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Deformation analysis of vesicles in an alternating-current electric field
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In this paper the shape equation for axisymmetric vesicles subjected to an ac electric field is derived on
the basis of the liquid-crystal model. The equilibrium morphology of a lipid vesicle is determined by the
minimization of its free energy in coupled mechanical and ac electric fields. Besides elastic bending, the effects
of the osmotic pressure difference, surface tension, Maxwell pressure, and flexoelectric and dielectric properties
of phospholipid membrane as well are taken into account. The influences of elastic bending, osmotic pressure
difference, and surface tension on the frequency-dependent behavior of a vesicle membrane in an ac electric
field are examined. The singularity of the ac electric field is also investigated. Our theoretical results of vesicle
deformation agree well with previous experimental and numerical results. The present study provides insights
into the physical mechanisms underpinning the frequency-dependent morphological evolution of vesicles in the
electric and mechanical fields.
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I. INTRODUCTION

Living cells, including those in our bodies, are often
subjected to electric and magnetic fields of different intensities
and frequencies, which may result from sources such as
mobile phones, home appliances, and power transmission
lines [1]. In response to surrounding electric fields, biological
cells continuously alter the properties (dielectric and electric
conductivities and polarization) of their cell membranes to
maintain their normal physiological functions [2]. Weak
electric fields influence biological processes of cells, e.g.,
signal transition, wound healing, migration, and spreading [3].
Strong electric fields can produce electroporation in cell
membranes, which enables delivery of foreign genes, pro-
teins, antibodies, and drugs into cells [4,5]. In addition, the
mechanical-electrical coupling effects have been utilized to
develop novel techniques for the control and manipulation of
cells. Obviously, understanding the morphological evolution
of vesicles under electric fields is an issue of extensive interest.

Recently, much effort has been directed toward investi-
gating the influence of electric fields on vesicle deformation.
Kakorin et al. [6] analyzed the electroporative deformation
of lipid bilayer vesicles by accounting for the effects of
spontaneous membrane curvature and radius size. They found
that the membrane curvature favored the formation of electric
pores. Sadik et al. [7] quantified the degree of deformation as
a function of the electric-field intensity and the intravesicular-
to-extravesicular conductivity ratio under strong dc electric
fields. Riske and Dimova [8] used a fast imaging digital
camera to observe the deformation and electroporation of
giant vesicles exposed to electric pulses. They showed that
the shape response of a giant lipid vesicle depended on the
membrane properties (e.g., stretching and bending elasticity,
surface viscosity, and edge energy) and on the viscosity of the
inner and outer electrolytes. Fan and Fedorov [9] studied the
interactions between an atomic force microscope tip and a cell
membrane by accounting for electrohydrodynamic and surface
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forces in a dilute electrolyte solution. Hyuga et al. proposed
a model to describe the static and dynamic deformations of
a vesicle in external electric fields, in which the effect of the
intravesicular-to-extravesicular conductivity ratio was taken
into account [10,11]. It is demonstrated that a vesicle will
deform into a prolate shape when the conductivity of the inner
medium is higher than that of the outer one.

The deformation behavior of biological cells is dependent
on the frequency in the ac electric field. In recognition
of the influences of the conductivities of both inner and
outer electrolytes on vesicle deformation, Winterhalter and
Helfrich conducted a series of studies to determine the
deformation of vesicles in an ac electric field by considering
the curvature energy and the Maxwell pressure acting on the
two interfaces [12]. Based on the Winterhalter-Helfrich model,
Peterlin et al. [13,14] explained the morphological transition
of phospholipid vesicles with respect to the frequency of the
ac electric field and the ratio of the conductivities of inner and
outer electrolytes. They treated the inner and outer media of
the vesicle and the membrane itself as leaky dielectrics and
modeled the vesicle as a nearly spherical shell. Considering
the asymmetric conductivity conditions across the vesicle
membrane in an ac electric field, Yamamoto et al. [15]
investigated theoretically the stability of spherical vesicles
for low, intermediate, and high frequencies. They found that
accumulated electric charges could provide the molecular
mechanism underlying the vesicle shape transitions. However,
these previous works only considered the bending elasticity
energy of the membrane and the energy associated with
the applied electric field. To date, it remains unclear how
factors such as osmotic pressure difference and surface tension
contribute to the vesicle deformation in an ac electric field.

It is well known that lipid bilayer membranes exhibit
some properties of liquid crystals [16]. Experiments showed
that the structure of the lipid bilayers of cell membranes
followed the general principles of liquid crystals [17–20].
Tu et al. [21–23] successfully applied the elastic theory of
liquid-crystal biomembranes based on Helfrich’s curvature
energy [24] to investigate. Further effort was directed toward
understanding the deformation of vesicles in an electric field.
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Gao et al. [25,26] developed a liquid-crystal model for the lipid
membrane in electric fields and discussed the morphological
evolution of spherical vesicles due to a dc electric field.
In the present paper the liquid-crystal model proposed by
Gao et al. [25,26] is extended to investigate the distinct
morphological evolution of vesicles in an ac electric field and
to examine the effects of a number of factors, including the
Maxwell stresses, elastic bending, osmotic pressure difference,
surface tension, and flexoelectric and dielectric properties as
well. The layout of this paper is as follows. In Sec. II the
governing equations of vesicle morphologies in an ac electric
field are derived on the basis of the liquid-crystal vesicle model.
In Sec. III this model is used to study the morphological
evolution of a spherical vesicle in a wide range of field
frequencies. Then the singularity of electric fields in the vesicle
is investigated in Sec. IV and several numerical examples are
given in Sec. V. The main conclusions drawn from this study
will be summarized in Sec. VI.

