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Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers
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Curvature-sensing and curvature-remodeling proteins, such as Amphiphysin, Epsin, and Exo70, are known
to reshape cell membranes, and this remodeling event is essential for key biophysical processes such as
tubulation, exocytosis, and endocytosis. Curvature-inducing proteins can act as curvature sensors; they aggregate
to membrane regions matching their intrinsic curvature; as well as induce curvature in cell membranes to stabilize
emergent high curvature, nonspherical, structures such as tubules, discs, and caveolae. A definitive understanding
of the interplay between protein recruitment and migration, the evolution of membrane curvature, and membrane
morphological transitions is emerging but remains incomplete. Here, within a continuum framework and using
the machinery of Monte Carlo simulations, we introduce and compare three free-energy methods to delineate
the free-energy landscape of curvature-inducing proteins on bilayer membranes. We demonstrate the utility
of the Widom test particle (or field) insertion methodology in computing the excess chemical potentials associated
with curvature-inducing proteins on the membrane—in particular, we use this method to track the onset of
morphological transitions in the membrane at elevated protein densities. We validate this approach by comparing
the results from the Widom method with those of thermodynamic integration and Bennett acceptance ratio
methods. Furthermore, the predictions from the Widom method have been tested against analytical calculations
of the excess chemical potential at infinite dilution. Our results are useful in precisely quantifying the free-energy
landscape, and also in determining the phase boundaries associated with curvature-induction, curvature-sensing,
and morphological transitions. This approach can be extended to studies exploring the role of thermal fluctuations
and other external (control) variables, such as membrane excess area, in shaping curvature-mediated interactions
on bilayer membranes.
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I. INTRODUCTION

Membranes constitute the boundary of all cells and cell
organelles; these structures are primarily composed of a lipid
bilayer. The curvature of a membrane (i.e., the curvature of the
lipid bilayer) is considered to play an active role in controlling
the spatial inhomogeneity and functionality in cells. Several
membrane bound proteins are thought to be involved
in generating and regulating membrane curvature, while
many others sense background membrane curvature generated
through other means. The mechanisms of membrane curvature
generation and sensing have been classified into several cat-
egories based on their distinct qualitative features [1,2]. They
include (1) protein scaffolding: in this mechanism multiple
proteins locally concentrate to a region of the membrane and
induce curvature by virtue of an intrinsic curvature in their
membrane facing domains [3]; (2) hydrophobic insertion: in
this mechanism, the involved proteins insert their hydrophobic
domains into the membrane bilayer (also known as wedging)
to generate curvature [2]; and (3) oligomerization: certain
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proteins, which cannot induce or sense membrane curvature
individually, associate into oligomeric domains and induce
curvature cooperatively [2,3]. Examples of curvature-inducing
proteins include families of proteins with membrane adjacent
BAR (Bin-Amphiphysin-RVs) domains [4–6]. BAR domains
are crescent-shaped α-helical bundles that bind to the
membrane bilayer mainly through the processes of protein
scaffolding and hydrophobic insertion. Based on their detailed
structures the BAR domains are further subclassified into
classical BAR, N-BAR, F-BAR, etc. Another example is
the dynamin family of proteins, which are comprised of PH
domains. A third example corresponds to proteins that employ
a hydrophobic insertion mechanism to generate curvature.
Typically, these proteins have an intrinsically disordered
structure. Upon binding to the membrane they undergo a
folding transition to form amphipathic α helices which are
buried inside a leaflet of the bilayer—specific examples
include ENTH and ANTH domain containing proteins [1–3].
For further discussion, we refer to recent review articles on
mechanisms of curvature induction by proteins on a bilayer
membrane [7–9].

Most theoretical studies on protein binding are concerned
with the adsorption on planar lipid bilayers (reviewed in [1]);
these studies are mainly concerned with planar membranes
and curvature effects were not discussed in these studies.
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Reynwar et al. [10] performed coarse-grained molecular
dynamics simulations which show that once adsorbed onto
lipid bilayers, curvature-inducing proteins experience an ef-
fective curvature-mediated attractive interaction. Jiang and
Powers [11] investigated lipid sorting induced by curvature
for a binary lipid mixture using a phase-field model. Das
and co-workers have investigated the effect of protein sorting
on tubular membranes using theoretical techniques [12,13].
Using Monte Carlo simulations, Sunil Kumar and co-workers
[14–18] studied the effects that membrane shape transitions
and protein-induced anisotropic bending elasticity and cur-
vature have on the shape of vesicles and the distribution of
proteins on them. Using the Monte Carlo method, Liu et al.
and Ramanan et al. have investigated the spatial segregation,
curvature sensing, and vesiculation in bilayers with curvature-
inducing proteins [19,20]. Along with these computational
studies, several experimental studies have been carried out to
investigate curvature generation.

Sorre and co-workers [21,22] have conducted experimental
investigations into the sorting of lipids on a lipid membrane
tube (tether) drawn from a giant unilamellar vesicle (GUV)
using an optical trap. Curvature sorting of lipids and its
influence on the bending stiffness of the bilayer membrane was
studied by Tian et al. [23,24]. Dynamic sorting of lipids and
proteins has been studied by Heinrich and co-workers [25].
These authors observed that the nucleation of disordered
membrane domains occurs at the junction between the tether
and GUV. Several other theoretical and experimental studies
have helped shed light on the phenomena of curvature-
mediated sorting [25–28].

In general, curvature-inducing proteins can act as cur-
vature sensors and aggregate on the curved regions of the
membrane [17]. In this way cells can perform protein and
lipid sorting for subsequent functions. The composition of
lipids in a membrane may also modulate the curvature-
sensing and curvature-generation activities of the proteins.
Regulation of membrane curvature and its sensing is also
important in understanding the underlying cellular physiology
governed by trafficking, especially in the context of health
conditions in humans. A definitive understanding of the
interplay between protein binding or migration and membrane
curvature evolution is emerging but remains incomplete. The
mechanisms that underpin such behavior are hugely important
in intracellular assembly and stability of organelles (which
often sustain extreme curvatures). These mechanisms are also
important in intracellular transport, and sorting of proteins and
cargo. Though many aspects of these fundamental processes
are well characterized from a molecular biology perspective,
especially in the domain of protein-protein interactions and
increasingly in the area of protein localization, several open
questions remain unanswered. These form the basis for a
complete understanding of the underlying mechanisms in these
fundamental (“unit”) cellular process from a biophysical and
thermodynamic perspective. The emerging picture from a wide
array of recent studies is that molecular interactions between
the protein and the lipids at the molecular scale directly
determine the morphology of cellular membranes at the
micron scale primarily by setting up curvature fields [29–33].
Determination and characterization of these curvature fields is
a challenging task [29,34–37].

