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Protein crowding on biomembranes: Analysis of contour instabilities
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Collective behavior of proteins on biomembranes is usually studied within the spontaneous curvature model.
Here we consider an alternative phenomenological approach, which accounts consistently for partial ordering
of proteins as well as the anchoring forces exerted on a membrane by layer of proteins. We show analytically
that such anisotropic interactions can drive membrane bending, resulting in nontrivial equilibrium morphologies.
The predicted instabilities can advance our conceptual understanding of physical mechanisms behind collective
phenomena in biological systems, in particular those with inherent anisotropy.
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I. INTRODUCTION

Composed of lipids and proteins, membranes of cells
and organelles are known to play an important role in
many biological processes and are integral to endocytosis,
cytokinesis, apoptosis, fusion, and fission of cells [1,2]. On
the one hand, these complex processes are accompanied by
bending of biomembranes, which may result in the budding
of vesicles (endocytosis). On the other hand, the observed
shape transformations of membranes are intertwined with
the collective behavior of proteins. It is believed that the
ability of proteins to generate and to sense curvature(s) [3]
of biomembrane is crucial in orchestrating budding of vesicles
[1,2,4]. In particular, two main mechanisms of proteins binding
to a membrane, which can generate curvature, are due to
(1) membrane scaffolding by intrinsically curved proteins or
(2) insertion of a wedgelike amphiphatic helix into bilayers
[1,2]. Recent experiments [5], however, have tested the
hypothesis of clathrin-mediated endocytosis and suggested
that protein-protein crowding may be a third mechanism for
bending the membrane.

Most theoretical models explore budding phenomena
within the Canham-Helfrich spontaneous curvature model [6].
Such a simplified approach assumes coupling between the lo-
cal density of proteins and the mean curvature of a lipid bilayer,
resulting in spatially inhomogeneous spontaneous curvature,
which either depends linearly on the density of bound proteins
[7,8] or corresponds to a hypothetical distribution of proteins
[9]; or three different spontaneous curvatures are prescribed
to model the effective interactions of anisotropic proteins
with membrane [10]. The phase-field approach considered
in Ref. [11] explores the role of protein-lipid affinity and
nonequilibrium dynamics on the clustering of proteins. In
turn, the statistical mechanics approach proposed in Ref. [12]
deals with the entropic effects due to the crowding of proteins,
modeled as a liquid composed of hard disks. Although proteins
may be considered in a liquid state inside the cell, on the
surface of the liquid-crystalline bilayer they become partly
ordered. The proposed approaches are perhaps too simple to
discuss consistently over different length scales the influence
of membrane morphologies on the partial ordering of proteins
and vice versa.

In this paper we consider an alternative phenomenological
model where proteins are (1) envisaged as a continuum layer

attached to one side of a biomembrane and (2) described
by a local orientational order and density per unit area.
Interactions between membrane and proteins are modeled as
anisotropic surface tension, dependent on the surface normal,
also known as anchoring in the theory of liquid crystals
[13]. The membrane-mediated interactions of two different
inclusions were studied previously [14] in the limit of strong
anchoring (fixed angle between the normal to the membrane
and the inclusion axis at the contact point), leading to the
change of an optimal shape of a membrane. An exact solution
to the global nonlinear bending phenomena of a spherical
vesicle in the presence of a grafted latex bead was derived
in Ref. [15]. Here instead we consider a “crowded” state,
i.e., the membrane is coated by proteins, which interact
with each other through either excluded volume interactions
(Onsager model of hard rods) or anisotropic van der Waals
forces of attraction (Maier and Saupe theory), both resulting
in the emergence of a nematic-like phase with long-range
orientational order. Contrary to widely studied nematic shells
with in-plane orientational order [16–18], here we do not
confine proteins to the tangent plane of the surface; instead
we allow them to approach a biomembrane at some angle
relative to the normal, which is not fixed a priori. Because
of the competing anchoring and bending energy effects, the
projection of protein length on the tangent plane varies along
the surface.

