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Catastrophic shifts and lethal thresholds in a propagating front model of unstable tumor progression
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Unstable dynamics characterizes the evolution of most solid tumors. Because of an increased failure of
maintaining genome integrity, a cumulative increase in the levels of gene mutation and loss is observed. Previous
work suggests that instability thresholds to cancer progression exist, defining phase transition phenomena
separating tumor-winning scenarios from tumor extinction or coexistence phases. Here we present an integral
equation approach to the quasispecies dynamics of unstable cancer. The model exhibits two main phases,
characterized by either the success or failure of cancer tissue. Moreover, the model predicts that tumor failure
can be due to either a reduced selective advantage over healthy cells or excessive instability. We also derive an
approximate, analytical solution that predicts the front speed of aggressive tumor populations on the instability
space.
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I. INTRODUCTION

Cancer is a disease that can be initiated by the failure of a
single cell. Whenever such failure leads to some proliferation
advantage over the neighboring somatic cells, this single cell
is prone to originate its own cell lineage within its host tissue.
After many rounds of replication, additional failures may
occur, eventually generating a large population of abnormal,
proliferating cells. This would be a rough description of the
disease, but it would be more appropriate to say that cancer
is an evolutionary dynamic process [1,2]. Changes occur in
time and accumulate over generations and the final success
of the tumor requires an appropriate accumulation of changes
affecting different types of genes.

We can classify cancer genes into three basic categories
[3]: (a) oncogenes, (b) tumor suppressor genes, and (c)
stability-related genes. These groups corresponds to genes
that (a) increase replication due to mutation, (b) increase cell
growth when the gene is silenced or lost, and (c) modify
genome stability due to failures in cell division, repair, and
maintenance mechanisms [4–9]. All these changes occur
through the process of cell replication, when cancer genes
are likely to experience mutations or losses [10] leading to the
emergence of fitter mutant clones.

In order to understand the evolution of cancer, a large
number of mathematical models have analyzed the impact
of selection [11] on the evolution of clones. The stochasticity
of mutations has also been shown to play a major role in
triggering the clonal competition among different mutants,
and could be a principal reason for the high heterogeneities
(and the long waiting time to malignancy) observed in cancer
development [12]. Another very relevant mechanism is spatial
structure, which is also very significant in many ecological and
evolutionary processes [13]. For example, in the context of
asexual evolving populations, the spatial competition between
different clones slows down the establishment of driver
mutations (i.e., mutations causing a selective advantage) [14]
if the population exceeds a critical size. Analogous results
have been found in the context of cancer evolution, where
space can increase the waiting time to tumor malignancy

[15]. In other cases, the spatial invasion of tumors has been
modeled as a propagating front [16]. This has permitted us
to, e.g., compare the role of advection (chemotaxis) and cell
diffusion on the invasion speed of glioblastomas [17,18], or
analyze the invasiveness enhancement by acidic pH gradients
at tumor-host interfaces [19].

Although most classic models of cancer evolution deal
with those factors associated with growth and competition
among clones, an especially important characteristic of most
tumors is precisely the increased levels of instability associated
with progression. Instability can be understood in terms of
mutations but also of losses and gains of genetic components
that modify genome stability, making cells more prone to errors
while replicating [20]. Mutations have been an intrinsic part
of all evolutionary models of population dynamics (including
cancer) but it is typically assumed that mutation rate remains
constant over time. In genomically unstable tumors, the
failure of the repair mechanisms, along with the generation
of aneuploidy, makes it possible to damage key compo-
nents associated with the maintenance of genome integrity
[4–9,20].

With their loss or failure, further increases of instability
are expected to occur, since other genes linked to stability
and repair are more likely to be damaged. As a consequence,
instability itself can evolve over time. Such evolvable trait
raises the question of how much instability can accumulate
through carcinogenesis. It has been suggested that optimal
instability rates [4] as well as thresholds to instability exist.
The latter define the transition boundaries between viable
and nonviable cancer populations [21–24]. There are actually
examples of phase transitions defining the boundaries of
viability in RNA viruses [25–30]. RNA virus populations are
quasispecies [22,30], i.e., highly heterogeneous, related geno-
types. Critical thresholds of mutation have been predicted and
later experimentally tested [31–33] using in vitro scenarios.
The presence of such critical transitions has also received great
interest from the field of statistical physics. The nature of the
resulting phase transitions has been analyzed for several fitness
landscapes, both for finite-size competing molecules [34] and
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in the limit of infinitely large chains [35]. Error thresholds have
also been reported in asexual evolutionary scenarios beyond
the RNA viruses. Remarkably, it has been reported that natural
selection, favoring immediate fitness benefits, may permit the
hitchhiking of deleterious mutations that will finally lead to
the population’s extinction in the long term [36].