In cell membranes, the protein-induced radius of curvature
ranges from a few nanometers to a few tens of nanometers
depending on the protein and lipid composition of the
membrane. For example, N-BAR domains stabilize curvature
regions with radius of mean curvature of 6.25 nm [38],
while dynamin induced tubes have radius of 25 nm [39].
In vitro experiments have reported epsin induced tubulation
of lipsomes with average tubule radius of 10 nm [34]. How
these dimensions are related to the curvature induced by just
one functional unit (i.e., the minimal oligomer with ability to
induce persistent curvature) is not known. Multiscale modeling
studies have been recently carried out to shed light onto
this important question [29,33,34]. The membrane mediated
interactions between the different curvature induced regions
can extend beyond the range of the molecular size of these
proteins. Hence in order to account for the disparate length
scales, the effect of multiple proteins, and thermal fluctuations,
we adopt a continuum approach in this article which is based
on the Canham-Helfrich description of membranes [40]. The
subject of this article is to define and quantify the free-energy
landscape of such curvature-inducing proteins on a fluid
bilayer membrane within the context of membrane elasticity
theory. This article does not model specific experimental
systems but rather focusses on a methodology to compute free
energies. It relies on the premise that for proteins that induce
curvature, when they act in dilute concentrations, the curvature
induction is localized because there is only a finite amount
of binding free energy available to deform the membrane.
Hence, the spontaneous curvature around the protein will
be localized. At the continuum level, just like the Canham-
Helfrich description of the membrane as an infinitesimally thin
surface, irrespective of the mechanism of curvature induction,
we make the assumption that the effect of the protein is to
introduce a curvature field (defined as the function H0; see
below), which is our definition for spontaneous curvature.

II. MODEL

A. Membrane model

For biological membranes—if the thickness is negligible
when compared to its lateral dimensions—the thermodynamic
behavior of the membrane can be well captured by the elastic
energy functional [40]

H =
∫ (κ

2
(2H − H0)2 + κ̄K + σbare

)
dA, (1)

where the material properties are given by κ , the bending
rigidity; κ̄ , the saddle splay modulus; and σbare, the bare surface
tension. The geometric properties of the surface are given by
the gauge-invariant scalars H and K , the mean and Gaussian
curvatures, respectively. H0 is a spontaneous curvature field
that represents the curvature-inducing interactions between the
protein and membrane; see Sec. II B for details. The integral
is performed over the surface area of the membrane with
dA being the differential area. This approach of treating the
effect of the curvature-inducing protein as a curvature field
in the continuum field formulation has been utilized in prior
studies [16–19,29,41–45].

We make the system amenable to numerical simulations
by discretizing the continuous membrane into a triangulated
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FIG. 1. (Color online) (a) Conformations of an initialy planar
(top panel) and an equilibrated membrane (bottom panel); the vertices
are colored based on the mean curvature which is expressed in units
of a−1

0 . (b) The three Monte Carlo moves—namely, the vertex move,
link flip, and protein move—used to evolve the membrane are shown.

surface with N vertices, T triangles, and L links. Self-
avoidance is imposed by restricting the link length l to be
in the range a0 � l �

√
3a0. Here, a0 is the characteristic

length scale of the membrane which is much smaller than the
persistence length. We note that the length scale in the model
is set by the value of a0. We choose N = 900 and initially
place them on a square planar configuration as a 30 × 30 grid.
The open edges of the membrane are subjected to periodic
boundary conditions along the plane of the membrane (see
Fig. 1).

B. Membrane-protein interaction model

For proteins that induce curvature, when they act in dilute
concentrations, we expect their curvature induction to be
localized because there is only a finite amount of binding
free energy to deform the membrane. Hence, the spontaneous
curvature around the protein will be localized to a finite length
scale. Irrespective of the mechanism of curvature induction,
we make the assumption that the effect of the protein is to
introduce a curvature field H0. We justify our stance because
the Canham-Helfrich formalism already approximates the
model membrane to be infinitesimally thin. So the precise
mechanism of spontaneous curvature induction, which can
only be correctly modeled in an atomic level model, has to
approximated in some manner within the Helfrich framework,
which is through the choice of the H0 function. An alternative
approach at the mesoscale is to explicitly represent the
protein field as particles with suitably characterized membrane
adhesion energies as done in [46–48]. However we have chosen
to employ the spontaneous curvature field model presented
here since it fits well into a multiscale framework, where the
required field parameters can be determined from an all atom
or coarse grained molecular simulation or experiment, as we
describe below.

We do not know the exact nature of H0. But several func-
tions chosen for H0—depending on the shape and extent of the
function and depending on how many proteins are present—
will elicit a finite number of emergent membrane morphologies
(such as vesicles, tubules, inward-tubules, caveloe, etc.), a

premise which is supported by a body of work discussed
in Ref. [7]. For example, in earlier studies, we have shown
that irrespective of whether we choose an isotropic Gaussian
function or a cosine function or a square-well function, we will
get vesicular buds under certain configurations [19,41–43].
Another example is that whether we choose an anisotropic
(ellipse shaped) Gaussian dimple, or an anisotropic saddle
shaped function, we can induce tubules [7].

In this article, the spontaneous curvature induced in the
vicinity of the membrane at �rm due to a protein at �rp is
represented as

H0(�rm,�rp) = C0 F(�rm,�rp). (2)

Here C0 is the induced membrane curvature at �rm = �rp.
As a first approximation we choose this deformation profile
F(�rm,�rp) to be a Gaussian function. A radially symmetric
curvature profile has the form

Fiso(r) = exp

(
− r2

ε2

)
, (3)

where r = |�rm − �rp| and the ε2/2 is the variance of the
Gaussian. In general, the function F can take any arbitrary
form as imposed by the protein curvature field. For instance,
proteins containing BAR domains, like Endophilin and Exo70
domain containing Exocyst complex, are known to induce
spatially anisotropic deformations [29,34–37] that depends
on the orientation of the protein θ = arccos(‖�rm · �rp‖). Such
anisotropic curvature profiles can be modeled as

Fani(r,θ ) = exp

(
−r2

[
cos2 θ

ε2
‖

+ sin2 θ

ε2
⊥

])
. (4)

ε2
‖/2 and ε2

⊥/2 are the variances along the directions parallel
and perpendicular to the protein orientation, respectively.

In order perform a systematic study of the free-energy
landscape associated with curvature induction, we deal with
curvature profiles that are analytically tractable: for this
purpose we have chosen an isotropic spontaneous curvature
profile in accordance with Eq. (3). Since this choice is an
approximation to the exact shape of H0, we discuss the
question: for a given H0 [e.g., Eq. (3)], how do we estimate its
parameters consistent with a given biological system?