In the following, we formulate a one-dimensional version
of the model and explore analytically the equilibrium shapes of
biomembranes. Without referring to any specific experiments
we illustrate the role of anchoring forces on the bending
of biomembranes. Our analysis suggests that the proposed
minimal model is a viable approach for studying the mechanics
of biomembranes in the presence of proteins.

II. THEORETICAL FORMALISM

The membrane is modeled as a curve: s → γ (s) =
(x(s),y(s)) in the xy plane parametrized by the local angle
θ (s) between the normal n and the y axis (see Fig. 1). The
curvature of the membrane is |γ ′′(s)| = θ ′, where the prime
denotes the derivative with respect to s, yielding the bending
energy per unit length as Ebend = κ/2

∫
γ

ds (∂sθ )2, where κ is
the bending rigidity of the membrane, κ ∝ 1 − 10kBT [6].
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FIG. 1. (Color online) Membrane is described by the curve γ (s),
where s is the curvilinear coordinate. Two systems of coordinates
are introduced: the global Cartesian one along x and y axis, and
the local one, formed by the unit normal n and the unit tangent
vector t to the membrane. The parametrization is chosen such that
t = γ ′/|γ ′| = (− cos θ, sin θ ). The average orientation of attached
proteins is described by the vector p = cos ψ n − sin ψ t. The normal
n points out in the direction of proteins p, approaching the membrane
either from inside or outside the cell.

Proteins are modeled as anisotropic elongated molecules
attached to one side of a biomembrane (see Fig. 1). For protein
ensembles with an averaged orientation p, the relevant order
parameter is the traceless two-rank tensor Q = q(p ⊗ p − I

2 ).
Both p and q are functions of the arclength s associated with the
membrane. Field q measures the degree of orientational order
in the theory of nematic-isotropic phase transition [13]. Within
our framework, q can be also conceived as a weighted mass
distribution of proteins on a membrane. Similar to the lyotropic
liquid crystals [13], we assume that there is a critical density
of proteins ρ∗ below which q = 0 (protein “free”) and above
which we have q > 0 (protein “crowded”). In the vicinity of
the transition (ρ = ρ∗), we assume the Landau-deGennes form
[13,19] for the free energy of proteins bound to one side of
membrane, written as

ELdG =
∫

γ

ds {κp|∂sQ|2 + a tr(Q2) + c tr(Q4)}, (1)

where only the coefficient a ∝ (ρ∗ − ρ) depends on the protein
density ρ, while c > 0 is assumed to be constant. In the
local system of coordinate the averaged orientation of proteins
is p = cos ψ n − sin ψ t. Since t′ = θ ′n and n′ = −θ ′t, it
follows that |∂sp|2 = (θ ′ + ψ ′)2, |∂sQ|2 = q ′2/2 + 2q2(θ ′ +
ψ ′)2, and tr(Q2) = q2/2, tr(Q4) = q4/8. Based on the van
der Waals attraction between two protein rods in solution and
value of the Hamaker constant for proteins in water [20,21],
one can estimate the elastic constant κp ∝ 1 − 10kBT entering
(1), which has the same order of magnitude as the bending
rigidity κ .

Finally, we assume that proteins favor approaching the
membrane at some specific orientation p0 (“easy axis”) or
angle ψ0 relative to the normal n. Then the leading order
contribution to the interaction between proteins and the
biomembrane is proportional to p0 · Q · pT

0 , which can be cast
in the form Eanch = ω/2

∫
γ

ds q sin2[ψ(s) − ψ0]2, known as
anchoring [13,19]. For example, a network of the cortical actin
filaments approaches the lipid membrane almost tangentially
[22], so that ψ0 → ±π/2. The anchoring strength ω for
proteins on biomembranes may vary within a wide range
depending on the local density of proteins and type of chemical

bonding; for nematic liquid crystals ω � 10−7 − 10−4J/m2.
Next we explore the consequences of this simplified model and
illustrate how the crowding effect of partly ordered proteins
can drive bending of biomembranes.

