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Punctuated equilibrium and shock waves in molecular models of biological evolution
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We consider the dynamics in infinite population evolution models with a general symmetric fitness landscape.
We find shock waves, i.e., discontinuous transitions in the mean fitness, in evolution dynamics even with smooth
fitness landscapes, which means that the search for the optimal evolution trajectory is more complicated. These
shock waves appear in the case of positive epistasis and can be used to represent punctuated equilibria in biological
evolution during long geological time scales. We find exact analytical solutions for discontinuous dynamics at the
large-genome-length limit and derive optimal mutation rates for a fixed fitness landscape to send the population
from the initial configuration to some final configuration in the fastest way.
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I. INTRODUCTION

Applications of the methods of statistical physics to the
study of the molecular models of biological evolution [1–17]
and the origin of life [1,18] have attracted much attention in
recent decades. In this paper, we use the methods of statistical
physics to study punctuated equilibria [19–21]: a well-known
phenomenon of biological evolution during long geological
time scales, related to the the life tree [22]. A molecular model
of biological evolution for such phenomena is still lacking.

It has been observed from fossil records that many species
can maintain the same original forms for a very long geological
time (called stasis), then rapidly change to very different
forms or branch to new species with very different forms. In
1972, Eldredge and Gould called such phenomena “punctuated
equilibria” [19–21]. In 1986, Raup observed that magnitudes
and time separations for extinctions of species appear in many
different scales [23]. In 1987, Bak, Tang, and Wiesenfeld
observed that many natural systems can self-organize into
critical states without tuning a parameter and proposed the
concept of self-organized criticality (SOC) [24]. They also
proposed a lattice sand-pile model which can show the
behavior of SOC [24,25]. In 1989, Bak, Chen, and Creutz
proposed that ecology of interacting species can evolve
to a self-organized critical state [26]. In 1993, Bak and
Sneppen (BS) proposed a simple lattice model for punctuated
equilibrium, which can evolve into a self-organized critical
state [27]. In the BS model [27], each lattice site represents
a species, which is far from a molecular evolution model
for punctuated equilibria. In the present paper, we present
a molecular biological evolution model for the dynamics of
the mean Hamming distance of mutations 〈n〉 when the fitness
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of a sequence depends only on the total number n of mutations
from the main (reference) sequence, thus it is defined as g(n).
We find that the mean overlap x∗(t) ≡ 1 − 2〈n〉/L between
sequences and the reference sequence can show the behavior
of a shock wave when g(n) has positive epistasis (L is the
genome length). We identify shock waves with punctuated
equilibria and thus can have a molecular model of biological
evolution with punctuated equilibrium.

An important concept in the modern molecular theory of
genetics and biological evolution is epistasis, which means that
different genes or mutations are not independent. Epistasis is
positive (negative) when the second derivative of the fitness
with respect to the number of mutations is positive, i.e.,
g′′(n) > 0 [negative, i.e., g′′(n) < 0] [17]. In positive (neg-
ative) epistasis, the effects of two mutations is larger (smaller)
than the effects of the addition of two separate mutations.

In the usual statistical physical models of biological
evolution, the genome of length L is considered as a collection
of L alleles of two types: +1 and −1 [1,3,13,14,17], and there
are 2L different sequences labeled by Si with 0 � i � 2L − 1.
Si ≡ (s1

i , . . . ,s
L
i ) has the probability pi(t) to appear at time

t and the reproduction rate (fitness) ri which is independent
of time. In the Crow–Kimura (CK) model [3,14], pi(t) satisfy
coupled differential equations in which the mutation and the re-
production appear in different terms. In the Eigen model [1,13],
the mutation and the reproduction appear in the same term.

The CK model [3,14] and the Eigen model [1,13] were
often studied with the single peak fitness function (also called
landscape), in which one reference sequence, say S0, has higher
reproduction rate, and other sequences have small reproduction
rate. Without the loss of generality, one can choose every
component of S0 to be +1.