There are three methods we employ to determine the
parameters of H0 for a given biological system, which we
summarize below. Method 1 (outlined in detail in previous
work [42]) estimates the parameters in Eq. (3) by matching
the membrane deformation energy due to one spontaneous
curvature field to the binding free energy of the protein with the
membrane bilayer. Method 2 (outlined in Ref. [19]) estimates
the parameters in Eq. (3) by matching the computed curvature-
induced sorting probability of the proteins with those measured
in experiments. In method 3, the numerical value of the
field parameters are determined based on molecular dynamics
simulations at the atomic or near-atomic (coarse-grained)
scales reported in the literature [29,33]. In all three methods,
the estimate for C0 is ∼ 0.05 nm−1 and that for ε is ∼17 nm
for ENTH domain proteins on a typical cell membrane with
κ = 20kBT . Later in the article, we set a typical value of
ε2 = 6.3a0

2, and κ = 10kBT (typical value for a lipid bilayer
in vitro), which fixes the value of a0 ∼ 10 nm.
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On a triangulated membrane, though the core of each
protein is defined on a vertex it induces curvature in the
neighborhood of its core vertex in accordance with Eq. (3).
Each of the n proteins is associated with a unique vertex and
each vertex can accommodate one protein at the most. The
presence of multiple proteins in the vicinity of each other
leads to a superposition of the spontaneous curvature fields.
The exact form of additivity of spontaneous curvature fields is
not well established and hence we employ a simple additive
rule where the multiple spontaneous curvature contributions
at a given membrane location are linearly added and truncated
as

H0(�rm) = min

⎛
⎝2C0,

n∑
p=1

H0(�rm,�rp)

⎞
⎠ . (5)

Note that H0(�rm) denotes the total spontaneous curvature at
membrane location �rm due to all proteins in its vicinity.

By including the effect of protein-membrane interaction as
a spontaneous curvature field, we assume that the equilibrium
behavior of the system is dominated by the membrane-
mediated protein-protein interaction. These interactions are
dictated by the strength and range of the curvature field and
small-length-scale interactions (i.e., at the atomic level) are
smoothed out. Justification for this assumption has recently
been presented by directly parametrizing such a curvature
field from molecular dynamics simulations [29]. In Ref. [49],
Aranda-Espinoza et al. employed a combination of integral
equation theory and the linearized elastic free-energy model
to describe the spatial distribution of the membrane-bound
proteins. Their study indicates that the interaction (in the
absence of thermal undulations) between two membrane-
bound curvature-inducing proteins is dominated by a repulsive
interaction. Consistent with these published reports, the calcu-
lated binding energy between two membrane-bound proteins
interacting through the curvature fields (again without thermal
undulations) shows dominant repulsive interactions which
is governed by the range of the curvature field [43]. Thus,
purely based on energetic grounds, the previous analyses have
suggested that membrane-deformation-mediated energies tend
to be repulsive and should prevent, rather than promote, the
formation of protein dimers or clusters.

Kozlov has discussed how the effect of fluctuations
can change the repulsive nature of the interactions [50].
The author’s discussion is based on the premise that any
membrane protein locally restrains thermal undulations of
the lipid bilayer. Such undulations are favored entropically,
and so this increases the overall free energy of the bilayer.
Neighboring proteins collaborate in restricting the membrane
undulations and reduce the total free-energy costs, yielding
an effective (membrane-mediated) protein-protein attraction.
Indeed, for the linearized free-energy model, computing the
second variation of energy (note that at equilibrium, the first
variation is zero, while the second variation governs the
stiffness of the system against fluctuations), yields that the
presence of a protein (or equivalently a curvature-inducing
function) leads to a localized suppression of membrane
fluctuations [43,44]. This calculation has been further verified
by using a free-energy method to compute the change in
Helmholtz free energy upon the introduction of a curvature

field [44]. This provides for the possibility of an entrop-
ically mediated protein-protein attraction. The outcome of
the interplay between the attractive entropic forces and the
repulsive energetic forces is context specific as both have the
same dependence on the protein-protein distance, and their
absolute values differ only by coefficients with similar values.
This has been demonstrated by examining the protein-protein
pair correlation (spatial and bond orientational) and through
the effect on membrane morphology [43]. Indeed the model
predicts that the cooperative effects of membrane-mediated
interactions between multiple proteins can drive different
morphological transitions in membranes [10,43,49,50]. This
notion of cooperativity is also consistent with the analysis of
Kim et al. [51], who have shown using an energetic analysis
that in the zero temperature limit, clusters with size larger
than five membrane-bound curvature-inducing proteins can
be arranged in energetically stable configurations. It is also
worth mentioning for completeness that Chou et al. [51]
have extended the energetic analysis to membrane-bound
proteins that have a noncircular cross-sectional shape and to
local membrane deformations that are saddle shaped (negative
Gaussian curvature) and have shown that in such cases
the interactions can be attractive even without considering
fluctuations.

C. Monte Carlo moves

The accessible states of the membrane protein system are
sampled using a set of three Monte Carlo moves that mimic
membrane undulations, lipid diffusion, and protein diffusion.
In the framework of dynamically triangulated Monte Carlo
(DTMC), a Monte Carlo step (MCS) is comprised of N

attempts to randomly displace the vertices, L attempts to flip
the links, and n attempts to randomly displace the protein on
the membrane surface. The various moves have been illustrated
in Fig. 1(b) and each of the attempted moves are accepted using
the Metropolis algorithm [52]. For a complete description of
the Monte Carlo moves see Ref. [19].

In our model, the random displacement vector is adaptively
chosen to ensure that the acceptance rate for the vertex move
is 50%, while the acceptance rate for link flips and protein
diffusion are dictated by the geometry. All our simulations
were equilibrated for 10 million MCSs and statistics were
collected over another 20 million MCSs.

D. Ensemble for the planar membrane

A planar membrane is characterized by its extensive
variables: the entropy S, the surface area A, and the projected
area AP . The internal energy of the membrane with n proteins
is given by

dU (N,n,A,AP ,S) = dH = μdN + μP dn + σdA

+ γ dAP + T dS. (6)

Here the conjugate variables are μ, the chemical potential
of the membrane, μP , the chemical potential of a membrane
protein, and γ , the tension due to the frame (also called the
frame tension). It should be noted that for closed membranes
(e.g., a cylindrical membrane or a spherical vesicle) the
volume enclosed by the membrane V and the osmotic pressure
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difference −P are used in place of AP and γ , respectively; we
limit our studies in this article only to planar membranes. We
can assume that l is not a physically independent variable from
the list of extensive variables defined above; rather, l sets the
length scale or resolution of the mesh, and tuning it allows us to
change A/AP or the value of σ . Here, σ is an effective tension
conjugate to A and is constituted by a combination of the bare
surface tension (σbare) and the area compressibility modulus. In
our simulations, we control (hold constant) N, n, σ, AP , and
T . Hence, the suitable thermodynamic potential for a planar
membrane in our simulations is given by

dF (N,n,σ,AP ,T ) = dH − T dS − SdT − σdA − Adσ.

