ|X) + log(n)φ2,

where φ is the number of parameters in each function. The
log-likelihood functions L(α|X) and L(λ|X) are

L(α|X) = −n ln ζ (α,xmin,xmax) +
n∑

i=1

ln x−α
i ,

L(λ|X) = n[ln(λ) − ln(e−λxmin − e−λxmax )] − λ

n∑
i=1

xi. (6)

The Bayesian information criterion is asymptotically con-
sistent, meaning that if a set of functions includes the true
function from which the data were generated, the probability
that the true function has the highest value of B will approach 1
as the number of observations increases to infinity. The relative
merit (Ri) of each function i can be assessed by

Ri = exp(−2 log[Bi])∑F
j=1 exp(−2 log[Bj ])

, (7)

where F = 2 is the number of functions considered, namely
exponential and power law. Equation (7) is highest for the
function that offers the best fit to the experimental data.

We calculated the above Bayesian information criterion
[Eqs. (5)–(7)] to compare the fit of a power law and exponential
function to the distribution of avalanches. The power law
attained a markedly higher relative fit (0.969) compared to
the exponential function (0.031). The value of the best-fitting
power law slope was α̂ = 1.52. The overall shape of the
distribution was not markedly altered when using different
time windows to compute avalanches [Fig. 1(c), black,
blue, and green filled circles]. This distribution, however,
was disrupted when spikes were randomly shuffled prior to
computing avalanches [Fig. 1(c), red filled circles].

The presence of neuronal avalanches in cultured networks
in vitro confirms previous reports and is suggestive of a system
that operates near the critical state [4,25] (however, see the
Discussion for controversies on this issue). Next, we quantify
the amount of information that is exchanged between neurons
and examine its relation to avalanches.
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B. Transfer entropy

In order to estimate the amount of information exchanged
between pairs of neurons, we employed an information-
theoretic measure of transfer entropy (TE). This measure
quantifies the amount of information in a neuron found in
the recent past history of other neurons. Transfer entropy
can be used to probe asymmetries in neural relations (i.e.,
neuron A influencing B, but B not influencing A) [10,14–17],
and is argued to reveal information flow more precisely than
correlation-based measures, which are limited to symmetrical
interactions. Transfer entropy requires no a priori knowledge
of either inputs or anatomical connectivity, and therefore
can be applied to spontaneously active cultures of cortical
neurons whose synaptic connections are too dense to yield a
full anatomical characterization. Transfer entropy can track
interactions under a broad distribution of delays; in addition, it
is robust to noise, small errors in spike sorting, cross talk
between signals, and spike jitter or randomness [10]. One
known limit of transfer entropy, however, is its robustness to
processing coarse-grained data [17], an issue that we address
in the results below. We also note that transfer entropy is a
strictly pairwise measure, and therefore does not control for
all orders of interaction between neurons.

We employ a recent extension to transfer entropy that takes
into account higher-order interactions between neurons as well
as a range of temporal delays [15]. The amount of TE (denoted
T ) from neuron j to neuron i (measured in units of bits) is
given by

Tj→i =
∑

p
(
it+1,i

(k)
t ,j

(l)
t+1−d

)
log2

p
(
it+1

∣∣i(k)
t ,j

(l)
t+1−d

)
p
(
it+1

∣∣i(k)
t

) , (8)

where d is a time delay; it denotes the status of neuron i at
time t , and could be either 1 or 0, indicating a spike or no
spike, respectively; and p(·) denotes the empirical probability
of having the status denoted in parentheses. The parameters k

and l determine the order of Eq. (8), and refer to the number of
past time bins considered, respectively, for neurons i and j . We
computed Eq. (8) for combinations of k = (1,2,3), l = (1,2,3),
and delays of d = (1,2, . . . ,10), beyond which entropy tends
to drop markedly [10]. For simplicity, we employed the
maximum value of entropy taken over all combinations of
k, l, and d; alternatives are examined elsewhere [15]. Equa-
tion (8) is easier to grasp when decomposed as follows. First,
p(it+1,i

(k)
t ,j

(l)
t+1−d ) denotes the joint probability of an event in-

volving {it+1 = 1,i
(k)
t = 1,j

(l)
t+1−d = 1,}, obtained empirically

as the count of all such events divided by the total length
of the recording in milliseconds. Second, p(it+1|i(k)

t ,j
(l)
t+1−d )

denotes a conditional probability, obtained by summing all
events involving {it+1 = 1,i