A more general version is the symmetric fitness landscape.
In the symmetric fitness landscape, ri depends only on the the
Hamming distance n between Si and S0, i.e., the number of mu-
tations from S0 to Si , and one can write ri as g(n). This (sym-
metric) fitness landscape is the first approximation of reality.
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The CK model [3,14] can be written as

dpi

dt
=

∑
j

mijpj + ripi − pi

∑
j

pj rj

≡
∑

j

Aijpj − pi

∑
j

pj rj ,

Aij = δij rj + mij . (1)

Here, mij is the mutation rate from state Sj to state
Si , and ri is the fitness of state Si . State Si state Sj

have a Hamming distance dij = (L − ∑
k sk

i s
k
j )/2. As dij =

1, we choose a mutation rate mij = γf when di0 > dj0,
mij = γb when di0 < dj0, and mii = −di0γb − (L − di0)γf ;
as dij > 1, mij = 0 [9]. We can write the fitness ri ,
the rescaled mean fitness R, and the mean overlap x∗,
respectively, as

ri ≡ Lf (s1, . . . ,sL), (2)

LR ≡
∑

i

piri, (3)

x∗ ≡ 1 − 2
∑

i

pidi0/L. (4)

There are different ways to obtain the dynamic solution
for a biological evolution model. One approach uses some
methods of spin glasses [13]. One can use this approach in
application to the models with single peaks [13,28–31] or the
random-energy-like fitness landscape [32].

Another approach uses the Hamilton–Jacobi equation
(HJE) [33–37]. This approach gives the exact dynamics in the
case of a smooth fitness landscape [36] in Crow–Kimura [3,14]
and Eigen models [1,2,13]. The dynamics was solved in terms
of the mean number of mutations in a population for a general
symmetric fitness landscape case.

For the quadratic fitness function only smooth dynamics
has been found for the case x0 �= 0 in Ref. [36], where
x0 ≡ 1 − 2n/L (n is the Hamming distance between Si and
S0) is the overlap of Si with S0; for the exponential or quarter
fitness functions, discontinuous transitions in the dynamics
have been found numerically [36]. Some results of Ref. [36]
have been confirmed recently by the quantum-field theoretical
method in Ref. [38].

Reference [36] fails to give an analytical theory for these
discontinuous dynamics. In this article we give the exact
analytical description for this discontinuous dynamics and
apply our exact solution of dynamics to investigate some
optimization aspects in the dynamics of evolution models:
what mutation rates give the fastest dynamics to send the
evolving population from the initial state to some final state?

We will consider how the characteristics of the dynamics
is influenced by the sign of epistasis, looking for shock waves
in the dynamics of x∗(t). It is equivalent to shock waves
in the mean fitness R(t) because there is a simple relation
between R(t) and x∗(t): R(t) = f (x∗(t)) where f is the
fitness function of Eq. (2).

The investigation of optimization aspects of the evolution
processes is a subject of much current interest [39–45]. Such
works are especially important, because the evolutionary-

dynamics approach to the cancer cell is one of the central
directions in cancer biology [46].

Two types of optimization problems are considered: via
mutation rate [40] or via fitness landscapes [41]. In particular,
the first type of optimization, via mutation rate, is relevant to
biology. Experimental results suggest that mutation rates can
vary, e.g., increasing during certain adverse conditions [40].
This phenomenon is referred to as “adaptive mutation,”
indicating that the mutation rate varies in response to selective
pressure [40]. By optimization we mean the fastest dynamics
to send the population from the given initial configuration to
some final configuration.

Traulsen et al. [41] considered this in the context of a related
mathematical problem—the famous Brachistochrone problem
suggested in 1696 by Johann Bernoulli. Given two mutants,
A and B, separated by n mutational steps, the problem is to
find the evolutionary trajectory which allows a homogeneous
infinite population of A to reach B in the shortest time. In
Ref. [41] an approximate solution was given for the case
of finite populations with the optimization of the fitness
landscape: what fitness landscape gives the fastest dynamics
to send the population from the fixed original configuration to
the final configuration?

The goals of this paper are to solve the dynamics of biolog-
ical evolution models, including the case with discontinuities,
and to apply exact analytical results to find the fastest dynamics
via mutation rate or fitness.

In such studies, we consider the infinite-population model.
In reality the evolutionary dynamics is described through the
finite number of replicators. In general, the number of different
types changes randomly and fluctuates. When the total number
of population is much larger than the number of all possible
types (genomes), we can describe the evolutionary dynamics
by using deterministic equations, and such equations represent
the infinite-population model. This is a rather theoretical
abstraction but allows calculating rather accurately some mean
characteristics of evolving populations like the mean fitness.
We assume that the solution of the infinite-population model
is the first step in the solution of the finite-population case.