(7)

The effective surface tension σ defined in Eq. (6) should be
distinguished from the bare surface tension σbare defined in
Eq. (1). We have performed all our studies with σbare = 0.
However, the effective surface tension determined from the
fluctuation spectrum can still be nonzero (see Sec. IV A),
because the value of σ is renormalized by an effective area
compressibility modulus term; the latter arises because of
the constraint a0 � l �

√
3a0, which we impose for self-

avoidance; see Sec. II A.

III. FREE-ENERGY METHODS

The free-energy landscape of the protein-membrane system
drives key biophysical phenomena including protein recruit-
ment, protein membrane remodeling, curvature sensing, and
protein clustering. Hence, in order to gain better insight into
the behavior of this system, we delineate a strategy to compute
the free-energy landscape for a single protein interacting with
the membrane using the suite of free-energy methods described
below.

A. Widom test particle (or field) insertion method

We determine the change in free-energy when a protein
binds to the membrane by determining the excess chemical
potential using the test-particle insertion method. The Widom
test particle (or field) insertion method is a computational tech-
nique used to probe a system’s chemical potential [53]. This
technique samples the excess chemical potential by randomly
inserting a virtual test (ghost) particle, and determines the
change in the system’s energy due to insertion of the test
particle.

Let Qn and Qn+1 be the partition functions for a membrane
with n and n + 1 proteins, respectively. The partition function
is related to the configurational free energy (i.e., not including
the contribution from the kinetic energy or from internal
degrees of freedom such as rotation), as Fn = −kBT ln Qn

for all n. Hence, the change in free energy upon insertion of
a protein field (i.e., the test particle) in a membrane with n

proteins is given by

�F = Fn+1 − Fn = −kBT ln

(
Qn+1

Qn

)
. (8)

It can be seen from Eqs. (6) and (7) that the above change is
equal to the chemical potential,

μP = ∂F

∂n

∣∣∣∣
AP ,σ,N,T

. (9)

Combining Eq. (9) with Eq. (8) we obtain

μP = −kBT ln

(
Qn+1

Qn

)
, (10)

which can be decomposed into an ideal gas contribution and
an excess contribution such that

μP = μid
P (ρ) + μex

P . (11)

The configurational component of the ideal part can be
calculated from the protein density ρ as kBT ln ρ; we note
that the full ideal gas contribution is given by μid

P (ρ) =
kBT ln(ρ�d ) not including the contributions from the internal
degrees of freedom. Here, � = (2πmkBT/h2)−1/2 with m the
molecular mass of the protein, h the Planck’s constant, and d

the dimensionality of the system. If �H be the energy change
due to insertion of a test curvature-inducing protein then the
excess chemical potential is written as

μex
P = −kBT ln

∫
〈exp(−β�H)〉Puniform(sn+1)dsn+1. (12)

Here, β = (kBT )−1, and �H = H(n + 1) − H(n) and the
ensemble average 〈·〉 is taken over the phase space defined
by the membrane and the n protein fields. Here, sn+1 = �rp,
with p = n + 1, is the position of the n + 1th protein field,
and Puniform(sn+1) represents a uniform probability distribution
from which the coordinate of the n + 1th particle or field is
sampled. The integral over sn+1 amounts to the sum over all
Widom test paticle or field insertion trials, and Puniform(sn+1)
equals the reciprocal of the total number of trials. For
conciseness, we represent the right-hand-side term in Eq. (12)
as −kBT ln〈exp(−β�H)〉n. This formulation is derived for
a homogeneous membrane while the corresponding form of
Eq. (12) for a spatially inhomogeneous membrane, where μex

P

is a function of the phase space variables r, is given by

μex
P (r) = −kBT ln〈exp[−β�H(r)]〉n. (13)

At equilibrium the bulk chemical potential μP is a constant,
hence the scaled, inhomogeneous, spatial density can be
determined as

ρ(r) = ρ0〈exp [−β�H(r)]〉n, (14)

where ρ0 = exp(μP ). The Widom test particle (or field)
insertion method is more suitable to probe chemical potentials
in dilute systems whereas its applicability to systems with
large protein concentrations is limited; see Appendix A for
a discussion. Hence, in order to study the higher protein
concentrations we also use more reliable methods based
on free-energy perturbation, which are defined in the next
sections.

B. Thermodynamic integration (TI) method

Thermodynamic integration is a free-energy perturbation
technique used to compute the change in free energy between
two states A and B, with energies HA and HB ; these states
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correspond to a membrane with n and n + 1 proteins, respec-
tively. Further, state A is characterized by a scalar parameter
λ = 0 and state B by λ = 1. The system is evolved with a
Hamiltonian (or energy function) H(λ) = (1 − λ)HA + λHB .
To define a path between A and B, the parameter λ is varied
between 0 � λ � 1 in successive windows of the simulation.
The free-energy change along this path [52] is given by

�FTI = FB − FA =
∫ 1

0

〈
∂H(λ)

∂λ

〉
dλ. (15)

TI overcomes many of the limitations of the Widom test
particle (or field) insertion method (see Appendixes A and B),
but the results of Eq. (15) should match the results from
Eq. (11) in the dilute limit, i.e., when the concentration of
protein is such that n 	 N .

C. Bennett acceptance ratio method (BAM)

The Bennett acceptance method is also used to approximate
the free-energy difference between two states close to each
other in phase space. This method is derived from the detailed
balance equations involving two states (A and B) [54]. Namely,

M(HA − HB) exp(−βHB) = M(HB − HA) exp(−βHA),

(16)

where M is some function that defines the acceptance distri-
bution for transition from state A to state B or vice versa. In
our case, we choose M to be the Metropolis function M(x) =
min (1, exp(−βx)), which defines the acceptance probability
according to a Boltzmann distribution. This yields

exp

(−�FBAM

kBT

)
A→B

= QB

QA

= 〈M(HB − HA)〉A
〈M(HA − HB)〉B . (17)

Appendix C provides a brief discussion of the expected
accuracy of the Bennett acceptance methodology for the choice
of the acceptance function M described above; the Bennett
acceptance method can be improved further by optimizing the
function M , to decrease the sampling error [55].

D. Analytic approximation to the excess chemical potential
of curvature-inducing proteins

For some special cases the chemical potential of a
curvature-inducing protein can be derived analytically. The
change in energy due to the addition of one curvature protein
can be determined from Eq. (1) as

�H =
∫

κ

2

( − 4HH0 + H 2
0

)
dA. (18)

At infinite dilution (i.e., when n = 0) this change in energy
for curvature fields given by Eq. (3) can be included in the
expression for the excess chemical potential, which can be
expressed as

μex
P = −kBT

ln

〈
exp

[ −κ

kBT

(
−2C0

∫
Hf (r)dA + πε2C2

0

4

)]〉
n=0

.