The similarities between unstable cancer and RNA viruses
suggests a therapeutically very interesting possibility: the use
of additional instability as anticancer therapy [23,37]. That
means that, instead of trying to decrease the tumor cells’
mutagenesis, an attempt to increase it towards nonviable levels
could be a suitable way to fight the disease. Due to the
qualitatively sharp change associated with the presence of
instability thresholds, a physics approach to phase transitions
in cancer quasispecies can be successfully used [23,24,38–
40]. In this paper we explore the dynamics and phases of
unstable cancer by constructing an analytical model of tumor
progression to be defined as a front propagation problem [41]
in the space of instability. By using this approximation we
provide a better and easily extendable formal description of
tumors that allows us to characterize both the presence of
transitions and the population structure that emerges in each
phase. It also provides a well defined, formal approach to
predict the speed of cancer propagation.

The paper is organized as follows. In Sec. II we present the
rationale for the presence of a phase transition phenomenon
separating a phase where the tumor will fail to succeed
due to a high instability from another phase where it is
expected to win. In Sec. III we revisit the previous linear,
discrete model of cancer cell dynamics and we explain some
of its limitations. Section IV is devoted to presenting the
integral model of unstable cancer, that improves the previous
mathematical description of the disease. Section V presents
several scenarios for tumor evolution predicted by the integral
model (an analysis of the resulting phase space is included).
In Sec. VI we derive an approximate, analytical expression for
the tumor front speed on the instability space, and we compare
it with some numerical solutions for the model equations. The
last section is devoted to discussing the potential implications
of our results.

II. TRANSITIONS IN TUMOR INSTABILITY

In order to provide a rationale for the existence (and
potential implications) of instability thresholds, let us first
consider a mean-field, two-compartment model of unstable
cancer dynamics. In this model the population will be
composed of two cell species, namely, host cells H and cancer
cells C. If we indicate as rn and rc the rates of growth of
normal (host) and cancer cells, respectively, we can write the
following evolution equations:

dH

dt
= rnH − Hφ(H,C), (1)

dC

dt
= rcC − Cφ(H,C), (2)

where φ(H,C) is an outflow term that represents the competi-
tion between both species. If we consider that the overall cell
population H + C is constant (because cells fill a given fixed

space) the function φ reads φ = rnH + rcC which is actually
the average rate of growth.

The following step consists in defining the growth rates for
each species. Regarding normal cells, it is sensible to assume
a constant growth rate rn (normal cells are renewed in a stable
way to ensure that body functions are properly carried on). The
situation is different for cancer cells, for which their average
growth rate rc will depend on how much mutations have been
accumulated in the cells’ genome. Concretely, the growth
rate rc can be increased by the effects of driver mutations
(i.e., mutations promoting cell replication) or decreased by
deleterious mutations. Let us denote μ as the probability that
a mutation takes place when replicating a given gene. Thus,
μ is a measure of the genetic instability of the population.
Consider that there exist a number Nr of growth-related genes.
If a growth-related gene is damaged (mutated) during the cell
replication process, an average increase δr in the growth rate
is expected. Thus, the average increase in rc due to driver
mutations affecting our cancer population is simply

f1(μ) = Nrμδr . (3)

Similarly, we should expect a decrease in the growth rate due
to the potential damage produced if a house keeping gene is
damaged or lost. If Nh indicates the number of such genes, the
probability that no one is damaged will read

f2(μ) = (1 − μ)Nh. (4)

Available estimates indicate that Nh ∼ 500–600 essential
genes exist [42] whereas Nr can be smaller or higher depending
on the type of cancer considered. Around one percent of genes
in the human genome appear related to the emergence of cancer
[43].