(k)
t = 1,j

(l)
t+1−d = 1,}, and dividing

by the sum of events involving {it+1 = 0,i
(k)
t = 1,j

(l)
t+1−d = 1,}

and events involving {it+1 = 1,i
(k)
t = 1,j

(l)
t+1−d = 1,}. Finally,

p(it+1|i(k)
t ) is obtained by summing all events involving

{it+1 = 1,i
(k)
t = 1} and dividing by the sum of events involving

{it+1 = 0,i
(k)
t = 1} and events involving {it+1 = 1,i

(k)
t = 1}.

The sum in Eq. (8) is taken over all combinations of it+1, i
(k)
t

and j
(l)
t+1−d .

Details of the implementation of the algorithm can be
found elsewhere along with free software [15]. Taken as a
whole, Eq. (8) describes how the future activity of a neuron
is influenced by its own past history. This raises a potential
bias, as it makes TE dependent upon the firing rates of both
neurons i and j . We address this issue using a statistical
permutation test where we calculate TE after randomizing
spike times for each neuron independently. Our method of
randomization takes each spike and the interspike interval
immediately following it, and moves it to a different time in the
data. This method of shuffling preserves the distributions of
both spike rates and interspike intervals. Thus, the permutation
test constitutes a statistical control for the effect of firing rates
on transfer entropy.

The permutation procedure was repeated 1000 times, and
a value of transfer entropy for permuted data (T p

j→i) was
obtained by averaging the values of transfer entropy obtained
across all repeats of the permutation procedure. The final value
of TE from neuron j to i (T f

j→i) was obtained by subtracting
the value of transfer entropy obtained from permuted data
(T p

j→i) from the value of transfer entropy obtained from the
original data (T d

j→i), and normalizing by the entropy rate (Hi)
(the conditional entropy of neuron i conditional on its past):

T
f

j→i = h

(
T d

j→i − T
p

j→i

Hi

)
, (9)

where the entropy rate is given by

Hi = −
∑

p
(
it+1,i

(k)
t

)
log2 p

(
it+1

∣∣i(k)
t

)
. (10)

The Heaviside function h sets T
f

j→i to zero when T d
j→i <

T E
p

j→i , in which case the randomized data account for
the observed TE value. To account for estimation errors
in computing transfer entropy, we analytically derived the
variance of Eq. (8) as follows:

Vj→i = 1

η

∑
p
(
it+1,i

(k)
t ,j

(l)
t+1−d

)[
1 − p

(
it+1,i

(k)
t ,j

(l)
t+1−d

)]

×
{

log2

[
p
(
it+1

∣∣i(k)
t ,j

(l)
t+1−d

)
p
(
it+1

∣∣i(k)
t

)
]

− T d
j→i

}2

, (11)

where η is the temporal precision employed for calculating
transfer entropy, set to the resolution of the data (1 ms) [10].
We computed values of transfer entropy [Eq. (8)] and variance
[Eq. (11)] for all pairs of neurons in a given recording. Then,
we eliminated (by setting to zero) all values where T d

j→i was
less than 3 standard deviations (s.d.) above T

p

j→i [where s.d.
is the square root of the variance obtained in Eq. (11)].

We plotted the distribution of transfer entropy taken over
all pairs of neurons [Fig. 2(a)]. Values ranged between 0
and 4.2 bits, and were rescaled on a log-log plot between
0 and 102. To characterize this distribution, we assessed
the relative fit of a power law compared to an exponential
function using a Bayesian information criterion [Eqs. (5)–(7)].
The fit of a power law was superior (power law, 0.5862;
exponential, 0.4138). The best-fitting slope of power law
was α̂ = 1.47. A power law of transfer entropy suggests
that most information transfer between cells was relatively
low, with a few interactions having disproportionally large
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FIG. 2. Information transfer between pairs of neurons. (a) Distri-
bution of transfer entropy obtained from all pairs of neurons, using
windows of 1 ms (black), 2 ms (dark gray), and 4 ms (light gray).
Dashed lines show best-fitting power law. (b). Matrix of transfer
entropy for all pairs of neurons in a recording. (c) Log likelihood of
the λ parameter estimated for the exponential function. Solid black,
dashed, and gray lines are obtained from 100%, 50%, and 25% of
the data, respectively. (d). Same as panel (c), but obtained for the α

parameter of the power law function. (e). Mean square error between
values of transfer entropy obtained for consecutive time windows of
1,2, . . . , 20 min in duration. (f) Relationship between mean transfer
entropy (T ) and physical distance between microelectrodes. Panels
(a) and (c)–(f) are obtained after pooling data from all recordings.