This paper is organized as follows: In Sec. II A, we
solve the dynamics of the Crow–Kimura model [3,14] for the
asymmetric-mutation case, simply generalizing earlier results
in Ref. [36] with symmetric mutations. Asymmetric mutations
are chosen according to the methods presented in Ref. [41]. In
Sec. II B, we present an analytical theory of discontinuities,
which is the key result of the article. In Sec. II C, we investigate
the relation of shock waves with the sign of epistasis. In
Sec. II D optimal mutation rates are calculated for the original
distribution with a fixed overlap. In Sec. III, we solve the opti-
mization problem via fitness. All the results of Secs. II B, IIC,
and III are for symmetric-mutation schemes. In Sec. IV we
calculate the evolution dynamic for the case of unidirectional
mutations and confirm our general result for discontinuities.
In Sec. V, we summarize and discuss our results.

II. THE FASTEST DYNAMICS

A. Crow–Kimura model with asymmetric mutations

We consider the infinite-population model with dif-
ferent forward and backward mutation rates and the
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symmetric-fitness landscape, where the fitness depends on
a Hamming distance (the number of different alleles at the
corresponding positions) from the reference sequence. Thus
ri ≡ g(i) = Lf (1 − 2di,0/L), where the Hamming distance
di,0 is the number of “−1” alleles in the ith sequence. We
define the lth Hamming class as a collection of all sequences
at the Hamming distance l from the reference sequence. In
the case that all the sequences with the same l number of −1
alleles have the same probability, it is possible to write the
following system of equations for relative class probabilities
Pl ≡ ∑

i piδ(l,di,0), 0 � n � L, with pi from Eq. (1):

dPl

dt
= Pl[Lf (ml) − (L − l)γf − lγb]

+ γf (L − l + 1)Pl−1 + γb(l + 1)Pl+1, (5)

where ml = 1 − 2l/L, and Pl are relative probabilities at the
Hamming distance l (l mutations), f (x) is a fitness function,
and γf and γb are the forward and backward mutation rates,
respectively. The forward mutation means the the mutation
increases the Hamming distance from the reference sequence,
and backward mutation decreases the Hamming distance to the
reference sequence. In Eq. (5), for l = 0 and l = L we omit
P−1 and PL+1. To derive Eq. (5), we neglect the last term in
the first two lines of Eq. (1); one can use a procedure similar to
that for the Eigen model presented from Eq. (1) to (4) in [13]
to show that such neglect does not influence the final result. As
in Refs. [33,36], at discrete values of overlap x = 1 − 2l/L

we use the ansatz

Pl(t) ≡ P (x,t) ∼ exp[Lu(x,t)],

then Eq. (5) can be written as the Hamilton–Jacobi equation
(HJE) for u ≡ ln P (x,t)/L [33]:

∂u

∂t
+ H (x,u′) = 0,

−H (x,p) = f (x) − γf (1 + x)

2
− γb(1 − x)

2

+ γf

1 + x

2
e2p + γb

1 − x

2
e−2p. (6)

Here p ≡ u′ ≡ ∂u/∂x, the domain of x is −1 � x � 1, and the
initial distribution is u(x,0) = u0(x). Let us denote the location
for the maximum of the distribution P (x,t) as x∗(t). Thus at
x∗(t), we have p = u′ = 0. The differentiation of Eq. (6) with
respect to x at p = 0 gives

− dx∗

dt
= [f ′(x∗(t))]

u′′(x∗(t),t)
+ [(1 + x∗)γf − (1 − x∗)γb], (7)

where u′′ ≡ ∂2u/(∂x)2. We see that the dynamics of the
maximum depends on the mutation rates, the fitness and the
curvature of the distribution.