In Eqs. (3) and (4) we have assumed that the mutation
and replication rates are the same for all genes, as well as a
constant fitness benefit δr from driver mutations. Obviously,
this is only a simple approach to the more complex reality
in which each gene mutates with a different probability and
provides a different fitness benefit (or loss). Thus, the final rate
of replication will be the product

rc(μ) = f1(μ)f2(μ) = (rn + μNrδr)(1 − μ)Nh, (5)

where we have assumed that, in the absence of genetic
instability (μ = 0), the normal cell replication rate rn is
recovered. Function (5) has a maximum at a given optimal
instability rate. This is shown in Fig. 1, where we plot rc(μ) for
a given combination of parameters. The maximum is achieved
at an optimal instability level μo ≈ 1/Nh.

Considering Eq. (5) and the constant population constraint,
it is possible to reduce the system of Eqs. (1) and (2) into a
single equation describing the dynamics of the system in terms
of the genetic instability μ. Thus, the cancer cell population is
now captured by a logistic-like nonlinear equation:

dC

dt
= rn[�(μ) − 1]C(1 − C). (6)

Two fixed points are present: the zero-population one C∗ = 0
and the maximum population state, here C∗ = 1. It is easy to
see that the first is stable if �(μ) < 1 and unstable otherwise.
By properly defining the function �(μ) we might be able to
define the conditions under which genetic instability allows
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FIG. 1. Optimality and lethality in unstable cell populations. The
vertical axis indicates the cancer replication rate against instability,
as predicted from Eq. (5). The replication rate of normal cells is
r0 = 0.01 (in arbitrary units). The cancer population is assumed to be
homogeneous. At low instability rates, competition between the two
cell populations is symmetric and cancer coexists or slowly grows.
The peak at the optimal rate μo is associated with the fastest potential
growth of cancer. The gray area indicates the lethal phase, where
excessive instability leads to a reduced proliferation of cancer cells,
which are overcompeted by normal cells.

cancer growth to occur and overcome the host tissue. The
critical mutation rate separating the two scenarios is sharp and
defines a phase transition.

The presence of a phase transition in this toy mean-
field model involving competition between two homogeneous
populations offers an interesting prediction: further increases
of instability can force cancer cells to enter the lethal phase.
However, understanding how such shifts can occur requires
a better understanding of the ways cancer cell populations
evolve. Cancer cell populations are highly heterogeneous
[44,45] and that means that we need to depart from the previous
model approach.

III. LINEAR MODEL OF UNSTABLE CANCER

In an early paper [46] a discrete, sequential model of
unstable cancer was introduced. The model considered a
population of cancer cells having different levels of instability
and competing among them and with the normal tissue (Fig. 2).
This led to a description of M levels of instability describing
a heterogeneous cancer cell population, which was governed
by the following set of M differential equations:

dCi

dt
= fi−1μi−1Ci−1 + fi(1 − μi)Ci − Ci�(H,C), (7)

where i = 1,3,...,M , C = (C1,...,CM ), and we consider the
terms μ0 = μM = 0 so that they properly define the first and
last of the equations in (7). In the set (7), H indicates the host
(healthy) population, whose dynamics would be described by
an additional equation dH/dt = fH (H,C) which takes the
general form

dH

dt
= G(H ) − H�(H,C). (8)

FIG. 2. Linear model of competition between normal cells
(H ) and a heterogeneous population of cancer cells, indicated as
C1,C2,...,Ci , which replicate with increasing rates fi and mutate also
at faster rates μi , as highlighted by the increasingly thick arrows. The
effective replication rate of a given Ck compartment is fk(1 − μk).

Here G(H ) introduces the explicit form of growth charac-
terizing the normal tissue. A constant population constraint
(CPC) was also introduced, namely a total constant population
size H + ∑

i Ci = 1. This leads to an explicit form of the
competition φ function, namely

�(H,C) = G(H ) +
M∑

k=1

fkCk, (9)

which is nothing but the average replication rate.
A numerical analysis of this system was performed for

some parameter values, showing that the population dynamics
of the cancer population spread over mutation space as a
wave until a stable distribution (showing a single peak)
around high instability levels was observed. However, no
systematic analysis was performed in order to characterize
potential phases and their implications. In particular, the
behavior exhibited by the heterogeneous population close
to the optimal/lethal thresholds was not studied. Moreover,
the linear model above is an oversimplification and a better
description is needed in order to make reliable predictions.