II. LIQUID-CRYSTAL MODEL FOR VESICLES

In this section the liquid-crystal model of vesicles in a dc
electric field [25,26] is briefly reviewed. Then an ac electric
field is introduced. In analogy with the curvature elasticity
energy of the liquid-crystal model proposed by Helfrich [24],
the bending energy of a vesicle can be expressed as

Fb =
∫

M

[
1

2
k(2H + c0)2 + k1K

]
dA, (1)

where M denotes the surface of the vesicle, k and k1 are its
elastic constants, H is the mean curvature, K is the Gauss
curvature, and c0 is the spontaneous curvature. The applied ac
electric field is characterized by the angular frequency ω or
the field frequency ν = ω/2π . The electric field intensity E
has the general form [15]

E = − 1
2∇φ̄e−iωt + c.c., (2)

where c.c. stands for complex conjugate, φ is the electric
potential, and φ̄ denotes the time-independent part of the
electric field.

Bending a lipid membrane can induce its electric polar-
ization. This flexoelectric effect results from the orientational
strain of polar molecules in the membrane. The flexoelectric
energy of a vesicle can be written as

Fp = −
∫

M

∫ d

0
Pf ·E dr dA, (3)

where d is the membrane thickness and Pf is the bending-
induced polarization, which is given by

Pf = −e1n(∇ · n), (4)

where e1 is the flexoelectric coefficient and n is the unit vector
normal to the membrane surface.

The dielectric energy induced by the electric field can be
computed by

Fd = −1

2

∫
M

∫ d

0
De · E drdA, (5)

where De is the electric displacement vector. For isotropic
constitutive laws, one has

De = ε2E = ε2(Enn + EuY,u + EvY,v), (6)

where ε2 is the dielectric constant of the vesicle itself and Y,u
and Y,v are two tangential vectors of the membrane surface.
The normal vector n and the two vectors Y,u and Y,v form a
mutually orthogonal local coordinate system on the membrane
surface; En, Eu, and Ev are the electric-field intensities in the
n, Y,u, and Y,v directions, respectively. The dielectric energy
of an electrolyte is written as

Fc = −
∫

1

2
εr |φ|2dV, (7)

where εr denotes the dielectric constant of the electrolyte. Fur-
thermore, the contributions of the osmotic pressure difference
�p = pout – pin and the surface tension λ to the Helmholtz
free energy are given by

FM =
∫

�pdV +
∫

M

λdA. (8)

From the above equations, the Helmholtz free energy of a
vesicle embedded in an electrolyte and subjected to an electric
field is expressed as

F = Fb + Fp + Fd + Fc + FM

=
∫

M

(
k(2H + c0)2

2
+ λ

)
dA +

∫ (
�p − 1

2
εr |φ|2

)
dV

−
∫

M

∫ d

0

(
Pf · E + 1

2
De · E

)
dr dA. (9)

The governing equation of vesicle shape is determined by
minimizing the free energy F under the constraints of constant
volume V and total area A [27]. The first-order variational of
F is

δF = δ(Fb + Fp + Fd + Fc + FM )

= δ

∫
M

(
k(2H + c0)2

2

)
dA + δ

∫
M

λ dA

+ δ

(∫ (
�p − 1

2
εr |φ|2

)
dV

)

− δ

(∫
M

∫ d

0
(Pf · E + 1

2
De · E)dr dA

)
, (10)

where δ denotes the variation with respect to the vesicle shape.
From the condition δF = 0 [25], the shape equation is obtained
as

∇2(2kH + kc0) + k(2H + c0)(2H 2 − c0H − 2K)

+�p − 2λH + f = 0,

f = H

∫ d

0
ε2

(
E2

n + guuE
2
u + gvvE

2
v

)
dr + 2e1K

∫ d

0
Endr

−e1∇2

(∫ d

0
Endr

)
+ ε3

(
E2

3n − 1

2
E2

3

)

− ε1

(
E2

1n − 1

2
E2

1

)
, (11)
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FIG. 1. (Color online) Geometry of an initially spherical vesicle
subjected to an ac electric field. The vesicle is denoted by dielectric
constant ε2 and conductivity σ 2.

where ε3 and ε1 are the dielectric constants of the inner and
outer electrolytes, respectively; E3n = E3·n and E1n = E1·n
are the normal components of the electric field on the inner
and outer surfaces, with E1 and E3 being the electric-field
intensity of the inner and outer media, respectively; and
guu = Y,u·Y,u and gvv = Y,v·Y,v . In the absence of the electric
field E, Eq. (11) returns to the corresponding shape equation
for lipid vesicles under purely mechanical forces derived by
Ou-Yang and Helfrich [28].

III. SHAPE EQUATIONS FOR AXISYMMETRIC VESICLES
IN ac ELECTRIC FIELDS

When subjected to an ac electric field, an axisymmetric
vesicle may deform into different forms, e.g., oblate, prolate,
and sphere, depending on the field frequency. In this section
the general shape equation of vesicles in an ac electric field
is formulated based on the liquid-crystal model in Sec. II. It
provides an efficient tool to investigate the deformation and
stability of a vesicle induced by ac electric and mechanical
fields.