values. An example of transfer entropy matrix derived from
one recording is shown in Fig. 2(b). Of all (N2–N ) possible
pairs of interactions in the network, only a small subset of
2.33% had a value of one bit or more. We insured that the
maximum likelihood technique employed to estimate the slope
of power law [Eq. (1)] was not strongly affected by the size
of the dataset employed. Analyses that considered only 50%
or 25% of all pairs of neurons led to similar peaks in the
log-likelihood estimation of slope [Figs. 2(c) and 2(d)].

Because we performed an estimation of information trans-
fer over a finite recording time (20 min), we sought to
determine if this estimation was stable or whether it fluctuated
with the length of the recording period. For this purpose, we
began by calculating transfer entropy for the whole 20-min
period on a cortical culture. Then, we calculated transfer
entropy for periods of different duration (1 min, 2 min, . . . ,
19 min). We computed the mean squared error between
entropy obtained for the whole 20-min period versus these

shorter periods [Fig. 2(e)]. As the length of the time period
increased, the mean square error decreased, indicating that
the estimation of entropy converged to specific values, and
that further changes due to increased recording times would
likely be limited. We also confirmed, as in previous work,
that values of transfer entropy decreased gradually as the
physical distance between electrodes increased [r2 = 0.87,
p < 9.1801×10−14; Fig. 2(f)] [10].

In sum, our analyses show a power law distribution of
information transfer with a slope near 3/2 between pairs of
neurons. Next, we examine the role of this distribution on
network communication by using graph-theoretic analyses of
weighted networks.

C. Network economy

We aimed to determine whether the power law distribution
of information transfer had any bearing on the efficiency
of communication across a given network. To address this
question, we calculated the shortest weighted path length rij

between all pairs of nodes i and j ,

rij =
∑

auv∈gi
w↔j

w−1
uv , (12)

where wuv is a connection weight and gi
w↔ j is the shortest

path between nodes i and j . The connection between two
given nodes u and v is denoted auv , and is set to auv = 1 when
a link (u,v) exists, and auv = 0 otherwise. Then, we computed
a measure of global network communication efficiency [29]:

Eg = 1

N (N − 1)

∑
i �=j

1

rij

, (13)

where N is the set of all nodes. In technical terms, Eq. (13)
calculates the mean inverse path length in the network. Put
differently, it calculates the communication over all possible
pairs of neurons in the network. Based on Eqs. (12) and (13),
higher weights of interaction wuv lead to a lower path length
rij , in turn leading to a higher global efficiency Eg .

To examine the influence of weights on global efficiency,
we generated a series of synthetic datasets that followed a
power law with different slopes [24]:

x = xmin(1 − ω)−1/(α−1), (14)

where xmin = 1 is the minimum value of x and 0 < ω < 1 is
a uniform random variable [Fig. 3(a)]. For each dataset, we
created a network of N = 100 neurons and k edges per neuron
formed by random connections. Weights for these edges were
obtained from Eq. (14). As expected, increasing the slope of the
power law distribution in Eq. (14) led to a reduction in global
efficiency [Fig. 3(b)]. This is not surprising given that, from
Eqs. (12) and (13), networks with lower weights have lower
efficiency. Thus, in principle, it would be possible to construct
highly efficient networks simply by increasing the weights
of edges. However, if these weights represent the strength of
functional connections, increasing their value would translate
to increasing the amount of communication between neurons
in the network. By analogy to highway traffic, more vehicles
on the road result in more goods being moved around, but also
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FIG. 3. (Color) Relation between power law distribution of in-
formation transfer and network economy. (a) Strength of information
transfer (w) with different slopes (α). These distributions were
obtained from synthetic data [Eq. (14)]. (b) Network efficiency
decreases as the slope (α) of the power distribution of strength
increases. Different colored lines correspond to networks where each
node had k degree by forming random connections. (c) Economy is a
measure that trades off connection strength and efficiency [Eq. (15)]
and is highest when strength follows a power law with slope near 3/2
(dashed vertical line). (d) Network economy is diminished when
network weights are increased or decreased by a constant value
c. Data are averaged over all recordings. (e) Network economy
improves when adjusting individual weights of a network with a
search algorithm. (f) Power law distribution is largely unaltered
after adjusting individual network weights. Black circles, initial
distribution; gray circles, distribution following weight adjustments
for 5000 time steps.