IV. INTEGRAL EQUATION EXPANSION

The linear instability model reveals an important dynamical
feature of unstable dynamics: a propagating front is formed and
moves through instability space. Fronts (and their propagation
dynamics) are a well known characteristic of many relevant
biological processes [41,44,45] and can be analyzed in a
systematic way through well known methods. Our first step
here will be to convert the discrete model presented above into
a more general, analytically tractable integral equation form.
Such model will allow us exploring the phase space of our
system and to make some analytic estimates of propagation
speed.

An integral equation model can be derived starting from the
previous linear model. Let us first notice that Eq. (7) for Ci

can be rewritten as

dCi

dt
=

M∑
1

fjCjwji − Ci�(H,C). (10)

This is done by introducing the following notation:

wji = δj,i−1μj + (1 − μj )δij , (11)
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and, as explained in the previous section, we consider the
condition μ0 = μM = 0 to properly describe the evolution of
C0 and CM . An integral equation can be now constructed, using
the continuous variable Ci(t) = �μ · c(μ,t). Moreover, we
need to generalize the functional connection between different
instability levels, which was assumed to be a simple function in
(7) but could adopt different forms. A general integral equation
can be constructed, namely,

c(μ,t + T ) = c(μ,t) + T

∫ 0

−μ

f (μ + �μ)c(μ + �μ,t)

×ω(�μ)d�μ − c(μ,t)T φ(H,c), (12)

where we have used a continuous dispersal kernel ω(�μ)
[[16,41,47] which provides the probability density that cancer
cells in c(μ − |�μ|,t) produce offspring, after a given time
T , within the μ coordinate, i.e., further cells within the
c(μ,t + T ). Moreover, in Eq. (12) we have changed the
notation of the average fitness from �(H,C) [as it appears
in Eqs. (7) and (8)] in order to remark that we now use a
continuous description for cancer cells. While in the linear
model [Eqs. (7) and (8)] the average fitness depends on H and
C, in our integral model [Eq. (12)] the average fitness must
depend on both H and the continuous distribution of cancer
cells at time t (that we have written as c to explicitly indicate
its correspondence to C in the linear model).

Following analogous steps to those for cancer cells, we can
also develop the differential Eq. (8) for healthy cells so that
we obtain an explicit expression for the population H at time
(t + T ). This yields

H (t + T ) = H (t) + T [G(H ) − Hφ(H,c)]. (13)

The constant population requirement (defined above as C +
N = 1 for the mean-field model) can be expressed here as

H (t) +
∫ M

0
c(μ,t)dμ = 1, (14)

H (t + T ) +
∫ M

0
c(μ,t + T )dμ = 1, (15)

and we assume that M is large enough so that we can ensure
that c(M,t) = 0.

In this paper we will use this integral equation approach to
describe our cancer quasispecies model. This model allows
us to properly study the way the instability wave can (or
cannot) propagate and some other phenomena including
the catastrophic collapse of the cancer population once the
unstable wave crosses some given thresholds.

Using the previous condition and definitions, it is possible
to develop our model equation. Let us indicate as φ = φ(H,c),
fH = G(H ) − Hφ [which, considering Eq. (13), can be
understood as the change in H cells per unit time], and compute
the total cancer cells population as

�(t) =
∫ M

0
c(μ,t)dμ. (16)

Note that �(t) strictly depends on (M,t), but the dependence
on M has been omitted because (as mentioned above) we
consider M is high enough to satisfy the condition c(M,t) = 0.

Thus, it is possible to see that our system is described by the
following mathematical expressions:

TfH + H + �(t) + T

∫ M

0

∫ 0

−μ

c(μ + �μ,t)f (μ + �μ)

×ω(�μ)d�μdμ − T φ�(t) = 1 (17)

⇒ 1 + T Hφ + T φ�(t) = T G(H ) + H + �(t)

+
∫ M

0
T

∫ 0

−μ

c(μ + �μ,t)f (μ + �μ)ω(�μ)d�μdμ.