A. Axisymmetric vesicles in an ac electric field

Consider an axisymmetric vesicle in an ac electric field,
as shown in Fig. 1. To calculate the force induced by the ac
electric field, one needs to calculate the electric field around
the membrane first. The conductivity of the membrane is very
poor. The lipid membrane is essentially an insulating shell
impermeable to ions, like leaky dielectrics. When an electric
field is applied, charges accumulate on both sides of the bilayer
and the membrane acts as a charging capacitor [29]. Since we
consider only the case of an applied electric field, the small
effects of the induced magnetic field are neglected. Therefore,
the electric field can be regarded as irrotational, that is, ∇ ×
E = 0. Referring to the usual experimental setup [30], the local
charge in the electrolytes is ignored. So we have a restrictive
equation for the electric potential [12,15]

∇2φk = 0, (12)

with k = 1, 2, 3. Here and in the following, the subscripts 1, 2,
and 3 stand for the outer medium, the lipid vesicle itself, and
the inner medium, respectively. Further, we adopt the isotropic
constitutive relation between the electric displacement and the
electric-field intensity, that is,

Dk = εkEk, (13)

with k = 1,2,3. The electric potentials and the normal
components of the current densities are continuous across
the interfaces between the three media. Then the continuity
conditions are expressed as

φ1 = φ2, (σ1 − iωε1)∇φ1 · n = (σ2 − iωε2)∇φ2 · n,

φ2 = φ3, (σ2 − iωε2)∇φ2 · n = (σ3 − iωε3)∇φ3 · n.

(14)

Thus, we can determine the shape of a vesicle in an electric field
by solving the nonlinear shape equation (11), in conjunction
with the electric-field equation (12) and the boundary condi-
tions (14). However, due to the strong nonlinearity, mechanical
and electric coupling effects, and moving boundaries, this
problem is generally hard to solve analytically.

B. Shape equation in a spherical coordinate system

Let us take an initially spherical vesicle as an example, as
shown in Fig. 1. We refer to the spherical coordinate system
and the arc-length coordinate system, where r is the distance
from the center of the vesicle, θ is the inclination angle, ϕ is the
angle between the tangent to the contour, ρ is the axis, s is the
arc length of the contour, and d is the membrane thickness. The
interior and exterior of the vesicle are filled with electrolytes.
Their dielectric constants are ε3 and ε1 and conductivities are
σ 3 and σ 1, respectively.

The Laplace equation (12) can be expressed in terms of the
spherical coordinates as

1

r2

∂

∂r

(
r2 ∂φ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
= 0, (15)

where φ = φ (r ,θ ). Since the reference equilibrium shape is
a sphere, when the perturbations are not large, the solution of
Eq. (15) is expected to be of the form [12,15]

φk = 1

2

[(
Akr + Bk

r2

)
cos θe−iωt + c.c.

]
, (16)

where the coefficients Ak and Bk need to be determined from
the boundary conditions. In the far field (r → ∞), the electric
potential is unperturbed by the presence of the vesicle, whereas
at the center of the vesicle (r = 0), the potential has a finite
value. From these two conditions, one can immediately obtain

A1 = −E0, B3 = 0. (17)

Then the electric potentials are derived as

φ1 = 1

2

[(
−E0r + B1

r2

)
cos θe−iωt + c.c.

]
,

φ2 = 1

2

[(
A2r + B2

r2

)
cos θe−iωt + c.c.

]
, (18)

φ3 = 1

2
(A3r cos θe−iωt + c.c.).
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We define r = l(θ ), with l the distance of the vesicle center
to the inner membrane. Then the four boundary conditions in
Eq. (14) are rewritten as

B1

(l + d)2
− E0(l + d) = A2(l + d) + B2

(l + d)2
, (19)

A2l + B2

l2
= A3l, (20)

A3

(
l cos θ + dl

dθ
sin θ

)
= β3

[
A2

(
l cos θ + dl

dθ
sin θ

)

−B2

l3

(
2l cos θ − dl

dθ
sin θ

)]
,

(21)

[
A2

(
l cos θ + dl

dθ
sin θ

)
− B2

(l + d)3

(
2l cos θ − dl

dθ
sin θ

)]

= β1

[
−E0

(
l cos θ + dl

dθ
sin θ

)

− B1

(l + d)3

(
2l cos θ − dl

dθ
sin θ

)]
, (22)

where

β1 = σ2 − iωε2

σ1 − iωε1
, (23)

β3 = σ2 − iωε2

σ3 − iωε3
. (24)

In the derivation of Eqs. (21) and (22), the normal unit vector
n of the generator for the axisymmetric surface has been used,
which is expressed as

n =
[−(dl/dθ ) cos θ + l sin θ√

(dl/dθ )2 + l2
,
(dl/dθ ) sin θ + l cos θ√

(dl/dθ )2 + l2

]T

.

(25)

The four coefficients A2, A3, B1, and B2 can be determined
from Eqs. (19)–(22) and are given in Appendix A.

In the special case of a spherical vesicle (dl/dθ = 0), the
coefficients reduce to

A2 = − 3E0(1 + 2β)

(1 + 2β)(2 + β) − 2γ 3(1 − β)2
, (26)

A3 = − 9E0β

(1 + 2β)(2 + β) − 2γ 3(1 − β)2
, (27)

B1 = E0(R + d)3

− 3E0(R + d)3[(1 + 2β) − γ 3(1 − β)]

(1 + 2β)(2 + β) − 2γ 3(1 − β)2
, (28)

B2 = 3E0R
3(1 − β)

(1 + 2β)(2 + β) − 2γ 3(1 − β)2
, (29)

where R is the inner radius of the vesicle. When the
dimensionless parameters β and γ are defined, respectively,

as [12]

β = β1 = β3 = σ2 − iωε2

σ1 − iωε1
= σ2 − iωε2

σ3 − iωε3
, (30)

γ = R

R + d
, (31)

the coefficients in Eqs. (26)–(29) are consistent with those
derived by Winterhalter and Helfrich [12].