more congestion. In neuronal networks, this congestion comes
at a metabolic cost associated with neuronal activity [30]. The
strength of functional interactions, therefore, may benefit from
a judicious trade-off between low communication on the one
hand, and low metabolic cost on the other hand.

To account for both communication efficiency and the
cost associated with strong functional weights, we propose a
modified measure of global efficiency, termed global economy,
that considers weighted path length [Eq. (12)] but penalizes
for large average weights (w̄):

Ep = w̄−1 1

N (N − 1)

∑
i �=j

1

rij

. (15)

By applying the above measure to synthetic networks
generated with Eq. (14), we found that the distribution of
connections across all pairs of nodes influenced global econ-
omy of the network. Network economy showed a prominent
peak around a slope of α � 3/2 [or slightly higher, Fig. 3(c)].
This value is comparable with empirical results obtained on
cortical networks (see above).

Next, we examined global network economy [Eq. (15)]
in our experimental recordings of cortical cultures. We
calculated this measure for each experimental network. Then,
we subtracted a small constant c from all of the weight values
in the network and calculated the measure again. We repeated
this procedure for a range of whole values c = −10, −9, . . . ,
10. Finally, we averaged the resulting value of global network
economy over all experimental networks. We found that both
the addition and subtraction of a small constant c led to lower
values of global network economy [Fig. 3(d)]. On the one
hand, low weight values reduce global network economy by
driving down the value of global efficiency [Eq. (13)]. On the
other hand, high weight values are penalized by the measure of
global economy [Eq. (15)]. An optimal balance between these
two poles was reached when c�0, suggesting that weights
attained a high value of global economy that could not be
further improved by adding or subtracting a constant value to
all weights in the network.

However, one possibility is that adjusting individual
weights—as opposed to altering all weights in the network by
a constant value—may lead to increases in global economy.
To test this possibility, we took as a starting point one
experimental network and calculated its global economy.
Then, we employed a search algorithm to examine whether
small random adjustments to individual weights could improve
global economy. This search algorithm begins by selecting
one weight w > 0 at random and modifies it by adding
a value drawn from a Gaussian distribution with mean of
zero and standard deviation of 0.1. Next, global economy
is recalculated. If the resulting value was higher than in the
original network, the new weight is maintained; otherwise, the
weight is reverted back to its original value. We repeated this
procedure for a total of 5000 time steps for all experimental
networks. Overall, the search algorithm improved global
network economy until �4000 time steps when it began to
stagnate and did not improve further [Fig. 3(e)]. Thus, it
was possible to improve upon global network economy by
altering individual weights in the network. The overall weight
distribution, however, remained largely unaltered [Fig. 3(f)].

While other weight distributions (e.g., lognormal, exponen-
tial, etc.) may yield different results than the ones here, our
goal was to examine the consequences of a weight distribution
that follows a power law as observed experimentally. Overall,
we found that weighted functional connections that followed a
power law with a slope near 3/2 maximized the efficiency
of network communication while minimizing the overall
traffic burden, providing a possible consequence of scale-free
interactions in neuronal networks.

D. Pairwise Poisson model

The above results show the presence of a power law
distribution in two different aspects of our experimental data.
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FIG. 4. Dissociation between avalanches and functional connectivity. (a) Matrix of transfer entropy for all pairs of neurons after constrained
pairwise shuffling. (b) Distribution of transfer entropy for original (solid black line) and shuffled (solid gray line) activity. Dashed line, best-fitting
slope of power law of original data obtained by maximum likelihood estimation. (c) Distribution of the number of cells active during avalanches
obtained after shuffling. (d) Raster of spike data obtained from the pairwise Poisson model. (e). Transfer entropy (T ) obtained with a pairwise
Poisson model is strongly correlated with transfer entropy obtained with the original data. (f) Avalanche distribution obtained from the pairwise
Poisson model. Panels (b), (c), (e), and (f) are obtained after pooling data from all recordings.