(18)

From Eq. (17) it is easy to derive the following expression
for the average fitness of the population (that includes normal
tissue and tumor cells):

φ(H,c) = G(H ) +
∫ M

0

∫ 0

−μ

c(μ + �μ,t)f (μ + �μ)

×ω(�μ)d�μdμ. (19)

It is worth noting that the integro-difference equation (12)
permits us to analyze several dynamical properties of the
system which cannot be attained by means of the previous
linear model (10). In the linear model, the offspring of
tumor cells in a given stage i may grow either in the same
stage i or in the subsequent i + 1. A desirable feature of
the continuous description from (12) is that the dispersal
kernel can easily model different forms of instability-driven
spread in the genetic landscape. In the following section, we
analyze a simple case in which migration probability decays
exponentially with the jumping distance �μ. The linear model
can also be recovered from Eq. (12) by introducing a dispersal
kernel that restricts mutations to discrete points in the μ space.
In order to derive some analytical solutions of the system, such
simplified dispersal kernels will be shown to be especially
useful.

V. WAVE FRONTS IN INSTABILITY SPACE

In this section, we present several scenarios in which a
tumor can either collapse or succeed over a healthy tissue.
According to the integral model [Eqs. (12) and (19)], tumor
evolution is mainly governed by competition. As explained
above, this competition involves not only the fight between
cancer cells and healthy cells, but also the struggle within
cancer cell clones.

In the previous section we have presented a model that is
mainly based on two dynamical features of tumors: replication
[introduced by the growth function f (μ)] and mutation [given
by the dispersal kernel ω(�μ)]. Concerning the replication
process, below we consider some specific growth functions
involving a constant reproduction rate for healthy cells, so that
G(H ) = rnH . For tumor cells, the growth function depends
on instability as f (μ) = rn(1 + αμ) exp(−μ/μc). This was
derived in [23] from the probabilistic condition defined by
Eq. (5). The rate α introduces a selective advantage for
cancer cells over healthy cells. The constant μc refers to a
characteristic instability rate.
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In order to model the mutant trend of cancer cells, let us
consider the following continuous function for the dispersal
kernel:

ω(�μ) = 1

μdisp
exp

(−|�μ|
μdisp

)
. (20)

According to Eq. (20), a parent cell generates offspring
at similar instability domains (i.e., situated at �μ → 0) with
higher probability than new cells presenting much higher
instability (i.e., living at �μ � 0). The parameter μdisp

represents a characteristic (within a generation) instability
increment. Since we have∫ 0

−∞
ω(�μ)d�μ = 1,

the dispersal kernel distributes the cells of the new generation
in the instability space, but it does not modify the total number
of cancer cells in the system.

A. Tumor wins phase

Figure 3(a) shows the evolution of a population of cancer
cells which initially composes the 0.001% of the cells in the
system. Cancer cells at t = 0 have been equally distributed

within a range of low instability (namely, μ ∈ (0,2 × 10−4]).
We observe an early stage (t ∈ [0,150]) in which tumor
cells remain at low values of the population density c(μ,t).
Within this initial period, cancer cells do not overcome healthy
cells because their selective advantage is not significant [i.e.,
f (μ) 
 G(H ) because μ 
 0].

The dispersal kernel ω(�μ) pushes forward the tumor
population towards higher instability domains. In other words,
at each time step a fraction of the cancer cells’ offspring
becomes sensibly more unstable than their parent cells. A
rapid increase in cancer cell population density is observed
in about t = 200 generations. The rapid growth affects cells
whose genetic instability is above a certain threshold (see the
region above μ = 1.5 × 10−2). This indicates that such degree
of instability provides for significant selective advantage over
other cells in the system. During the fast growth phase,
the population not only attains a large fraction of the total
population, but it also continues migrating (see the left to right
dispersion of the population wave). At the end of the time series
in Fig. 3(a), the concentration of cancer cells in the system is
about 50% (we consider this condition is enough to cause the
death of the host). This is an example of the dynamics at the
cancer expansion phase.

FIG. 3. (Color online) The three major dynamical patterns of dynamical behavior displayed by our mathematical model. Here the population
density for different instability levels is plotted against instability and time. In (a), unstable tumors expand, evolving towards a stable, high
instability rate. Time evolution for r = 0.25,α = 20, μc = 0.08, and μdisp = 3 × 10−4. Each time step is equivalent to a generation of cells.
Cancer cells diffuse through the instability space as a wave. At early stages (t < 200), the fraction of cancer cells in the system is low. However,
when cancer cells reach high enough instability (slightly above μ = 0.015 in this example), a rapid increase in cancer population density is
produced. (b) Tumor fails to get established. The following parameter values have been used: r = 0.25, α = 50, μc = 0.08, and μdisp = 10−2.