The stable shape of the vesicle is determined by the
Maxwell stresses, dielectric energy density, the ratio χ = d/l,
and β1 and β3. In general, the membrane thickness d is much
smaller than l; β1 and β3 are also small quantities because
the conductivity of the membrane is much lower than those of
the internal and external medium and the permittivity of the
membrane is one order of magnitude smaller than those of the
internal and external ones. A simplification is possible when
the above conditions are taken into account. In those cases,
the asymptotic expression of the terms in the shape equation
associated with the electric field can be derived as

Eint2 =
∫ d

0
Endr = 3

2
χE0l

3 cos2 θ

(
l cos θ + dl

dθ
sin θ

)

×
[

e−iωt

a1 + a2
+ eiωt

(a1 + a2)∗

][(
dl

dθ

)2

+ l2

]−1/2

, (32)

U2 = ε2

∫ d

0

(
E2

n + E2
u + E2

v

)
dr

= 9

4
ε2χE2

0 l
3 cos4 θ

(
l cos θ + dl

dθ
sin θ

)2

×
[

e−iωt

a1 + a2
+ eiωt

(a1 + a2)∗

]2

, (33)

f3 = ε3

(
E2

3n − 1

2
E2

3

)

= 1

8
ε3

[
l2 cos 2θ −

(
dl

dθ

)2

cos 2θ+2l
dl

dθ
sin 2θ

]

×(Ae−iωt + A∗eiωt )2

[(
dl

dθ

)2

+ l2

]−1

, (34)

f1 = ε1

(
E2

1n − 1

2
E2

1

)
= 1

8
ε1[(Be−iωt + B∗eiωt )2

− (Ce−iωt + C∗eiωt )2]

[(
dl

dθ

)2

+ l2

]−1

, (35)

where

a1 = χ

(
2l cos θ − dl

dθ
sin θ

)(
l cos θ + dl

dθ
sin θ

)
, (36)

a2 = l cos θ

[
β3

(
2l cos θ − dl

dθ
sin θ

)

+β1

(
l cos θ + dl

dθ
sin θ

)]
, (37)
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A = 3β3E0l
2 cos2 θ

a1 + a2
, (38)

B = 3β1E0l
2 cos2 θ

(
l cos θ + dl

dθ
sin θ

)
a1 + a2

, (39)

C = 3E0
[
β1

dl
dθ

l cos2 θ
(
l cos θ + dl

dθ
sin θ

)]
a1 + a2

− 3E0 sin θ cos θ
[(

dl
dθ

)2 + l2
]

a1 + a2

×
[
χ

(
l cos θ + dl

dθ
sin θ

)
+ β3l cos θ

]
. (40)

The asterisk stands for a complex conjugate, Eint2 is the
transmembrane voltage drop, U2 is the dielectric energy
density, and f1 and f3 are the Maxwell pressures of the inner
and outer interfaces, respectively.

To derive the shape equation of a vesicle at the steady state,
we average the trans-membrane voltage drop, the Maxwell
stresses, and the dielectric energy density over a period of the
ac electric field [15,30]. The corresponding electric parts are
rewritten as

Ēint2 ≡ 〈Eint2〉 = 0, (41)

Ū2 ≡ 〈U2〉 = 9ε2χE2
0 l

3 cos4 θ (l cos θ + dl
dθ

sin θ )2

2(a1 + a2)(a1 + a2)∗
, (42)

f̄3 ≡ 〈f3〉 = AA∗

4
ε3

[
l2 cos 2θ −

(
dl

dθ

)2

cos 2θ

+ 2l
dl

dθ
sin 2

][(
dl

dθ

)2

+ l2

]−1

, (43)

f̄1 ≡ 〈f1〉 = 1

4
ε1(BB∗ − CC∗)

[(
dl

dθ

)2

+ l2

]−1

, (44)

where 〈x〉 stands for the time average of x over a period of the
ac electric field.

In the spherical coordinate system, the mean curvature H ,
the Gaussian K , and the Laplace-Beltrami operator of H can
be easily obtained as [25]

K =
[
l sin θ − dl

dθ
cos θ

][
2
(

dl
dθ

)2 − l d2l
dθ2 + l2

]
l sin θ

[(
dl
dθ

)2 + l2
]2 , (45)

H = cos θ
[
l2

(
dl
dθ

) + (
dl
dθ

)3]
2l sin θ

[(
dl
dθ

)2 + l2
]3/2

− sin θ
[
2l3 − l2

(
d2l
dθ2

) + 3l
(

dl
dθ

)2]
2l sin θ

[(
dl
dθ

)2 + l2
]3/2 , (46)

∇2H = D4
(

d4l
dθ4

) + D3
(

d3l
dθ3

) + D23
(

d2l
dθ2

)3

2l3 sin3 θ
[(

dl
dθ

)2 + l2
]9/2

+ D22
(

d2l
dθ2

)2 + D21
(

d2l
dθ2

) + D1

2l3 sin3 θ
[(

dl
dθ

)2 + l2
]9/2 . (47)

The coefficients D1, D21, D22, D23, D3, and D4 are given in
Appendix B.