III. ANCHORING EFFECTS

First, for simplicity we consider the case when proteins are
homogeneously distributed (ρ = const) along the membrane
and in equilibrium q̄ = √−2a/c ∝ √

ρ − ρ∗, with ρ > ρ∗
(“crowded” state). The membrane contour γ is a closed curve
with constant length L = 2πR, where R � 1 − 10 μm is the
characteristic size of the cell. Introducing the dimensionless
quantities for length s̃ = s/R and the bending rigidity κ̃ =
κ/(4q̄2κp), one can rewrite the sum of the energy contributions
Ebend + ELdG + Eanch as

Etot ∝
∫ 2π

0
ds̃

{
(∂s̃ψ + ∂s̃θ )2 + κ̃(∂s̃θ )2

+ ωq̄R2κ̃

κ
sin2(ψ − ψ0)

}
. (2)

Note that ∂s̃ψ can be thought of as spontaneous curvature,
due to the coupling term ∂s̃ψ∂s̃θ , while the analog of ∂s̃θ

for surfaces is the Gaussian curvature rather than the mean
curvature [23]. In any case the form of (2) is not equivalent to
the spontaneous curvature model [6]. Substituting the Euler-
Lagrange equation for θ we obtain the pendulum equation for
ψ , whose solution takes the closed form

ψ(s̃) = ψ0 + am

(
s̃ ω̃

√
A,− 1

A

)
,

(3)

θ (s̃) = Bs̃ − ψ(s̃) − ψ0

1 + κ̃
,

where am is the amplitude of the Jacobi elliptic function
and ω̃2 = ωq̄(1 + κ̃)R2/κ . Two integration constants A and
B are determined from the closing conditions ψ(s̃ + 2π ) =
ψ(s̃) + 2πnψ and θ (s̃ + 2π ) = θ (s̃) + 2πnθ , where nψ,nθ ∈
Z. For nematic liquid crystals nψ is allowed to be half integer
because of the inversion symmetry p ↔ −p. Here we assume
that proteins bind only with a specific site to the membrane,
although the collective behavior in the bulk may still be
described with nematic order. Then the periodicity of ψ(s̃)
in Eq. (3) is πψ = 4K(−1/A)/(ω̃

√
A), where K is a complete

elliptic integral of the first kind. Then the contour length of
the membrane 2π contains the integer number nψ = 1,2, . . .

of periods πψ .
The resulting equilibrium shapes for a closed biomembrane

are found by means of numerical integration of x(s) =
− ∫ s

0 dσ cos θ (σ ) and y(s) = ∫ s

0 dσ sin θ (σ ) substituting the
solution (3) for the angle θ . The typical morphologies are
presented in Table I for κ̃ = 1. The instabilities towards
elongated shapes (nψ = 1) and periodically undulated shapes
(nψ > 1) depend on a sole physical parameter ω̃. Different
colors of the closed curves measure the deviation of the actual
protein tilt ψ from the preferred direction ψ0. According to
(3), ψ0 does not influence the angle θ and the corresponding
shapes of curves. For relatively weak anchoring or low protein
density, ω̃ � 1 proteins reorient together with the normal n
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TABLE I. (Color online) Equilibrium shapes of biomembrane γ (s) in the presence of attached proteins, calculated by numerical integration
of x(s) = − ∫ s

0 dσ cos θ (σ ) and y(s) = ∫ s

0 dσ sin θ (σ ) using (3), and we choose κ̃ = 1, nθ = 1. The dimensionless anchoring strength
ω̃ = R

√
2ωq̄/κ is a sole parameter responsible for the instability towards elongated shapes (nψ = 1) or periodically undulated shapes

(nψ = 2,3), which occurs at ω̃ � 10. The color of the closed curves is associated with the protein tilt relative to ψ0, scaled to sin(ψ − ψ0) on
the color bar.

ω̃ = 1 ω̃ = 10 ω̃ = 30

nψ = 1

-1

-0.5

 0

 0.5

 1

nψ = 2

-1

-0.5

 0

 0.5

 1

nψ = 3

-1

-0.5

 0

 0.5

 1

accordingly, and the membrane shape has a uniform curvature.
For relatively strong anchoring ω̃ � 10,30 the proteins tend to
align on average along the “easy axis” ψ = ψ0 except for
some narrow regions with enhanced curvature |∂sθ |, where
the reorientation of p happens. The total energy (2) increases
with the number of buds or nψ as listed in the Table II. For a
given cell size R, the increase of the anchoring strength ωa or
degree of protein order q̄ may initiate cell elongation and the
formation of buds. Thus, within the proposed framework, the
anchoring forces exerted on the membrane by partly ordered
proteins can drive shape instabilities.