(19)

This relation can be further simplified to

μex
P = κπε2C2

0

4︸ ︷︷ ︸
μT =0

− kBT ln

〈
exp

(
2κC0

∫
Hf (r)dA

kBT

)〉
n=0︸ ︷︷ ︸

μfluc

,

(20)
since the second term in the exponential depends only on
constants. In the above equation, μT =0 can be interpreted as
the chemical potential to insert a protein on a flat membrane.
Cellular membranes can remain planar when the membrane is
strongly bound or pinned to other cellular components like the
cytoskeleton and other membrane binding proteins which can
be characterized by a pinning fraction. The pinning fraction φ

can range from 0 for a free membrane to 1 for a completely
pinned membrane. When φ < 1 the chemical potential has
additional contributions from the undulation modes of the
membrane, which is given by μfluc.

IV. RESULTS

A. Membrane undulations and power spectrum

The equilibrium properties of an undulating membrane
are significantly influenced by the choice of control variables
(see Sec. II D). Hence before delineating the protein induced
deformations we first analyze the fluctuation modes of a planar
membrane in the absence of a curvature (protein) field. The
height-height correlation of a planar membrane, described
by Eq. (1), parametrized in the Monge gauge [56,57], and
expressed in Fourier space, is given by

〈hqh−q〉 = kBT

AP [κq4 + σq2]
. (21)

Here, the angular brackets represent the equilibrium ensemble
average, and we define hq as the two-dimensional discrete
Fourier transform of the membrane height function h(�r) =
h(x,y). Namely,

h(�r) =
∑

q

hq exp (i �q·�r) . (22)

In Eq. (22), �q = (qx,qy) = 2π (nx/L,ny/L), where AP = L2

and nx,ny are integers.
The undulation spectrum corresponding to a planar mem-

brane with κ = 10kBT and σbare = 0 for a range of A/AP

is shown in Fig. 2. The data were fit to Eq. (21) and the
corresponding fit parameters, κeff and σeff , are shown in
the inset to Fig. 2; also see Fig. S1 in the Supplementary
Material [58].

When A/AP > 1.05 the membrane displays dominant long
wavelength undulations, represented in Fig. 2 by the large
intensities of the power spectrum at low q; this results in shapes
with curvatures of large magnitude. In this regime κeff <

κ—which corresponds to thermal (entropic) softening of the
membrane—and σeff ∼ 0, which implies that the membrane
is tensionless. Henceforth, we choose to model the membrane
with A/AP = 1.04 (parameters corresponding to the filled
symbols in the inset to Fig. 2) for which we compute κeff ∼ κ

and σeff ∼ σbare + σ = 0.0; however, we note that A/AP is
an important parameter which defines the thermodynamic
ensemble in Sec. II D.
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FIG. 2. (Color online) Undulation spectrum (main plot) and the
fit values for κeff and σeff (inset) for different values of A/AP . Each
pair of values seen in the legend of the main plot corresponds to
(A/AP ,AP ) for the membrane. With increase in A/AP the small q

behavior transitions from a concave to a convex profile, which is
characteristic of σeff crossing over to negative values as shown in the
inset. The effective bending rigidity is also renormalized with change
in A/AP such that κeff → 0 as A/AP → ∞. The filled symbols in
the inset correspond to values of A/AP for which σeff ∼ σbare and
κeff ∼ κ .

B. Membrane conformations versus C0 and n

The equilibrium shapes of a planar membrane interacting
with spontaneous curvature-inducing proteins with fixed ε2 =
6.3a2

0 , and for different magnitudes of the imposed curvature
C0, is shown in Fig. 3.

A comparison of the membrane conformations for C0 =
0.0, 0.4, and 0.8a0

−1, in Fig. 3, shows that in the presence
of a small number of the curvature-inducing proteins (dilute
limit) the membrane does not undergo any morphological
changes, which is consistent with previous studies [43]. This is
characteristic of membranes with dilute protein concentrations
or proteins imposing weak spontaneous curvatures. In the
dilute limit the proteins localize to regions on the membrane
matching their curvature field; however, the concentration is
too low to promote any spatial aggregation of proteins which
can lead to a morphological transition. Hence, the proteins in

0.0 0.4 0.8

(a) (b) (c)

1.2

0.4

0.8

FIG. 3. (Color online) Representative membrane conformations
as a function of imposed curvature C0 for a system with six proteins:
(a) no protein fields; (b) six protein fields each with C0 = 0.4a−1

0 ;
(c) six protein fields each with C0 = 0.8a−1

0 . Color bar shows the
induced curvature field H0 in units of a−1

0 .

this concentration regime can largely be regarded as curvature
sensors. We note, however, that even in the dilute limit there
is significant renormalization of the bending stiffness and
membrane tension (see Figs. S2 and S3 in the Supplemental
Material [58]). The effects at higher concentrations are more
drastic leading to a change in the undulation behavior; that is,
for larger n, the corresponding governing equations are more
complex than that described by Eq. (21) as the undulation
spectrum is two dimensional and depends on q,q ′. Specifically,
when κ = κ(x,y), σ = σ (x,y), and H0 = H0(x,y), and whose
respective Fourier transforms are given by κq, σq, h0,q , we can
show that H is given by

〈H〉 = 1

2AP

∑
�q

∑
�q ′

{[q2q ′2〈hqhq ′ 〉 + q2〈hqh0,q ′ 〉

+ q ′2〈h0,qhq ′ 〉 + 〈h0,qh0,q ′ 〉]κq+q ′

+ qq ′ [〈hqhq ′ 〉] σq+q ′ }. (23)

At large n, as can be seen from Figs. S2 and S3 in
the Supplemental Material, the spontaneous curvature fields
significantly influence the low q modes of the fluctuation
spectrum.

Our results in Fig. S4 (Supplemental Material) also quantify
the increase in excess area of the membrane (A − AP ) as
a function of n for different values of C0. We find the
membrane excess area to increase with protein concentration
(n), and is more pronounced for higher values of C0. This
increase is consistent with the softening of the membrane (i.e.,
lowering of κ); however the effect is subtle because a positive
renormalized tension is manifested. For larger n, the membrane
becomes substantially softer, however, the undulation behavior
is more complex than that described in Eq. (21), as discussed
above.

With increase in protein concentration, spatial aggrega-
tion is more pronounced and cooperative effects—due to
membrane curvature-mediated interactions—stabilize protein
clustering as well as induce morphological transitions. In this
limit, the proteins collectively induce stable morphological
features in the membrane as seen in Fig. 4; here, for C0 =
0.8a−1

0 , protein clustering leads to tubule formation when
n > 10.