Minimizing −H (x,p) via p, we obtain the expression of
the evolution potential,

U (x) = f (x) + √
γbγf

√
1 − x2 − γf

1 + x

2
− γb

1 − x

2
. (8)

The evolution behavior is defined by the evolution poten-
tial [36]. The mean fitness R and the surplus are defined as

R = max[U (x)]|x, f (s) = R. (9)

In Ref. [36], we solve Eq. (6) for the γf = γb = γ case by
a method of characteristics [47,48]. For the characteristics line
x(t) we have a Hamilton equation dx/dt = dH (x,p)/dp. By
using the identity

k ≡ γf

1 + x

2
e2p + γb

1 − x

2
e−2p,

γf

1 + x

2
e2p − γb

1 − x

2
e−2p = ±

√
k2 − γf γb(1 − x2), (10)

and the Hamilton equation with the Hamiltonian H given by
Eq. (6), we obtain

ẋ = ±2
√

k2 − γf γb(1 − x2),

k = q + γf

1 − x

2
+ γb

1 + x

2
− f (x), (11)

where q ≡ ∂u(x,t)/∂t is constant along the characteristics,
like the energy of the particle in classical mechanics, because
q = −H (x,p) and H (x,p) does not depend t . As we are
interested in the dynamics of the maximum of distribution
x∗, and at x∗ we have p = 0, thus Eq. (6) gives q = f (x∗),
which will be used to derive Eq. (13) below. At every point we
have two characteristics: moving to the right and left.

We consider the dynamics of the population, initially having
a fixed overlap x0 with the reference (master) sequence. Let
us look at the manner of change in the mean overlap of
the population x∗(t∗) = ∑

j Pj (1 − 2di,0/L) at the moment in
time t∗. Pj is the fraction of type j in the population, dj,0 is the
number of mutations in the j th type (compared with the master
sequence), and such a mutant has a fitness Lf (1 − 2di,0/L).
As time progresses, the overlap distribution spreads out and
we therefore focus on the time evolution of the overlap x∗
which yields the maximum of this distribution.

Integrating dt = (dt/dx)dx, we obtain for the large
initial x0

t∗ = 1

2

∣∣∣∣
∫ x∗

x0

dξ [F (γ,x∗,ξ )]−1/2

∣∣∣∣ , (12)

where we have the following expression for F :

F (γ,x∗,ξ ) =
[
f (x∗) + γf

1 + ξ

2
+ γb

1 − ξ

2
− f (ξ )

]2

− γf γb(1 − ξ 2). (13)

Equation (12) corresponds to the motion along one charac-
teristic. For the small x0, we should consider the motion
along two characteristics: after the point x1 we should take
the characteristics with sign − in Eq. (12). We get

t∗ = 1

2

∫ x1

x0

dξ√
F (γ,x∗,ξ )

+ 1

2

∫ x1

x∗

dξ√
F (γ,x∗,ξ )

, (14)

and x1 is the solution of

F (γ,x∗,x1) = 0. (15)

In Ref. [36] a symmetric-mutation scheme is considered;
γf = γb = γ with Fs instead of F :

Fs(γ,x∗,ξ ) = [f (x∗) + γ − f (ξ )]2 − γ 2(1 − ξ 2). (16)
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For the quadratic fitness function

f (x) = c

2
x2, (17)

with the parameter c > 0, Eqs. (12) and (14) have real solutions
provided that x∗ < 1 − γ /c. This upper bound determines the
asymptotic value of the overlap with the reference sequence.
Of course, in the case γ /c > 1 the selective phase is lost and
the dynamics drifts in the sequence space so that the asymptotic
regime is characterized by a zero overlap with the reference
sequence.

To decide which equation to use, we should find the time
period when Eq. (14) coincides with Eq. (12). It happens when
the first term in Eq. (14) is 0, or x1 = x0. Thus we need to
calculate th:

th = 1

2

∫ x0

xh

dξ [Fs(γ,xh,ξ )]−1/2, (18)

where xh is a root of Fs(γ,xh,x0) = 0. This equation has a
solution provided that f (xh) � f (x0) which, in the case of
monotonically increasing fitness, implies xh � x0. Thus for a
given x0 and t∗ we calculate xh and then th. If t∗ < th we use
Eq. (12), otherwise we use Eq. (14), to obtain x∗ = x∗(t∗).
Having an analytical dynamics, we can now investigate the
optimization problem and the shock waves.

B. Discontinuous dynamics in case of quadratic fitness function

In Ref. [36], analytical dynamics for the symmetric-
mutation case, Eqs. (12) and (14) with F = Fs , had been
derived. Discontinuous dynamics occurs in these formulas as
the point of the maximum (or the mean overlap) jumps from
one point to another. However, the authors of Ref. [36] failed
to describe analytically the discontinuities of x∗(t). The mean
fitness is defined as the maximum of U (x). When this function
has two maxima at 1 � x > 0, there could be a discontinuity
in the dynamics, while Ref. [36] could not identify the position
of this discontinuity. The point is that there can be singularities
in the dynamics, even for the fitness with a single maximum
at x > 0, when the fitness is too steep.