The presented results, based on optimizing the free energy
(2) with competing protein-protein and membrane-protein
effective interactions, on a qualitative level could support
a recent protein crowding hypothesis [5] as one of the
plausible driving mechanisms for membrane bending. Other
mechanisms include (1) membrane scaffolding by intrinsically
curved proteins and (2) insertion of an amphiphatic helix into
a bilayer [1,2]; both are well studied within the spontaneous
curvature models [4,6,7,9]. Here, however, we do not impose

TABLE II. The values of Etot calculated with straightforward
integration of (2) for the shapes shown in Table I and κ̃ = 1.

ω̃ 1 10 30

nψ = 1 20.513 89.425 249.42
nψ = 2 39.294 160.00 480.00
nψ = 3 70.697 224.461 704.292

any direct coupling to the membrane curvature and focus on
the order parameter associated with proteins.

In the case of an open membrane with small bending
rigidity κ̃ � 1, we can write a special solution extremizing
the energy (2), which is θ (s̃) ∝ arccos[tanh(ω̃s̃)]. Assuming
rotational symmetry along the vertical axis, this solution
resembles the shape of a membrane pore [see Fig. 2(a)]. The
color gradient marks the reorientation of proteins, which is

(a)

 0
 1

(b)

 0

 0.5

 1

FIG. 2. (Color online) The membrane morphologies obtained in
the limit of a small bending rigidity κ̃ � 1. The found solutions are
open curves with a mirror symmetry similar to (a) a membrane pore
and (b) budding of the membrane. The membrane has a different
protein coverage from top to bottom ρ/ρ∗ = (0.3,0.5,0.7) with
maximum density at the center (q̂|s=0 = 1) and no proteins in the
far field (4). The bending of a membrane is computed based on the
approximation of (6), (8), and (9). The formation of a bud occurs
within the length scale α−1/3. The color bar values show the local
orientation of attached proteins in terms of sin(ψ − ψ0).

022713-3



O. V. MANYUHINA PHYSICAL REVIEW E 90, 022713 (2014)

the cause of the membrane instability. This is not rare that
solving the problem with reduced dimensionality (1D) may
capture the essential features of a higher dimensional (2D)
biologically relevant shape. However, identifying the shape
instability does not mean that the proposed mechanism is the
one realized in nature, where in vivo systems are essentially out
of equilibrium. Moreover, from the modeling point of view,
the assumption about the homogeneous distribution of protein
density is questionable. This leads us naturally to the subject
of the following section, where we allow spatial variation
of the order parameter q related to the density ρ within our
phenomenological ansatz.

IV. DENSITY EFFECTS

Next, we aim to study the interplay between the order
parameter q the average orientation of proteins p and the
shape of biomembrane n. Because of the nonlinear coupling
between these three fields, there is no hope that one can
find an analytic solution to the system of partial differential
equations associated with the sum of ELdG (1), Ebend, and
Eanch, without assuming a certain relationship between the
coefficients as well as the form of the solution. Let us study
the shape instability of a flat membrane (θ = 0), assuming a
local change of the protein order in the vicinity of s = 0, such
that q̂|s=0 = q0 > 0, while far from this point the asymptotic
behavior is q̂|s→∞ = ∂sq̂|s→∞ = 0. Such perturbation can be
meaningful to get additional insight into biological processes
like endocytosis (budding of vesicles). The solution for q can
be derived from (1), yielding [22]

q̂(s) = 2
√

a/c

sinh(s
√

a/κp + D)
, D = sinh−1

(
2

q0

√
a

c

)
, (4)

where
√

a/c ∝ √
ρ∗ − ρ. There exists the characteristic length

scale
√

κp/a, where only the protein order changes, while the
protein orientation ψ and normal to the membrane θ assume
their constant equilibrium values, which satisfy the asymptotic
boundary conditions