Substitution of Eqs. (41)–(47) into (11) yields the electroe-
lastic shape equation of vesicles in ac electric field

2∇2H + (2H + c0)(2H 2 − c0H − 2K)

+ 1

k
(�p − 2λH + HŪ2 + f̄3 − f̄1) = 0. (48)

For a spherical vesicle with radius R, we have

K = 1

R2
, H = − 1

R
, ∇2H = 0 (49)

and Eq. (11) is recast as

�p + 2λ

R
+ kc0

(
c0

R
− 2

R2

)

− 9ε2E
2
0d cos2 θ

2R(2d/R + 2β3 + β1)(2d/R + 2β3 + β1)∗

+ 9ε3β3β
∗
3 E2

0 cos 2θ

4(2d/R + 2β3 + β1)(2d/R + 2β3 + β1)∗

− 9ε1β1β
∗
1 E2

0 cos2 θ

4(2d/R + 2β3 + β1)(2d/R + 2β3 + β1)∗

+ 9ε1E
2
0 sin2 θ (d/R + β3)(d/R + β3)∗

4(2d/R + 2β3 + β1)(2d/R + 2β3 + β1)∗
= 0. (50)

Generally, a vesicle maintains a spherical shape in an ac elec-
tric field when Eq. (50) has a nontrivial solution independent
of the angular coordinate. Obviously, Eq. (50) should satisfy
the condition

�p + 2λ

R
+ kc0

(
c0

R
− 2

R2

)

+ 9ε1E
2
0(d/R + β3)(d/R + β3)∗ − 9ε3β3β

∗
3 E2

0

4(2d/R + 2β3 + β1)(2d/R + 2β3 + β1)∗
= 0,

(51)

2ε3β3β
∗
3 − ε1β1β

∗
1 − ε1

(
d

R
+ β3

)(
d

R
+ β3

)∗
− 2ε2d

R
= 0.

(52)

It can be seen that the stability of spherical morphology of the
vesicle under an ac electric field depends on the frequency,
the pressure difference, the surface tension, the dielectric
coefficient of the membrane, the thickness of the membrane,
and the conductivities of the inner and outer electrolytes.

C. Shape equation in terms of axisymmetric
and arc-length coordinates

In the axisymmetric coordinate system (ρ,ϕ) in Fig. 1, the
mean curvature H , Gaussian curvature K , and the Laplace-
Beltrami operator of H have the form

K = sin ϕ cos ϕ

ρ

dϕ

dρ
, (53)

H = −cos ϕ

2

dϕ

dρ
− sin ϕ

2ρ
, (54)
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∇2H = − 1

2ρ3

{
ρ2 cos3 ϕ

(
ρ

d3ϕ

dρ3
+ 2

d2ϕ

dρ2

)
− sin ϕ cos2 ϕ

[
3ρ2

(
dϕ

dρ

)2

+ 4ρ3 dϕ

dρ

d2ϕ

dρ2
− 1

]

−ρ cos 2ϕ cos ϕ

[
ρ2

(
dϕ

dρ

)3

+ dϕ

dρ

]}
. (55)

The electric field has the relations

Eint21 =
∫ d

0
Endr = 3

2
E0z

2(z cos ϕ + ρ sin ϕ)
√

ρ2 + z2 cos ϕ

[
e−iωt

a3 + a4
+ eiωt

(a3 + a4)∗

]
, (56)

U21 = ε2

∫ d

0

(
E2

n + E2
u + E2

v

)
dr = 9ε2E

2
0z

4(ρ2 + z2)2 cos2 ϕ

4d

[
e−iωt

a3 + a4
+ eiωt

(a3 + a4)∗

]2

, (57)

f31 = ε3
(
E2

3n − 1
2E2

3

) = 9
8ε3E

2
0z

4(De−iωt + D∗eiωt )2 cos 2ϕ, (58)

f11 = ε1
(
E2

1n − 1
2E2

1

) = 1
8ε1[(Fe−iωt + F ∗eiωt )2 − (Ge−iωt + G∗eiωt )2], (59)

where

a3 = [3ρz sin ϕ + (2z2 − ρ2) cos ϕ](ρ2 + z2) cos ϕ

z cos ϕ + ρ sin ϕ
, (60)

a4 = z(z cos ϕ + ρ sin ϕ)

d
{β1(ρ2 + z2) cos ϕ + β3[3ρz sin ϕ + (2z2 − ρ2) cos ϕ]}, (61)

D = β3(z cos ϕ + ρ sin ϕ)2

d(a3 + a4)
, (62)

F = 3β1E0z
2 cos ϕ(z cos ϕ + ρ sin ϕ)2

d(a3 + a4)
, (63)

G = 3E0(z cos ϕ + ρ sin ϕ)[β1z
2 cos ϕ(ρ cos ϕ − z sin ϕ) − β3ρz2]

d(a3 + a4)
− 3E0ρz(ρ2 + z2) cos ϕ

(a3 + a4)(z cos ϕ + ρ sin ϕ)
. (64)

At the steady state of the vesicle, the time average of the
Maxwell stresses, the trans-membrane voltage drop, and the
dielectric energy density over a period of ac electric field are

Ēint21 ≡ 〈Eint21〉 = 0, (65)

Ū21 ≡ 〈U21〉 = 9ε2E
2
0z

4(ρ2 + z2)2 cos2 ϕ

2d(a3 + a4)(a3 + a4)∗
, (66)

f̄31 ≡ 〈f31〉 = 9

4
ε3E

2
0z

2DD∗ cos 2ϕ , (67)

f̄11 ≡ 〈f11〉 = 1

4
ε1(FF ∗ − GG∗) . (68)

Inserting Eqs. (53)–(59) into Eq. (11), the electroelastic
shape equation for a vesicle in the axisymmetric coordinate
system is determined as

2∇2H + (2H + c0)(2H 2 − c0H − 2K)

+ 1

k
(�p − 2λH + HŪ21 + f̄31 − f̄11) = 0. (69)

If ω = 0 and E0 = 0, the shape equation reduces to

cos3 ϕϕ̈̇ − 4 sin ϕ cos2 ϕϕ̈ϕ̇ + cos ϕ

(
1 − 3 cos2 ϕ

2

)
ϕ̇3

− 7 sin ϕ cos2 ϕ

2ρ
ϕ̇2 + 2 cos3 ϕϕ̈

ρ
− �p

k
− λ sin ϕ

kρ

− cos ϕ

(
c2

0

2
− 2c0 sin ϕ

ρ
+ 3 cos2 ϕ − 1

2ρ2
+ λ

k

)
ϕ̇

+ sin2 ϕ

2ρ3
− c2

0 sin ϕ

2ρ
+ sin ϕ cos2 ϕ

ρ3
= 0, (70)

where the overdot represents the derivation with respect
to ρ. Equation (70) is consistent with the shape equation
derived by Hu and Ou-Yang [27] for vesicles in mechanical
fields.