First, we reported, as in previous work, a power law of
activity related to neuronal avalanches [Fig. 1(c)]. Second, we
reported a power law of transfer entropy related to functional
connectivity in the network [Fig. 2(a)]. It is worthwhile to
consider whether these two power law distributions are related
to each other or whether they constitute independent properties
of network activity.

To address this question, our first step is to consider whether
it is possible to artificially generate activity that preserves
avalanches but disrupts functional connectivity between pairs
of cells. Such “surrogate activity” can be obtained by ran-
domizing experimental data using a technique of constrained
pairwise shuffling [11]. In this technique, the spike times of
two randomly chosen nodes i and j are switched, and the
procedure is repeated until all spikes in a given recording have
been randomized. This technique preserves the mean firing
rate of all nodes as well as the number of spikes per time bin.

As a result of constrained pairwise shuffling, the matrix of
weighted functional connections obtained via transfer entropy
is disrupted [Fig. 2(b) versus Fig. 4(a)] and no longer follows
a power law [Fig. 4(b)]. Notice that the matrix of transfer
entropy obtained after shuffling contains approximately four
times fewer bits of information than the original data. Neuronal
avalanches, however, are entirely preserved [Fig. 4(c)]. Thus,
it is possible to disrupt spike times such that functional con-
nectivity is lost yet avalanches are preserved. Put differently,
a network with weak pairwise interactions can nonetheless
produce avalanches that match those observed experimentally.

Next, we address the inverse question, namely whether it
is possible to disrupt avalanches while preserving functional
connectivity. We developed a pairwise Poisson model where
spike occurrences are influenced by both a random process and
the transfer entropy calculated empirically. In this model, we

begin with an N×N matrix of transfer entropy P obtained from
a dataset where N is the number of neurons being recorded.
The probability p̂i of a spike occurring at time t is influenced
by both a Poisson process and the matrix P [10],

p̂i = vi − (1 − viτr )
∑

j vjpij

1 − viτr

, (16)

where vi = 0.001 is a baseline firing rate, τr = 3 ms is a
refractory period, and pij are elements of P. We simulated
20 min of activity for 100 neurons [Fig. 4(d)], and analyzed
the resulting activity using transfer entropy as above. We found
a strong correspondence between the original transfer entropy
(obtained from matrix P) and the transfer entropy obtained
from the pairwise Poisson model [Pearson’s correlation,
r = 0.83, p < 0.0001, Fig. 4(e)]. This result suggests that the
Poisson model was able to capture the statistics of functional
connectivity. Avalanches, however, no longer followed a power
law distribution [Fig. 4(f)]. Therefore, it was possible to
generate surrogate activity where functional connectivity was
maintained but avalanches were disrupted.

In sum, analyses of surrogate datasets show that it is possi-
ble to maintain avalanches despite weak pairwise interactions
and, conversely, to have strong pairwise interactions yet no
avalanches. These results suggest that a power law distribution
of avalanches and functional connectivity represent two
properties of neuronal activity that may be distinguished from
each other.

III. DISCUSSION

While neuronal avalanches have been reported for over
a decade, their relationship to functional connectivity has
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remained unclear. Here we estimated weighted functional
connections in cortical cultures in vitro using a measure of
transfer entropy, and showed that their distribution follows a
power law. Using a graph-theoretic approach, we linked the
slope of this power law to an efficient network communication
that trades off a high volume of interactions against its cost in
terms of increased traffic.

With the use of surrogate datasets, we showed that a power
law of information transfer can arise independently of neuronal
avalanches (and vice versa). It is therefore possible that
different forms of functional connectivity support avalanches.
Indeed, computational models with widely different forms of
connectivity yield avalanches of neuronal activity [5–9]. Here,
we add to these results by showing that even a model with
weak pairwise interactions can produce prominent avalanches,
and conversely that strong pairwise interactions can arise
in the absence of avalanches. This result can guide the
development of models that examine the mechanisms giving
rise to avalanches, including both recurrent and feedforward
networks [10].