Figures 3 and 4 show how the control variables such as
A/AP (relative membrane area) and n (protein concentration)

2 8 14

(a) (b) (c)

1.2

0.4

0.8

n

FIG. 4. (Color online) Representative membrane conformations
as a function of epsin concentration for C0 = 0.8a−1

0 : (a) 2 protein
fields; (b) 8 protein fields; (c) 14 protein fields. Color bar shows the
induced curvature field H0 in units of a−1

0 ; a tubule is present in (c).
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FIG. 5. (Color online) Excess chemical potential as a function of
ε2, for an isotropic Gaussian curvature obtained through the Widom
test particle (or field) insertion method. Data shown for four values
of spontaneous curvature C0.

govern the emergent membrane morphologies. These results
also suggest subtle competition between the translational
entropy of proteins, entropy due to membrane undulations,
and membrane deformation energy due to curvature induction
by proteins. Since the morphological changes in the membrane
are associated with a large change in the entropy of the system,
they can be quantitatively tracked only by computing the
free-energy landscape of curvature induction. The following
sections quantify the free-energy landscape of protein-induced
curvature deformations as a function of C0 and n.

C. Widom test particle (or field) insertion method

Widom test particle (or field) insertion method is used to
quantify the excess chemical potential of curvature-inducing
proteins on a planar membrane. Figure 5 shows the excess
chemical potential for dilute protein concentrations (i.e., n →
0) as a function of C0 and ε2, for curvature fields of the form
given by Eq. (3). For C0 = 0.4a−1

0 and 0.6a−1
0 , μex

P is negative,
and hence it is favorable to insert a protein on the membrane. In
this limit, the protein’s curvature field is shallow and matches
well with the equilibrium curvature profile of the natural
undulations in the membrane leading to reduced free-energy–
chemical potential. However, it should be noted that the excess
chemical potential can cross over to positive values with further
increase in the value of ε2 and the insertion of a protein
is no longer thermodynamically favorable. For C0 = 0.8a−1

0

and 1.0a−1
0 , the crossover to positive μex

P is observed at much
lower values of ε2. μex

P increases linearly with ε2 with their
respective slope depending on the value of C0. An increase in
μex

P is a signature of curvature induced deformation, since equi-
librium membrane profiles cannot accommodate such large
curvatures. Hence, these results quantify both the curvature-
sensing and curvature-inducing behavior of membrane
proteins.

The excess chemical potential as a function of the induced
spontaneous curvature C0 is shown in Fig. 6 (data from Fig. 5
has been replotted). As stated before, the free energy for
insertion of a protein is negative for small magnitudes of
induced curvature and extents (low C0 and ε2). For higher
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FIG. 6. (Color online) Excess chemical potential as a function of
C0, for an isotropic Gaussian curvature obtained through the Widom
test particle (or field) insertion method. Data shown for four values
of variance ε2.

values of ε2 the excess chemical potential is observed to grow
quadratically with C0, as predicted by Eq. (20). We note that the
higher values of ε2 correspond to an energy dominated regime,
for which, by relative comparison, the entropic correction
[second term in the right-hand side of Eq. (20)] is small enough
to be neglected.

We have shown in Fig. 7 the computed chemical potential as
a function of protein concentration (n) for a planar membrane
with C0 = 0.8a−1

0 and ε2 = 6.3a2
0 . For small values of n

where the concentration of proteins does not considerably
affect the membrane undulation, we observe μex

P to be positive
and to increase with increasing value of n. The excess
chemical potential reaches a peak value at n ≈ 6—beyond
which the chemical potential drops to negative values implying
that the subsequent recruitment of proteins is favorable. In
analogy, the region to the left of the peak corresponds to
the planar membrane morphology shown in Fig. 4(a) and the
region marked tubules to the extreme right corresponds to
the tubulated membrane conformation shown in Fig. 4(c). In

-20

-15

-10

-5

0

5

10

15

20

0 2 4 6 8 10 12 14
n

μ
e
x

P
(u

ni
ts

of
k

B
T

)

Planar Tubules

FIG. 7. (Color online) Excess chemical potential of an isotropic
Gaussian curvature field, with C0 = 0.8a−1

0 and ε2 = 6.3a2
0 , as a

function of the number of proteins (n).
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the transition region we observe both tubulated and planar
morphologies with equal probabilities. This leads to large
fluctuations in μex

P , which is indicated by the large error bars
in the chemical potential for protein concentrations n = 8
and n = 10 (see Fig. 7). The above example demonstrates
that the Widom test particle (or field) method is a powerful
approach to quantitatively map the phase boundary associated
with morphological transitions in membranes.

D. Comparison to analytical results

The values of the chemical potential at infinite dilution can
also be computed analytically. However, for proteins with finite
curvature extent, a direct comparison with analytical results is
complicated by the nontrivial curvature-field dependent term
in Eq. (20). It is possible, however, to obtain closed form
analytical predictions for the excess chemical potential when
spontaneous curvature fields of the form H0 = C0δ(r − r ′)
are considered. In this section, the results obtained from the
Widom test particle (or field) method are compared against
analytical predictions for such curvature fields.

In our model, proteins which do not have large extents of
curvature can be approximated as point sources of sponta-
neous curvature. A point spontaneous curvature field can be
described by

H0(�rm,�rp) = C0δ(r), where r = |�rm − �rp|. (24)

Using Eq. (24), Eq. (19) can be reduced to

μex
P = κC2

0

2Avertex︸ ︷︷ ︸
μT =0

− kBT ln

〈
exp

(
2κC0

kBT
H (sn+1)

)〉
n︸ ︷︷ ︸

μfluc

. (25)

Here, Avertex = √
3(1.3a0)2/2 is the area per vertex in our

discrete triangulated mesh, and 1.3a0 is the average link length
at the value of A/AP employed here: the factor Avertex arises
because of the discrete approximation to the Dirac δ function.
The ensemble average in (25) can be evaluated in simulations
through a cumulant expansion,

〈exp (tH )〉 = 1 + t〈H 1〉 + t2

2!
〈H 2〉 + t3

3!
〈H 3〉 + · · · , (26)

where 〈Hi〉 is the ith moment of the mean curvature, and
t = 2κC0/kBT . As demonstrated in Appendix D, the sum of
terms 〈Hi〉 is a weakly decaying function of i, and hence we
retain the first 15 terms in order to obtain convergence. In Fig. 8
μex

P obtained from the Widom test particle (or field) method
is plotted and compared against μT =0 and (μT =0 − μfluc). The
analytical results with finite temperature corrections agree well
with μex

P . The Widom test particle (or field) method is thus
validated for point spontaneous curvature fields, and hence
we are confident that the method gives reliable estimates
for the excess chemical potential. It should be noted that
the fluctuation corrections (μfluc) for the point spontaneous
curvature field ranges 0–6kBT . This large correction is a
manifestation of the protein curvature field localizing to
membrane undulations matching their profile, and the value
of μfluc depends on κ , C0, ε2, and n. In the next section, results
from the Widom test particle (or field) insertion method is
compared to results from both thermodynamic integration and

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1
C0 (units of a0)

μ
(u

ni
ts

of
k

B
T

)

μT=0

μT=0 − μfluc

μex
P

FIG. 8. (Color online) Widom test particle (or field) insertion
results are shown in blue. Analytical scaling with a fluctuation
correction calculated from the cumulant expansion is shown in green.
Zero temperature scaling is shown in red.