Similarly, in the arc-length coordinate system, the
mean curvature H , the Gaussian curvature K , and the
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Laplace-Beltrami operator of H are obtained as

K = sin ϕ

ρ

dϕ

ds
, (71)

H = −1

2

dϕ

ds
− sin ϕ

2ρ
, (72)

∇2H = sin ϕ

2ρ

(
dϕ

ds

)2

+ cos 2ϕ

2ρ2

dϕ

ds

−
(

sin ϕ cos2 ϕ

2ρ3
+ 1

2

d3ϕ

ds3
+ cos ϕ

ρ

d2ϕ

ds2

)
. (73)

Then the shape equation for vesicles in the arc-length coordi-
nate system is written as

2∇2H + (2H + c0)(2H 2 − c0H − 2K)

+ 1

k
(�p − 2λH + HŪ22 + f̄32 − f̄12) = 0. (74)

The expressions of Ū22, f̄32, and f̄12 in terms of the arc-length
coordinates are the same as Ū21, f̄31, and f̄11 in Eqs. (65)–(68),
except that the variables z and ρ are functions of arc length s.
If ω = 0 and E0 = 0, the shape equation (74) reduces to that
given by Ou-Yang et al. [31] for vesicles in mechanical fields,
that is,

ϕ′′′ + 2 cos ϕϕ′′

ρ
+ 1

2
ϕ′3 − 3 sin ϕϕ′2

2ρ

−
[
c2

0

2
+ λ

k
− 2c0 sin ϕ

ρ
+ 3 cos2 ϕ − 1

2ρ2

]
ϕ′

− c2
0 sin ϕ

2ρ
+ sin ϕ(1 + cos2 ϕ)

2ρ3
− �p

k
= 0, (75)

where the prime represents the derivative with respect to s.

IV. SINGULARITY OF ac ELECTRIC FIELDS

It is known that an applied electric field can lead to
electroporation in cell membranes and a considerable increase
in the membrane permeability to ions, molecules, and even
macromolecules [31]. Gao et al. [25] revealed the electric
singularity on the vesicle under a dc electric field. In the
present paper the singularity induced by an ac electric field
is investigated based on the shape equation given above.

From Eqs. (65)–(68), when a3 + a4 = 0, the dielectric
energy and the Maxwell stresses will become infinite. Then
we have

�f = [3ρz sin ϕ + (2z2 − ρ2) cos ϕ](ρ2 + z2) cos ϕ

z cos ϕ + ρ sin ϕ

+ z(z cos ϕ+ρ sin ϕ)

d
{β3[3ρz sin ϕ+ (2z2−ρ2) cos ϕ]}

+ z(z cos ϕ + ρ sin ϕ)

d
[β1(ρ2 + z2) cos ϕ] = 0. (76)

In contrast to the case of a dc electric field, the singularity
of dielectric energy and the Maxwell stress are frequency
dependent. In addition, the singularity of an ac electric field is
also influenced by the local curvature, electrolyte conductivity,
and electrolyte permittivity. From Eq. (76) one can determine

the positions at which the electric field is singular and may
cause the formation of small pores.

The electric singularity on a vesicle subjected to an
ac electric field helps us to understand the formation of
electroporation. For red blood cell membranes exposed to an
applied electric field, highly concentrated deformation can be
observed at some positions [32,33]. In Sec. V a numerical
example of a biconcave vesicle in an electric field with different
frequencies will be provided to further discuss the electric
singularity.

V. EXAMPLES AND DISCUSSION

A. Deformation of vesicles

As mentioned above, the vesicle shape in an ac electric
field is frequency dependent. On the basis of the shape
equation obtained above, four numerical examples based on
Eq. (69) are given to simulate the shape evolution of vesicles
in an axisymmetric ac electric field with a frequency in the
range from 30 × 103 to 4 × 106 Hz. Besides the frequency
dependence, the effects of the pressure difference and surface
tension on the shape evolution are also examined. In this
situation, Eq. (69) is rewritten as a set of ordinary differential
equations in the arc-length coordinate

ϕ̇ = W, Ẇ = τ, τ̇ = F (ϕ,ρ,z,W,τ ),
(77)

ρ̇ = cos ϕ, ż = − sin ϕ,

where

F (ϕ,ρ,z,W,τ )

= −2 cos ϕϕ̈

ρ
− 1

2
ϕ̇3 +

(
1

2
c2

0 + λ

k
+ 3 cos2 ϕ − 1

2ρ2

)
ϕ̇

+ 1

k
(�p + HŪ22 + f̄32 − f̄12)

+ sin ϕ

2ρ3

[
ρ2

(
3ϕ̇2 − 4c0 + c2

0

) − (1 + cos ϕ)2
]
. (78)

Considering the symmetry of the problem, the boundary
conditions for a quadrant of geometry are

ϕ(0) = 0, ϕ(s1) = π

2
,

W (0) = 0, τ (0) = 0, (79)

ρ(0) = 0, ρ(s1) = π

2
, z(0) = z1,

where s1 is the arc length of the integration interval and z1 is
the assumed initial value of z(0). Moreover, the vesicle volume
of V0 is fixed as a constant, that is,∫ s1

0
πρ2 sin ϕds = V0. (80)

To explore the deformation features of vesicles, we simulate
the equilibrium shapes of a vesicle under different frequencies
of the applied ac electric field, as shown in Fig. 2. The
parameters used in our calculations are listed in Table I.