(c) Population collapse. Here expansion is followed by collapse after a long transient, as shown in (d). Here we have used r = 0.25, α = 50,
μc = 0.08, and μdisp = 1 × 10−3.
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B. Tumor failure phase

It seems reasonable to think that increasing the charac-
teristic migration distance μdisp should accelerate tumor pro-
liferation, because cancer cells will reach optimal instability
domains faster. However, increasing μdisp does not necessarily
lead to the tumor-win phase. It can actually jeopardize cancer
propagation even when an already established population is
formed. If a tumor cell produces highly mutant descendants
(i.e., new cells accumulating many new mutations) with
high probability, it follows that the probability of generating
descendants without additional mutations cannot be very
large.

Figure 3(b) depicts an example of the tumor-failure phase.
In this case the selective advantage presents a higher value
(namely, α = 50) than that for the tumor in the previous
scenario. Here we observe a tumor population wave diffusing
in the instability space, always coexisting with normal cells
[the total number of cancer cells �(t) do not exceed the 12% at
any generation]. Despite the relatively high selective advantage
α, the high value of μdisp prevents the tumor population from
remaining at the optimal instability domain, and hence cancer
cells cannot grow fast. The tumor moves towards excessive
instability, and cancer replication becomes smaller than that
of the host tissue. These conditions define the tumor extinction
phase.

C. Catastrophic tumor decay

A qualitatively different and somewhat unexpected out-
come is displayed in Fig. 3(c), where we have set a lower value
of μdisp. As a result, a fast extinction of healthy cells occurs
and cancer cells invade all the available space before t = 200.
Here we let the system evolve beyond the absence of healthy
cells. Even if this situation typically involves the elimination
of host cells, it could be observed in cell culture conditions.
Moreover, we need to consider a potentially relevant situation,
namely when a given tumor has expanded within large parts
of the organ, as it occurs with many malignant cancers.
After the rapid increase in cancer cell population density
(t 
 200), the tumor continues its migration towards higher
instability.

Since the value of μdisp is relatively high, the tumor
population is unable to stay within the optimal region. At every
new generation, a large fraction of the progeny accumulates
new mutations. The final outcome is very interesting: a
collapse finally occurs. This is illustrated in Fig. 3(d), where
we plot the total cancer population and the average instability
(inset) for the example of Fig. 3(c). Around 1700 generations,
cancer cells have accumulated so many mutations that they are
almost unable to produce viable descendants. After t = 2000
there is no significant cancer cell population.

Despite the slow growth of 〈μ〉, a catastrophic shift occurs,
with a rapid decay of the tumor. Catastrophic shifts have been
previously described within ecological and social systems [48]
and are characterized by sudden system responses triggered by
slow, continuous changes of given external control parameters.
The novelty of our observation is that the changing parameter
is affected by (and affects) population dynamics and thus is
not externally tuned but internally increased.
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FIG. 4. Phases in the tumor growth model. The main plot (a)
shows the two phases associated with the propagation (white)
or extinction (gray) of the cancer cell population. The transition
separating the two phases can be characterized by the transient
dynamics exhibited by the model. The inset (b) displays the number
of time steps (or cancer cell generations) to reach the corresponding
final state represented in (a). Darker (lighter) zones are associated
with longer (shorter) transients. As expected from a phase transition
phenomenon, long transients are observed close to the boundary
between both phases.

D. Phase space

A systematic exploration of the parameter space provides
a picture of the two main phases, as shown in Fig. 4. The two
axes involve a wide range of values for both α and μdisp. In
the first phase (gray squares), the tumor is driven to extinction.
Extinction arises as a combination of two components: (i)
an insufficient fitness advantage of the early cancer cells
(the cancer population progressively decays without reaching
enough instability to develop), or (ii) the tumor inability to
keep the optimal instability (when this happens, a moderate
population growth precedes the tumor failure). The second
region (white area) stands for tumors that grow enough to
overcome the healthy tissue.

The transition between the two regions is also marked
by a rapid increase in the transient time. In Fig. 4(b) we
have depicted the transient time steps (i.e., generations of
cancer cells) to reach either the tumor extinction or its stable
expansion to equilibrium values. As expected, longer times are
needed near the phase transition.