Bennett acceptance methods, to further validate the estimates
for the chemical potential.

E. Comparison of free-energy methods

The chemical potential to insert a protein field is given by

μ = dF

dn
= �F

�n
. (27)

Here, �F is the free-energy change to insert �n proteins. We
compute �F using two free-energy perturbation techniques
namely thermodynamic integration and the Bennett accep-
tance method (BAM). The techniques used to compute �FTI

and �FBAM involve growing �n curvature fields that have
zero spontaneous curvature initially (state A), to a desired
value of C0 (state B). Since the presence of the protein is felt
only through C0, perturbing the system from state A to B is
analogous to inserting �n proteins.

In order to make direct comparisons to results from the
Widom test-field method, we choose �n = 1. In this case,
the values of �FTI and �FBAM are related to the chemical
potential as

�FTI = �FBAM = μ = μid
P (ρ) + μex

P , (28)

where μex
P is calculated using the Widom test particle (or field)

insertion method, while the configurational contribution to the
entropic correction μid

P (ρ) [as in Eq. (11)], is given by

μid
P (ρ) = kBT ln ρ. (29)

Both thermodynamic integration and Bennett acceptance
methods calculate the difference in free energy between a
state with no protein field and a state with one protein field.
Results from the Widom insertion method cannot be directly
compared to TI or BAM to an important difference in sampling
between the methods. Widom insertion samples the curvature
field equally at all spatial locations on the membrane, whereas
TI and BAM introduce the curvature field at a specific spatial
location; this difference in sampling defines a correction of
entropic origin for thermodynamic integration and Bennett
methods which needs to be accounted for before all three
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FIG. 9. (Color online) Comparison of chemical potentials from
Widom, TI, and BAM, for different C0 with ε2 = 6.3a2

0 and n = 1.

methods can be compared against one another. Details of the
procedure for computing μid

P (ρ) are given in Appendix E.
The values of �FTI and �FBAM are plotted and compared
against Widom test-field values for μ in Fig. 9. The results
show excellent agreement for small values of C0, but each
method deviates as the spontaneous curvature is increased.
The estimate for the chemical potential μ agrees very well
with �FTI and �FBAM for small values of C0 < 0.6a−1

0 . For
larger values of C0 the chemical potential determined using the
Widom method deviates from the estimates derived from the
perturbation techniques. The comparison between the methods
at higher protein densities is also investigated and the results
are discussed in Appendix F.

The mismatch in the values of μ between these methods at
large values of C0 is well known. In the case of Widom test-
field insertion the deviation is a result of dominant contribu-
tions from some rare conformations to the chemical potential.
Estimates for the chemical potential from thermodynamic
integration also break down due to insufficient sampling at
larger values of C0; this can be seen in the small deviations from
the corresponding values of BAM in Fig. 9. Metrics to quantify
the sampling error from the three methods are discussed further
in Appendixes A, B, and C. The applicability of each of
the described free-energy methods depends on the system
investigated, desired accuracy, and the available computational
resources. The Widom insertion technique gives accurate
results with low computational overhead and this works very
well for dilute protein concentrations and weak curvature
fields; however at higher protein concentrations and strong
curvature fields, where the energies are large, this method
becomes inaccurate and this is a known artifact of Widom
insertion. On the other hand perturbative techniques like TI
and Bennett work very well for all concentrations, but are
computationally expensive. For dense systems TI or Bennett
methods are better suited.

V. CONCLUSION

Three free-energy sampling methods have been used to
quantify the chemical potential of curvature-inducing proteins

in a field theoretic mesoscale cell membrane model. Results
show good agreement between each method for weak spon-
taneous curvature fields and deviate at strong curvature field
strengths due to the differences in the nature of sampling in
each method. The results from the Widom method are also
in excellent agreement with an analytical result for curvature
fields approximated by a δ function, further validating our
computational approach. The analytical result also provides a
basis to explain the quadratic dependence of the excess chem-
ical potential on the strength of the curvature field induction in
an energy dominated regime. Further, the utility of the Widom
test particle (or field) insertion method to quantitatively track
phase boundaries associated with morphological transitions
of the membrane has been successfully demonstrated in the
context of a tubulation transition. Our results also indicate
that the Widom test particle (or field) insertion method fails
to capture the correct chemical potential at high curvature
field strengths, as expected, due to the large perturbation
in energy. In this limit, the thermodynamic integration and
the Bennett acceptance methods perform favorably to control
the statistical error. With these caveats noted, the free-energy
approach to quantify the energy landscape of protein-mediated
membrane deformation is novel and powerful in quantita-
tively examining protein-induced morphological transitions in
bilayer and membrane systems. Our simulations are able to
recapitulate a tubulation transition above a critical density of
curvature-inducing proteins. Tubulation of liposomes has been
widely observed in the literature for high concentrations of
curvature-inducing proteins including Epsin, Amphiphysins,
and Exo70 [29,59,60]. Given the characteristics of a single pro-
tein curvature field, our model would be able to predict these
tubulation thresholds for each protein species. Future work will
focus on extending these methods to study curvature-sensing
in cylindrical or tether geometries, anisotropic curvature
fields, systems with inhomogeneous background curvature,
and also the effect of control variables such as tension
in morphological transitions of the membrane induced by
spontaneous curvature.
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APPENDIX A: WIDOM TEST PARTICLE (OR FIELD)
INSERTION: QUANTIFICATION OF SAMPLING

In the Widom test particle (or field) insertion method, the
ensemble average is taken over a Boltzmann distribution of
�H. This means that the small or negative �H values will
dominate the ensemble average. The distribution of �H is a
Gaussian, as shown in Fig. 10, with P (�H) dependent on the
strength of the curvature field. As the strength of the curvature
field increases the mean of this Gaussian distribution will shift
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FIG. 12. (Color online) Normalized distribution of the change in
energy when the membrane transits from state A to state B and vice
versa in BAM.
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ical potential (μfluc) obtained with the cumulant expansion as a
function of the number of terms (i) considered. Data shown for three
values of C0 = 0.4,0.6,0.8a−1

0 .

to the right, towards higher energies, and both the precision and
accuracy of the Widom method will be impacted adversely.

APPENDIX B: ACCURACY OF THERMODYNAMIC
INTEGRATION

By setting up a range of simulations over the Kirkwood
coupling parameter λ in the interval from 0 to 1, the elastic
energy of the membrane with and without H0 can be tracked
and integrated along λ. Figure 11 details the contributions of
Hλ=0 andHλ=1. To calculate the chemical potential, which can
be compared to Widom insertion, the free energy is computed
by introducing one spontaneous curvature field (�n = 1).

APPENDIX C: ACCURACY OF BENNETT
ACCEPTANCE METHOD

The Bennett acceptance method requires the two states
being sampled to have a small difference in energy. This
accuracy can be quantified by plotting the distribution of
�H in each direction sampled (A → B and B → A). A
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FIG. 14. (Color online) Histogram of the number of unique
vertices visited by a curvature field (ψ) in a TI simulation as a function
of C0.
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TABLE I. Estimation of the entropic correction.