We performed numerical calculations for symmetric mu-
tations (γf = γb = γ ) in order to clarify the character of
discontinuous dynamics; see Figs. 1–3. In the selective phase
c > γ , the potential U (x) has a single maximum at 1 > x > 0.
Nevertheless, in some cases the function x∗(t∗) displays jumps.

Figure 1 illustrates the time evolution of x∗ for x0 = 0.01.
If γ /c is not too small, x∗(t∗) is a monotonic function, and
the direct numerics of the system of Eq. (5) well supports the
theoretical formulas for x∗(t∗).

For small γ /c the S-shaped curves indicate the existence of
a discontinuity in the x∗(t∗) dynamics, calculated by Eq. (5).
This threshold phenomenon was overlooked in a previous
analysis of this problem which considered a single parameter
setting, c = 2 and γ = 1 [36].

The unusual time dependence of x∗ exhibited in Fig. 1
is rather counterintuitive. We present in Fig. 2 the results of
the numerical solution of the ordinary differential equation
(ODE) system (5) for different sequence lengths. These results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.2  1.4  1.6  1.8  2

x*
 

ct* 

FIG. 1. The dynamics of x∗(t∗) (mean overlap with the reference
sequence) as function of time t∗) by Eqs. (12) and (14) for the
symmetric case γf = γb = γ = 1 and (top to bottom at ct∗ = 2)
γ /c = 0.05, 0.1, . . . , 0.7, 0.75. The initial population has overlap
x0 = 0.01 with the reference sequence. For t∗ → ∞, we find x∗ =
1 − γ /c.

not only confirm the theoretical predictions but complement
them. The discontinuous dynamics arises when the curve
x∗(t∗), defined by Eq. (14), has an S-like shape. The solution
corresponding to the lower branch of the S-like shape is the
stable one. This information allows us to obtain the value
t∗ = t∗d at which the discontinuity takes place as well as the
size of the discontinuity �x∗. This can be done by locating the
lower value of t∗ = td for which

dt∗/dx∗ = 0, (19)

where t∗ as a function of x∗ is given by Eq. (14).
Below td in same range of t∗ there are three different

solutions of x∗(t) by Eq. (14), as shown in Fig. 2. We denote
them by x∗

1 (t∗), x∗
2 (t∗), x∗

3 (t∗), where x∗
1 (t∗) is the low branch

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.6  1.7  1.8  1.9  2

x*

ct*

FIG. 2. The dynamics of x∗(t∗) by Eqs. (12) and (14) for x0 =
0.01, γ /c = 0.05 and by Eq. (1) (dashed vertical lines from left to
right) L = 2000, 4000, . . . , 12 000. For L → ∞ the jump in x∗ takes
place at ct∗ = ct∗

d = 1.939 and has the size �x∗ = 0.755.
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 0

 0.04

 0.08

 0.12

 0.16

 0.2

 0  0.2  0.4  0.6  0.8  1

γ c
/c

x0

FIG. 3. The critical line γc/c vs x0 at which �x∗ = 0. The critical
c is defined from the system of equations dx∗/dt∗ = 0, d2x∗/d2t∗ =
0. For the γ values below this curve, the most probable overlap x∗

undergoes a discontinuous transition at t∗ = t∗
d (see Fig. 2).

and x∗
3 (t∗) is the high branch of the S-like shape. At t∗ > td

there is only the solution x∗
3 (t∗).

At the L → ∞ limit we have the following solution for the
system by Eq. (5):

x∗ = x∗
1 (t∗), t � td ,

(20)
x∗(t∗) = x∗

3 (t∗), t > td .

We checked that Eqs. (19) and (20) are also valid for the
exponential fitness landscape, as shown in Fig. 4.