Related studies have reported scale-free networks of
functional connections in the brain [19,31]. An important
distinction is that our work examines the distribution of
functional weights and not the number of connections per
node (i.e., incoming or outgoing degree). Degree distributions
can be obtained by measuring the interactions between nodes
in a network, and applying a cutoff to determine whether a
connection is present or absent. This approach depends upon
ad hoc thresholding, which contains several problems that are
beyond the scope of the current work [32].

Related work has examined functional networks of the
human brain [33], and showed that these networks attain a
balanced trade-off between communication efficiency and the
cost associated with a large number of connections. While it
is difficult to reconcile our observations at the microscale with
their results at the macroscale, our work opens the possibility
of a novel trade-off that involves the strength of interactions
rather than the number of links between networks nodes.
Such a trade-off could in principle be examined in weighted
macroscopic networks of the brain [34].

There are likely a number of principles describing the
organization of functional networks of cortical neurons,
including a small-world organization [11,18] and a heavy-tail
degree distribution [35], as well as several other characteristics
[36]. A unified framework incorporating these different req-
uisites remains to be formulated. Importantly, this framework
should link neuronal interactions with their underlying struc-
tural connectivity, known to follow a heavy-tail distribution
[37,38]. Attempts at using transfer entropy for this purpose
have been met with some success but definitive evidence
on datasets of cultured cortical networks remains to be
obtained [15].

Future work is aimed at assessing the link between
avalanches and functional connectivity in other experimental
networks at the micro- and macroscale. One challenge is the
difficulty in evaluating avalanches [24,26], particularly in the
awake brain where neuronal activity is not punctuated by
periods of quiescence [39]. This issue calls into question the
critical nature of brain activity, a question that is well beyond
the scope of our current work.

In conclusion, networks of in vitro cortical neurons ex-
change information according to a power law distribution
with a slope near α � 3/2. Using surrogate datasets, we
demonstrated that this distribution maximizes a trade-off
between the amount of information exchanged in the network
and the overall traffic burden. Because we obtained this result
in generic networks with minimal biological details, it may
generalize to other domains where the strength of network
connections follows a heavy-tail distribution [40].

IV. METHODS

A. Tissue culture and recording

Here, we provide an overview of methods, and refer
elsewhere for further details [10,21,22]. Cell cultures were
recorded using a 60-microelectrode array (ALA Scientific,
Germany) [Fig. 1(a)]. Dissociated cortical neuron cultures
were prepared from embryonic day 18 Sprague Dawley rats
(Charles River Canada, Quebec, Canada) and plated at 1.5 mil-
lion cells per milliliter on polyethylinimine coated electrodes.
Only cultures that exhibited a dense, homogeneous monolayer
of healthy neurons were retained for recordings and data
analysis. We performed all recordings using Multi Channel
System (MCS) software for microelectrode arrays. Cultures
grown between 23 and 28 days in vitro were recorded daily
for a 20-min duration. Recording parameters included 1100.0
amplifier gain, input voltage range of −2048 to +2048 mV, and
a sampling frequency of 5000 Hz. Low-frequency shifts in the
raw signal were removed using a high-pass filter with a cutoff
frequency of 200 Hz. We performed online extracellular spike
detection using MC_RACK software (Multi Channel System),
with a threshold set to 3 standard deviations above the mean of
the signal at each channel. The resulting spike data were stored
for offline spike sorting, performed with Plexon software
(version 3.0, Plexon Inc., Texas). Spike data were analyzed
using custom software written in MATLAB (Mathworks Inc.,
Natick, Massachusetts). We excluded from further analysis
neurons whose firing rate was ±5 s.d. above or below the
mean of all neurons within a given microelectrode array.

B. Avalanches

Avalanches were identified by using nonoverlapping time
bins of a fixed size, set to 10 ms by default (we also
examined variations in the length of the time bin; see Results).
This duration was chosen to reflect the time scale over
which coordinated activity likely affects the response of
downstream neurons [41]. We defined an avalanche as a series
of consecutive bins where all bins possess at least one spike. In
addition, an avalanche must have been preceded and followed
by at least one time bin with no spikes. The number of neurons
per avalanche was defined as the number of cells spiking at
least once during a given avalanche.
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