VI. TUMOR FRONT SPEED

In the previous section, we have seen how some tumor
population waves diffuse in the instability space. A relevant
feature of propagating fronts, with direct importance for tumor
growth, is the propagation speed of the front. Such speed
has been actually calculated for spatially growing tumors
[[17,49,50] and the front is thus a spatially defined one.
Although we are here considering front propagation through
instability space, the same reasoning applies. Here we derive
an analytical, approximate solution for the front speed of
the tumor. This will provide a quantitative measure of how
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fast cancer instability propagates. Since deriving an exact
analytical expression for the front speed can be extremely
cumbersome, some approximations are required.

First, let us consider early stages in tumor development
(such as the first 150 in Fig. 3). Here the system is mostly
composed of healthy cells, and few of cancer cells. This
permits us to approximate the complex expression for the
average fitness [see Eq. (19)] as the reproduction rate of healthy
cells; i.e.,

φ(H,c) 
 G(H ) 
 rn. (21)

The second approximation we will consider refers to the
dispersal kernel. According to Eq. (20) in the previous section,
the dispersal kernel is a continuous function defined in the
interval [−∞,0]. In this section we will consider the following
simpler, discrete dispersal kernel:

ω(�μ) = 2peδ(�μ) + (1 − pe)δ(�μ + μdisp)γ (μdisp),

(22)

where δ(�μ) corresponds to the Dirac delta function operating
on the variable �μ, and γ (μdisp) = 1 if μdisp = μ and 2
otherwise [51].

The above discrete kernel (22) considers that every new
cell can either stay at the same instability μ of the parent
cell (with probability pe, which is called persistence) or jump
into a higher instability μ + μdisp [with probability (1 − pe)].
Although the discrete kernel (22) is much simpler than the
continuous kernel (20), it also models a major feature in cancer
cell replication (see the previous section); that is, the stronger
the mutant trend of cancer cells, the weaker the ability of the
population to keep an optimal instability.

Thus, according to Eqs. (21) and (22) above, our approxi-
mation to Eq. (12) reads

c(μ,t + 1) = c(μ,t) +
∫ 0

−μ

f (μ + �μ)c(μ + �μ,t)

× [2peδ(�μ) + (1 − pe)δ(�μ + μdisp)

× γ (μdisp)]d�μ − c(μ,t)rn. (23)

Taking into account the integrative properties of the Dirac
delta function δ(�μ), Eq. (23) can be rewritten in terms of a
much simpler functional form:

c(μ,t + 1)= c(μ,t) + pec(μ,t)f (μ) + (1 − pe)c(μ− μdisp,t)

× f (μ − μdisp) − c(μ,t)rn, (24)

where we have assumed that the condition μ � μdisp holds,
since we are interested in the propagation of the tumor front.
Indeed, for μ < μdisp cancer cells evolve as in Eq. (24) but
neglecting the third term on the right-hand side. The front
speed from reaction-dispersal integro-difference equations
such as (12) can be obtained under some general assumptions
[16,17] associated with the shape to be expected for the
propagating front.

Here we are interested in the simplified version (24) of the
model. Thus we only need to assume that there exist constant
shape solutions of the form

c(μ,t) = c0 exp[−λz]

for large values of the coordinate z ≡ (μ − vt).

This yields the following approximate, analytic relation
between the tumor front speed and the wave front shape
parameter λ:

v(λ) = 1

λ
ln[pef (μ) + (1 − pe)

× f (μ − μdisp)eλμdisp − rn + 1]. (25)

Finally, by means of the standard, marginal stability condition
[16] the minimal speed v∗ = minλ>0 v(λ) is the one selected
by the front. In the analysis below, the following method has
been used to find the value of the approximate speed v∗. First,
we plotted the numerical solution to Eq. (25) on the λ > 0 axis.
As usual, we obtain a function v(λ) that is convex from below
[16]. Thus, we look for the minimum value of this function,
which reveals the approximate value for the front speed of the
tumor as it propagates through instability space (i.e., v∗).

The approximate front speed v∗ should not be taken as
a general trend in tumor evolution, since it is subject to
the approximations explained above. Indeed, for cases in
which healthy cells overcome the tumor it eventually predicts
negative values of the front speed. However, predicting a
negative front speed can also be seen as the retreat (i.e., the
death) of the cancer population (which at early times is only
composed by a few cancer cells with μ → 0). Nevertheless,
the approximate speed v∗ provides remarkably good results
for the front speeds of lethal tumors (i.e., for tumors within the
parameter region in which the tumor succeeds), as we show in
Fig. 5.