C. Sign of epistasis and shock waves

We investigate the existence of shock solutions for the

f (m) = cmn, (21)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

x*

t*

FIG. 4. The relaxation from the original distribution with x0 = 0
for the fitness function f (m) = 4 exp[(m − 1)], γ = 0.1. The dashed
lines from left to right correspond to L = 1000, 5000, 10 000. The
jump is at the point dt∗/dx∗ = 0 at L = ∞.

and

f (m) = c(1 − m)n. (22)

Our aim is to investigate the dynamics with small x0. We
construct the curve x∗(t) by Eqs. (12)–(14), and then checked
the condition (19).

We use the following expression for the derivatives
dt∗/dx∗:

2
dt∗

dx∗ = − 1

γ x∗ +
∂F (x∗,x0)

∂x∗
∂F (x∗,x0)

∂x0

1√
F (x∗,x0)

− f ′ (x∗)

[−f ′ (x∗) + γ x∗] γ x∗

−
∫ x0

x∗

1√
F (x∗,ξ )

d

dξ

∂F (x∗,ξ )
∂x∗

∂F (x∗,ξ )
∂ξ

dξ, (23)

for t < T1, and

2
dt∗

dx∗ = − 1

γ x∗ −
∂F (x∗,x0)

∂x∗
∂F (x∗,x0)

∂x0

1√
F (x∗,x0)

− f ′(x∗)

[−f ′(x∗) + γ x∗]γ x∗

−
∫ x1

x0

1√
F (x∗,ξ )

d

dξ

∂F (x∗,ξ )
∂x∗

∂F (x∗,ξ )
∂ξ

dξ

−
∫ x1

x∗

1√
F (x∗,ξ )

d

dξ

∂F (x∗,ξ )
∂x∗

∂F (x∗,ξ )
∂ξ

dξ, (24)

for t > T1. We analyzed the dynamics by using Eqs. (23)
and (24) and Mathematica. Within the accuracy of our
numerics we could find shocks only for n > 1.2

Figure 5 illustrates the loop in x∗(t) dynamics by Eqs. (12)–
(14) for the case Eq. (21) with c = 20, x0 = 0.01, n = 1.8.

For Eq. (22), we considered n = 1.8, x0 = 0.01, c =
10 000, as shown in Fig. 6.

According to our numerics, the shock waves exists for the
positive epistasis [the sign f ′′(m) is positive], and absent for
the negative epistasis.

0.095 0.100 0.105 0.110 0.115
t�

0.2

0.4

0.6

0.8

1.0
x�

FIG. 5. (Color online) Relaxation from the original distribution
with x0 = 0.01, c = 20 for the fitness function f (m) = c|m|1.8.
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0.000215 0.000220 0.000225 0.000230 0.000235
t

1.0

0.8

0.6

0.4

0.2

x

FIG. 6. (Color online) Relaxation from the original distribu-
tion with x0 = 0.01,c = 10 000 for the fitness function f (m) =
c|1 − m|1.8.

D. Mutation rate giving fastest dynamics

Let us now calculate the optimal mutation rates, to get
finally L(1 − x∗) mutations, when at the start there are more:
L(1 − x0) mutations.

We have chosen x0 = 0.01, x∗ = 0.1, 0.2, 0.3, . . . , 0.8,
and c = 20 for the quadratic fitness function of Eq. (17), then
used Eqs. (12) and (14) to calculate ct∗ as a function of γ /c.
We draw the calculated results in Fig. 7.

According to Fig. 7 there is an optimal value of the
scaled mutation rate γ /c which minimizes the evolutionary
time to go from x0 to x∗ > x0. We note first that this
evolutionary trajectory also confirms our theoretical result for
the exponential fitness case (possible only for γ /c < 1 − x∗).
We can see that, to reach the endpoint, say, x∗ = 0.2, it is a bad
strategy to choose both small and large values of γ /c. In fact,
there is an optimal value of the mutation rate, which for the
parameter setting of this example (x0 = 0.01 and x∗ = 0.2) is
γopt/c = 0.3632.

 1.1
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 1.8

 1.9
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

ct
*

γ/c

FIG. 7. Time period t∗ needed for the maximum of the overlap
distribution to reach the values (right to left at ct∗ = 2) x∗ =
0.1, 0.2, . . . , 0.8 as functions of γ /c. The initial population has
overlap x0 = 0.01 with the reference sequence. The dynamics can
reach x∗ provided that γ /c < 1 − x∗.