ψ |s→∞ = ψ0, θ |s→∞ = ∂sθ |s→∞ = ∂sψ |s→∞ = 0. (5)

The effect of perturbation (4) q = q̂(s) + O(ε2) can be
quantified by expanding the angles θ and ψ in a power series of
a small parameter ε, such as ψ = ψ0 + εψ̂ + O(ε2) and θ =
εθ̂ + O(ε2). In the following, we construct the approximate
solution for the orientation fields ψ̂ and θ̂ up to the lowest order
O(ε), by linearizing the corresponding equilibrium equations,
yielding

θ̂ ′ = − q̂2ψ̂ ′

q̂2 + κ/(4κp)
,

[
q̂2ψ̂ ′

q̂2 + κ/(4κp)

]′
= ω

κ
q̂ψ̂. (6)

One can replace the arclength s with a new variable σ =√
ω/κ

∫ s
ds[1 + κ/(4κpq̂2)] and rewrite (6) in conventional

form

∂σσ ψ̂ = G[q̂]ψ̂, G[q̂] = q̂3

q̂2 + κ/(4κp)
. (7)

Then performing the integration numerically or using the
Wentzel–Kramers–Brillouin (WKB) approximation of the
one-turning point problem [24] one can construct the solution

to the above equation. Here, instead, we focus on the limiting
case κ � κp and expect the qualitative behavior of solutions
to be the same. Expanding q̂(s) (4) in the neighborhood of
s = 0, we get the leading order contribution to (6) as ψ̂ ′′ =
α(β − s)ψ̂ . The solution to this equation can be expressed in
terms of the Airy function Ai [24] up to some constant C1,

ψ̂1(s) ∼ C1 Ai[α1/3(β − s)], α = 2q0

tanhD

√
a

κp

ω

κ
, (8)

where β = 1/2
√

a/κp tanhD and α−1/3 is another length scale
of the problem. In the region s → ∞ we have an exponentially

decaying q̂(s) (4). Then Eq. (6) reduces to ψ ′′ = γ e−s
√

a/κpψ ,
whose solution can be approximated as

ψ̂2(s) ∼ C2I0

(
2

√
γ κp

a
e−s

√
a/κp

)
− 1, (9)

where γ = 4e−D(ω/κ)
√

a/c and I0 is the modified Bessel
function of the first kind. The integration constants C1 and C2

can be found by matching two solutions (8) and (9) within a
finite region or simply patching them at a single point with
Mathematica [24]. Thus the oscillatory behavior of (8) is
replaced with exponentially decaying function (9), and the
smooth solution for ψ̂ is valid over the whole interval. The
shape of the membrane is found by integrating numerically
θ̂ � −ψ̂ (6) as discussed in the previous section. The resulting
curves are shown in Fig. 2(b), demonstrating the formation
of a bud for different protein density ρ/ρ∗. The budding is
more pronounced at a higher value of ρ, and the calculated
shapes of curves look similar to the micrographs of membrane
subjected to endocytosis [1,9]. As a result we found that the
local inhomogeneity of the protein density (4) may cause the
reorientation of proteins [(8) and (9)] and induce the shape
bifurcation of biomembranes.

V. CONCLUDING REMARKS

We have considered the mechanics of a biomembrane
coated by a layer of proteins with partial order. The presented
phenomenological model captures generic morphologies of
biomembranes and may contribute to understanding the
origin of budding instability within the protein crowding
hypothesis [5], in particular, accounting for the anchoring
forces exerted on a biomembrane by a layer of proteins. We
believe that the proposed approach can be a step forward
in establishing feasible connections between the collective
behavior of proteins and geometry of membranes beyond the
conventional spontaneous curvature model. Our predictions
can also facilitate the development of microscopic models of
membrane-protein and protein-protein interactions, which in
turn would allow to determine the effective elastic constants
and anchoring strength in the presence of orientational order.
The extension of the model to higher dimensions (2D) as
well as direct comparison between theory and experiment
is the next step for model generalization and improvement.
However, projecting the protein orientation to the tangent
plane of the surface and introducing coupling of the in-plane
order of proteins with the geometry of a membrane is not
straightforward and will require an extension of the existing
models [16–18].
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