A series of meridian planes in the (ρ1, ρ2, z) space are
chosen, each of which corresponds to a specified frequency.
From the (ρ1, 0, z) plane to the (0, ρ2, z) plane, the frequency
increases from 30 kHz to 4 MHz. It can be seen that the shapes
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FIG. 2. (Color online) Shape transition of a vesicle with respect
to the variation of the frequency, where we set σ 3/σ 1 = 4.64. Each
meridian plane represents a specified frequency. From the (ρ1, 0, z)
plane to the (0, ρ2, z) plane, the frequency increases from 30 kHz to
4 MHz.

of vesicles in an ac electric field are frequency dependent.
At a relatively low frequency, e.g., ν = 30 kHz, the vesicle
has a prolate shape with the major axis along the z direction.
With the increase of the frequency, the major axis gradually
shortens while the minor axis elongates. The vesicle will have
a spherical shape at a high frequency, e.g., ν = 4 MHz (the
red solid curve in Fig. 2). These results are in good agreement
with the experimental observations of Aranda et al. [1] and
Yamamoto et al. [15].

To illustrate the influence of the osmotic pressure differ-
ence, Fig. 3 shows the shape evolution of a vesicle with respect
to the variation of the pressure difference. Every meridian
plane in the (ρ1, ρ2, z) space represents a specified osmotic
pressure difference. From the (ρ1, 0, z) plane to the (0, ρ2, z)
plane, the osmotic pressure difference increases from −5.6 ×

TABLE I. Values of parameters taken in the calculations.

Parameter Value

cell radius R 1 × 10−5 m
membrane thickness d 5 × 10−9 m
curvature stiffness k 1 × 10−19 J
flexoelectric effect coefficient e11 0 C/m
conductivity of outer medium σ1 215.5 mS/m
conductivity of inner medium σ3 1000 mS/m
conductivity of cell membrane σ2 3 × 10−4 mS/m
permittivity of inner cytoplasm ε3 6.4 × 10−10 A s/V m
permittivity of cell membrane ε2 1.6 × 10−11 A s/V m
permittivity of extracellular medium ε1 6.4 × 10−10 A s/V m
spontaneous curvature c0 –2.4 × 10−5 m−1

osmotic pressure difference �p –5.6 × 10−5 Pa
surface tension λ –5 × 10−9 N/m
magnitude of electric field E0 0.1 kV/m

FIG. 3. (Color online) Shape transition of a vesicle with respect
to the variation of the osmotic pressure difference �p, where we
set σ 3/σ 1 = 4.64 and ν = 4 MHz. Every meridian plane represents
a specified pressure difference. From the (ρ1, 0, z) plane to the (0,
ρ2, z) plane, the pressure difference increases from −5.6 × 10−6 to
−2 × 10−4 Pa.

10−6 to −2 × 10−4 Pa. The parameters used in the calculations
are listed in Table I. We take the electric-field frequency
ν = 4 MHz and σ 3/σ 1 = 4.64. If the vesicle shape was
independent of the osmotic pressure difference, the vesicle
form would be a sphere, as shown by the red solid curve at �p

= −5.6 × 10−5 Pa in Fig. 2. However, it can be seen clearly
from Fig. 3 that with the increase of the osmotic pressure
difference, the vesicle shape changes from an oblate one with
the minor axis along the z direction (cyan solid curve) to
a sphere at �p = −5.6 × 10−5 Pa (red solid line). As the
pressure difference is increased further, the vesicle will become
a prolate shape with the major axis along the z direction.
Therefore, the pressure difference has a distinct influence on
the vesicle morphology. Under a larger pressure difference, the
equilibrium shapes of vesicles tend to be prolate. Increasing
the pressure difference promotes the critical frequency for the
vesicle morphology evolution from a prolate shape to a sphere.

The influence of surface tension λ on the shape evolution
of a vesicle in an ac field is shown in Fig. 4, in which the
parameters in Table I are used. Each sectional plane in the
(ρ1, ρ2, z) space corresponds to a given surface tension. In
Fig. 4(a), 180 meridian planes are chosen from the (0, ρ2,
z) plane to the (ρ1, 0, z) plane, with the surface tension
varying from −5.6 × 10−9 to −4 × 10−9 N/m. It is found
that the vesicle form also shows a dependence on the values
of the surface tension. When the value of surface tension λ

is small (e.g., −4 × 10−9 N/m), the vesicle takes an oblate
shape with the minor axis along the z direction, as shown by
the cyan solid curve in Fig. 4(a), where we set ν = 4 MHz
and σ3/σ1 = 4.64. For a higher surface tension (e.g., 5.6 ×
10−9 N/m), the vesicle will have a prolate shape with the major
axis along the z direction, as shown by the blue solid curve in
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FIG. 4. (Color online) Shape transition of a vesicle with respect
to the variation of the surface tension λ when σ 3/σ 1 = 4.64. Every
meridian plane in the (ρ1, ρ2, z) space represents a specified surface
tension. From the (0, ρ2, z) plane to the (ρ1, 0, z) plane, the values
of the surface tension are increased gradually: (a) ν = 4 MHz,
the surface tension varies from −5.6 × 10−9 to −4 × 10−9 N/m;
(b) ν = 1.5 MHz, the surface tension varies from −5 × 10−9 to
−3.8 × 10−9 N/m.