To find the optimal mutation rate we just put the condition
dt∗/dγ = 0 to get

1√
ε

dFs (γ,x∗,ξ )
dγ

dFs (γ,x∗,ξ )
dx1

= −1

4

∫ x1

x0

dξ

F
3/2
s

dFs(γ,x∗,ξ )

dγ

− 1

4

∫ x1

x∗

dξ

F
3/2
s

dFs(γ,x∗,ξ )

dγ
,

Fs(γ,x∗,x1) = ε. (25)

For the numerical calculations we take ε = 10−6. What is
surprising is that the optimal mutation rate γopt grows very
steeply as x∗ departs from x0 and quickly reaches a maximum
value. According to Eq. (25), the optimization depends on the
behavior of the fitness function outside the interval [x0,x

∗]
when x1 > x∗.

III. THE FASTEST DYNAMICS VIA THE
CHOICE OF FITNESS

Although the selection of a fitness function which
minimizes the evolution time between any two points x0 and
x∗ (the maximum of the overlap distribution in two distinct
times) is not as biologically significant as the selection of the
optimal mutation rate, it has a considerable aesthetical appeal
because the problem is somewhat akin to the Brachistochrone
problem in physics [41]. The authors of Ref. [41] assume
that the fastest finite population evolution dynamics between
two sequences is given by a single peak fitness. However,
one should accurately formulate the optimization task. The
first possibility is to look at the arrival of finite fraction of
population at the peak sequence. The second approach is to
look for the arrival of the maximal population at the small
distance (the Hamming distance is small compared with L) to
the peak sequence, or just arrival of the maximum population
at the Hamming class of the peak sequence. The situation is
highly nontrivial. If we choose the first approach with some
small fraction, then the linear fitness could give better results
than the single-peak fitness; see Fig. 8.

 0
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P 0
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FIG. 8. The dynamics p0(t) for L = 20, symmetric-mutation rate
γ = 1. Fitness f (x) = 2Lxa for a = 1, 2, 4 (from bottom to up at
t = 1.4). The single peak fitness corresponds to the choice f (x) = 0
for x < 1 and f (1) = 2L.
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If we take the second approach to optimization of the
dynamics in evolution models, the single-peak fitness appears
to be the fastest one. For the case considered (from sequence
to sequence), we can provide the expression of the minimal
time following the results, following Ref. [13].

For the symmetric-mutation case, the fastest relaxation
results in the single-peak fitness landscape (r0 = J for the
peak sequence and ri = 0 for other sequences). In Ref. [13] the
relaxation period has been found to send the population from
the given sequence [at the Hamming distance N (1 − m)/2
from the peak sequence] to the peak sequence. To find the
minimal time t we add the optimization condition via the
choice of γ to the solution of Ref. [13]:

t = φ(x,t1) + J t1

J − γ
,

1 + x

2
tanh(γ t1) + 1 − x

2 tanh(γ t1)
− J

γ
= 0,

φ(x,t) =
[

1 + x

2
ln cosh(γ t) + 1 − x

2
ln sinh(γ t)

]
,

∂
φ(x,t1)+J t1

J−γ

∂γ
= 0. (26)

We have performed numerical calculations (see Fig. 8),
supporting the choice of single-peak fitness as an optimal
fitness for the fastest relaxation in some class of fitness
functions, and t by Eq. (26) as a minimal time period.

Consider now the fitness-optimization problem in the case
of the distribution with a fixed overlap (to send the population
with the initial overlap m = x0 to the eventual distribution with
m = x∗) and a symmetric fitness landscape. We are looking at
the optimization problem for the non-negative fitness function
f (x):

f (x) � J, x < x∗; f (x∗) = J. (27)

For the fitness function f (x) = 0, x < x∗, we have

t∗ = 1

2

∫ x∗

x0

dξ√
(J + γ )2 − γ 2(1 − ξ 2)

. (28)

It is easy to check that the minimal time is given by the fitness
of Eq. (27). Because

√
(J + γ )2 − γ 2(1 − ξ 2)

>
√

[(J + γ − f (ξ )]2 − γ 2(1 − ξ 2), (29)

the time given by Eq. (28) is less than the time given by any
f (m) > 0.