C0/(a−1
0 ) 2σψ F (ρ)/(kBT )

0.2 242 1.31
0.4 105 2.15
0.6 74 2.50
0.8 49 2.90
1.0 37 3.17

large overlap in the distributions of �H describes states
which have a small difference in energy. For example, in the
case of one curvature-inducing protein, the states A and B

represent a membrane with curvature fields C0 and C0 + δC0,
respectively. Consider state A to have a spontaneous curvature
C0 = 0.8a−1

0 , and state B to have C0 = 0.76a−1
0 , for a fixed

ε2 = 6.3a2
0 . The normalized distribution of �H is shown

in Fig. 12. As expected, the energy is normally distributed,
with the overlap between each distribution being within one
standard deviation of each other. If the states are separated
further apart in energy, this overlap will become minimal, and
the accuracy of Bennett will decline.

APPENDIX D: CONVERGENCE OF THE CUMULANT
EXPANSION

The number of terms to be retained in a cumulant expansion
depends upon its convergence behavior. Fig. 13 shows μfluc

computed using a cumulant expansion as a function of the
number of terms (i) retained. It can be seen that for higher
C0 more terms need to be considered in order to attain
convergence. For all analyses presented in this article, the first
15 terms were used to compute μfluc.

APPENDIX E: ESTIMATION OF THE ENTROPIC
CORRECTION

In order to compare TI or Bennett methods with the
Widom insertion method, the difference in density sampling
between the methods can be approximated. In TI or BAM
the spontaneous curvature field stabilizes a bump on the
membrane and this limits the lateral diffusion of membrane
protein field. This means that in the limit of a large C0 and ε2,
the membrane curvature field can only sample a small region
of the membrane which cuts off entropic contributions due to
diffusion. In a Widom simulation the curvature field probes the
free energy with equal probability across the whole membrane.
This disparity in density sampling is of entropic origin and can
be written as

FTI,BAM + F (ρ) = μex
P , (E1)
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FIG. 15. (Color online) Chemical potential vs n: Data from the
results of the Widon method and the TI method are shown for two
C0s with κ = 10kBT and ε2 = 6.3a2

0 .

where

F (ρ) = −kBT ln

(
2σψ

Nvert

)
, (E2)

with σψ being some average number of vertices out of a
total Nvert vertices that a curvature field visits in a TI or
Bennett simulation. The entropy lost in a thermodynamic
integration simulation was computed by plotting a histogram
of the number of unique vertices visited (see Fig. 14) by a
curvature field ψ and finding the standard deviation of that
distribution, σψ . The standard deviation is calculated from

σ 2
ψ =

∑
j

j 2P (j )2 −
∑

j

[jP (j )]2 . (E3)

Calculated values of standard deviation and their correspond-
ing values of free energy are listed in Table I.

APPENDIX F: COMPARISON OF FREE-ENERGY
METHODS AT HIGHER DENSITIES

The Widom test particle (or field) insertion method is
known to fail at high densities due to the nature of its
sampling. Therefore a comparison of free-energy methods for
higher densities is done in order to quantify its accuracy. A
comparison between the chemical potential obtained from both
TI and the Widom method for several protein concentrations
ranging from n = 0 to n = 6 is shown in Fig. 15. The entropic
correction for the Widom method is calculated according
to Appendix E. For C0 = 0.8a0

−1 this correction is approx-
imately F (ρ) = 2.85kBT , for C0 = 0.6a0

−1 it is F (ρ) =
2.42kBT , and for C0 = 0.4a0

−1 it is F (ρ) = 1.83kBT . The
comparison in Fig. 15 shows that the methods agree within
statistical error for C0 = 0.6a0

−1. The deviation between the
results at C0 = 0.8a0

−1 is systematic and is expected due to a
similar deviation seen in Fig. 9 between the Widom method
and other free-energy methods for dilute concentrations as
discussed in Fig. 9.
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[26] F. Jülicher and R. Lipowsky, Phys. Rev. E 53, 2670 (1996).
[27] U. Seifert, Phys. Rev. Lett. 70, 1335 (1993).
[28] B. R. Capraro, Y. Yoon, W. Cho, and T. Baumgart, J. Am. Chem.

Soc. 132, 1200 (2010).
[29] Y. Zhao, J. Liu, C. Yang, B. R. Capraro, T. Baumgart,

R. P. Bradley, N. Ramakrishnan, X. Xu, R. Radhakrishnan,
T. Svitkina, and W. Guo, Developmental Cell 26, 266 (2013).

[30] G. S. Ayton and G. A. Voth, Semin. Cell. Dev. Biol. 21, 357
(2010).

[31] H. Cui, G. S. Ayton, and G. A. Voth, Biophys. J. 97, 2746 (2009).
[32] H. Cui, C. Mim, F. X. Vázquez, E. Lyman, V. M. Unger, and

G. A. Voth, Biophys. J. 104, 404 (2013).
[33] R. Tourdot, R. P. Bradley, N. Ramakrishnan, and R. Rad-

hakrishnan, IET Systems Biology (2014), doi:10.1049/iet-
syb.2013.0057.

[34] C.-L. Lai, C. C. Jao, E. Lyman, J. L. Gallop, B. J. Peter, H. T.
McMahon, R. Langen, and G. A. Voth, J. Mol. Biol. 423, 800
(2012).

[35] G. A. Voth, Biophys. J. 104, 517 (2013).
[36] M. Simunovic, C. Mim, T. C. Marlovits, G. Resch, V. M. Unger,

and G. A. Voth, Biophys. J. 105, 711 (2013).
[37] A. Arkhipov, Y. Yin, and K. Schulten, Biophys. J. 97, 2727

(2009).
[38] C. Mim, H. Cui, J. A. Gawronski-Salerno, A. Frost, E. Lyman,

G. A. Voth, and V. M. Unger, Cell 149, 137 (2012).
[39] M. Marino, K.-H. Moon, and J. E. Hinshaw, Microsc. Microanal.

11, 1066 (2005).
[40] W. Helfrich, Z. Naturforsch. C 28, 693 (1973).
[41] J. Weinstein and R. Radhakrishnan, Mol. Phys. 104, 3653

(2006).
[42] N. J. Agrawal, J. Nukpezah, and R. Radhakrishnan, PLoS

Comput. Biol. 6, e1000926 (2010).
[43] N. J. Agrawal, J. Weinstein, and R. Radhakrishnan, Mol. Phys.

106, 1913 (2008).
[44] N. J. Agrawal and R. Radhakrishnan, Phys. Rev. E 80, 011925

(2009).
[45] N. Ramakrishnan, P. B. Sunil Kumar, and J. H. Ipsen, Macromol.

Theory Simul. 20, 446 (2011).
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