Figure 5 shows a comparison between the numerical and
the approximate analytical speed v∗ for the tumor front
speed as a function of the characteristic dispersal distance
μdisp. Numerical solutions for the front speed have been
computed by numerically solving [52] the model Eqs. (12)
and (19) using the discrete version of the dispersal kernel

FIG. 5. Front speed of the cancer population traveling on the
instability space, as a function of the characteristic dispersal distance
μdisp. The line and the circles stand for the numerical results and
the approximate analytical speed v∗, respectively. The rest of the
parameters used to compute the front speed are rn = 0.25, α = 20,
pe = 0.85, and μc = 0.08.
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(22). For both the numerical and the approximate analytical
solutions, the front speed monotonically increases with the
characteristic distance μdisp. As far as the order of magnitude
is concerned, the approximate analytical speed v∗ is able to
predict the more exact numerical results for the tumor front
speed. Furthermore, relative differences (which are typically
above 15%) between the analytical results and the numerical
solutions are approximately independent of μdisp.

The solutions for the front speed on the instability space
in Fig. 5 exhibit an approximately linear dependence on the
characteristic dispersal distance μdisp. Since the instability μ of
tumor cells is directly related with the selection of cells during
tumor evolution, μdisp can also be interpreted as a parameter
that determines the selective intensity on cancer cells. Previous
models on adaptive front waves have also yielded adaptation
speeds that depend on selective intensity parameters. In this
context, in [14] the speed of adaptation for asexual clones
that compete for space scales as μ1/2 in one-dimensional
habitats and μ1/3 in two-dimensional ones (in their model,
μ stands for the rate at which new mutations appear at each
lattice site). Also, in Ref. [53] the authors found that, when
a continuous two-dimensional space is considered, genetic
wave speeds are proportional to s1/2, where s represents the
small fitness effects s of beneficial mutations. In our model
we have studied the front speed of the tumor on the instability
space, without taking into account either spatial structure or the
physical environment. However, both μ and μdisp have similar
interpretations to the selective parameters in Refs. [14,53].
Future work could be directed to introduce spatial effects into
our model, and it would be interesting to explore whether
similar scaling exponents arise in the dependence of the tumor
invasion speed and genetic instability rates.

VII. DISCUSSION

In this paper we have presented an integral model for the
evolution of unstable tumors. Our model improves a previous
compartment description of the cancer cell population, because
we consider the genetic instability as a continuous variable
that characterizes the state of the cell. The model considers a
population of tumor cells that replicate and migrate (mutate) in
the instability space, while competing for available resources

(a limited population constraint has been applied). This model
is based on several simplifying assumptions, from the linear
nature of interactions between instability levels to the dispersal
kernels used.

We have presented an extended analysis of unstable cancer
evolution over the two most relevant parameters of the model:
the selective advantage of cancer cells over the healthy cells
population, and the characteristic migration distance within
instability space (which determines the mutant tendency of
cancer cells). Several outcomes of the process have been found.
Two of them are expected: either the growth or the failure of
cancer to succeed are predicted by the simplest mean-field
model that can be defined, as discussed in Sec. II. The integral
equation approach confirms such prediction, although it allows
us to substantiate it in more accurate ways, providing a formal
framework to calculate useful quantities, particularly the front
speed of our population through the μ space. Moreover, this
formal approach provides a natural way to properly introduce
population heterogeneity.

An additional scenario has also been found, namely the
catastrophic shift phase, where the tumor grows, eventually
expanding over a significant part of the total available space,
with a steady growth of instability. However, at some point
the excessive instability level leads to a population collapse,
with no cancer cells in the end. Our model does not consider
immune components or other biologically relevant factors
[54]. Instead, the key factor responsible for the tumor collapse
is high genetic instability. This result provides further support
to the original proposal that lethal thresholds of instability exist
in cancer [23,24] which could be exploited for therapeutic
purposes, even when major success of the cancer population
is observable. Future work should further explore this obser-
vation, adding also other known threats to cancer progression,
such as starvation or hypoxia, which could further enhance the
frequency and sharpness of these thresholds.
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[23] R. V. Solé, Eur. J. Phys. B 35, 117 (2003).
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