IV. UNIDIRECTIONAL-MUTATION CASE

Consider the case of asymmetric mutations [41] with γb =
0. We have an initial distribution at some x0, and our goal
is to send the population to the overlap x∗. Now there is a
single characteristic curve at any point. Therefore, contrary to
the symmetric-mutation case, all the properties are defined via
the behavior of the fitness function in the considered interval

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8

x*

ct*

FIG. 9. The dynamics of x∗ as a function of time t∗ for
unidirectional-mutation case with γb = 0, x0 = 0, (left to right)
γf /c = 0.1, 0.05, and 0.01. The numerical solution of the system (5)
is given by the dashed vertical lines for (left to right) L = 1000, 5000,
and 10 000.

[x0,x
∗]. Equation (12) gives the following:

t∗ = 1

2

∫ x∗

x0

dx

f (x∗) + γf
1−x

2 − f (x)
. (30)

We see that the optimization via mutation is trivial: by raising
the mutation rate we can send the population to the point x∗
immediately. The optimization via fitness is also trivial: the
fastest trajectory is via the fitness f (m) = 0, m < m∗, and
f (1) = J0.

We have performed numerical calculations for the quadratic
fitness case (see Fig. 9). We see that the results again support
the conjecture that the jumps occur at the point dt∗/dx∗ = 0.
This is the main result of this section.

V. DISCUSSION

We give conditions for the discontinuous dynamics of
evolution models in Eqs. (19) and (20). Such conditions
are typical even for the smooth fitness landscape. We have
considered the fastest dynamics in evolution models of infinite
population, symmetric fitness landscape, and large genome
length and found the first exact solution of the problem.
Approximate methods for the dynamics of evolution models
are too crude [16]. Although good progress has recently
been made in the finite-population-optimization problem in
evolution, the related problem in infinite population has
remained entirely unsolved. In this article, we provide a
comprehensive investigation of the problem, including the first
exact analytical formulas for the optimization (what mutation
rate gives the fastest dynamics for evolution model with fixed
fitness landscape).

We found dynamical discontinuities even in the case of
quadratic fitness. While the formulas are rather complicated
[see Eq. (19)], we found a simple criteria when the shock waves
exists: our numerics supports the view that shock waves exist
in the case of positive epistasis. Actually, our Eq. (2) describes
the evolution in phenotypic space, described via the continuous
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parameter m. While in genotypic space the evolution is defined
via the mutation and selection, in phenotypic space there is a
new player, the curvature of the distribution in the phenotypic
space [see Eq. (3)]. Another important feature of our main
equation (2) is the existence of high degrees of p in the
expression of the Hamiltonian. We assume that a similar
discontinuous transition exists in other versions of models
describing the evolution in phenotype space.

The sharp transitions in evolution are important, be-
cause they qualitatively resemble the punctual evolution
phenomenon [19–22,27]. The fastest dynamics via the choice
of mutation rate is the most intriguing result regarding
the adaptive mutation phenomenon. We have calculated the
minimal time to send the population from the original sequence
with small overlap (with the master sequence) and low fitness
to the some final one (with a higher fitness); see Eq. (25).
The solution to the mathematical optimization problem is
nontrivial; in particular, there exists a certain optimal mutation
rate.

The numerical results confirm our analytical predictions.
The optimization via fitness landscape (to send the population
from the original sequence to the final sequence in the fastest
way) should be carefully defined as a mathematical problem.
When we are interested in sending some small fraction of the
population to the master sequence, the linear fitness can give
better results than the single-peak one. When we are looking
for the arrival of the maximal population at the small distance

(the Hamming distance is small compared with L) to the peak
sequence, or just arrival of the maximum of population to the
Hamming class of the peak sequence, the optimum is given
by a single-peak fitness landscape. Such a hypothesis was
assumed first in Ref. [3]. Here, we provide an exact analytical
expression for this optimal time period, as well as numerical
results illustrating the optimization. If we are looking for a way
to send the population with the initial overlap x0 to the final
overlap x∗, then, as we have rigorously proved, the minimal
time is given by the single-peak-like fitness (20).

Our infinite-population solutions could be an initial step in
consideration of the real biological situation for more involved
cases than those considered in Refs. [3,14] with asexual
biological evolution models. For example, we can extend the
study of this paper to the finite-population problem [49] or
the sexual biological evolution model with an approximate
neutral fitness function [17]. It will be interesting to apply our
findings to cancer, relating them with different stages of tumor
progression [46].
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