Fig. 4(a). Figure 4(b) shows the shape evolution of a vesicle
with respect to the surface tension λ when ν = 1.5 MHz and
σ 3/σ 1 = 4.64. The surface tension varies from −5 × 10−9 to
−3.8 × 10−9 N/m. With a decrease of the surface tension,
the vesicle morphology undergoes a prolate-sphere-oblate
transition, indicating the significant role of surface tension.
A comparison between Figs. 4(a) and 4(b) indicates that along
with the increase of the electric-field frequency, the critical
value corresponding to the prolate-sphere transition due to the
variation of the surface tension is decreased.

FIG. 5. Vesicle of circular biconcave shape subjected to an ac
electric field along the z direction. The square stands for the positions
fulfilling the singularity condition given by Eq. (76).

B. Singularity of ac electric fields

Now we analyze the singularity of ac electric fields on the
vesicle surface. Following Gao et al. [25], a biconcave vesicle
is considered. Since the biconcave liposomes begin to deform
with increasing osmotic pressure difference, it is reasonable
to assume that the initial biconcave vesicles exist at �p = 0
and λ = 0 [34]. The biconcave shape equation of the vesicle
is assumed to be [34]

sin ϕ = ρ/R0 + c0ρ ln ρ, (81)

where R0 is the arbitrary constant and c0 the spontaneous
curvature of the membrane. A typical and stationary shape of
vesicle is shown in Fig. 5, where we set

sin ϕ = 0.1ρ + 0.188ρ ln 0.1ρ, ρ ∈ [0,10]. (82)

Let us assume that an ac electric field of intensity
E0 = 0.1 kV/m is suddenly applied on the circular biconcave
vesicle. The singularity indicator function �f defined in
Eq. (76) is plotted in Fig. 6(a). Two zero positions, which
are the solutions of Eq. (76), are marked in Figs. 5 and 6(a)
using black squares. The corresponding dielectric energy and
interior and exterior Maxwell stresses according to Eqs. (65)–
(68) are shown in Figs. 6(b)–6(d). It can be seen that the
mutation of dielectric energy and interior and exterior Maxwell
stresses are frequency dependent. With an increase of the field
frequency, the mutation is weakened, indicating that at high
field frequency, the singularity of ac electric fields due to
dielectric energy and interior and exterior Maxwell stresses
would disappear. It can also be noticed that the singularity
at the point near the center, that is, ρ1 in Fig. 5, is more
remarkable. At the far point ρ2, the mutation is weakened
quickly along with an increase of the frequency.

VI. CONCLUSION

In this paper the shape equation for vesicles in an ac electric
field has been derived on the basis of the liquid-crystal model.
The effects of elastic bending, pressure difference, surface
tension, Maxwell pressure, and flexoelectric and dielectric
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(a)

(b)

(c)

(d)

FIG. 6. (Color online) (a) Variation of the singularity indicator function �f with respect to ρ, (b) variation of the dielectric energy, (c)
interior Maxwell pressure, and (d) exterior Maxwell pressure with respect to the field frequency ν and ρ. The parameters used in the calculations
are listed in Table I.

properties of the phospholipid membrane were all taken into
account in the equation establishment. The shape equation was
used to investigate the morphological evolution of vesicles due
to an ac electric field. It was found that the shape of a vesicle
in an electric field depends not only on its elastic property
and the frequency of the applied electric field, but also on the
Maxwell pressure, the osmotic pressure difference, and surface
tension. The decrease of the pressure difference will increase
the critical frequency for the prolate-to-sphere transition,
while the increase of surface tension will decrease the
frequency for the prolate-sphere-oblate transition. Moreover,
the singularity of ac electric field due to dielectric energy and
interior and exterior Maxwell stresses is frequency dependent.
When the frequency is very high, the singularity would become

insignificant. This study helps in the understanding of the
frequency-dependent deformation behavior of vesicles and
other related phenomena, e.g., electroporation.
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APPENDIX A: COEFFICIENTS A2, A3, B1, AND B2 IN EQS. (19) AND (20)

The coefficients A2, A3, B1, and B2 in Eqs. (19)–(22) are derived as

A2 = −3g−1
0 E0(l + d)3l cos θ

[(
l cos θ + dl

dθ
sin θ

)
+ β3

(
2l cos θ − dl

dθ
sin θ

)]
, (A1)

A3 = −9g−1
0 E0β3(l + d)3l2 cos2 θ, (A2)

B2 = 3g−1
0 E0(l + d)3l4 cos θ (1 − β3)

(
l cos θ + dl

dθ
sin θ

)
, (A3)

B1 = −g−1
0

{
E0(1 − β1)(l + d)6

(
l cos θ + dl

dθ
sin θ

)[(
l cos θ + dl

dθ
sin θ

)
+ β3

(
2l cos θ − dl

dθ
sin θ

)]

+E0l
3(l + d)3(β3 − 1)

(
l cos θ + dl

dθ
sin θ

)[(
l cos θ + dl

dθ
sin θ

)
+ β1

(
2l cos θ − dl

dθ
sin θ

)]}
, (A4)

where

g0 = g1 + g2 + g3 + g4, (A5)

g1 = d(3l2 + 3ld + d2)

(
2l cos θ − dl

dθ
sin θ

)(
l cos θ + dl

dθ
sin θ

)
, (A6)

g2 = (l + d)3

[
β3

(
2l cos θ − dl

dθ
sin θ

)2

+ β1

(
l cos θ + dl

dθ
sin θ

)2]
, (A7)

g3 = (β3 + β1)l3

(
2l cos θ − dl

dθ
sin θ

)(
l cos θ + dl

dθ
sin θ

)
, (A8)

g4 = β1β3d(3l2 + 3ld + d2)

(
2l cos θ − dl

dθ
sin θ

)(
l cos θ + dl

dθ
sin θ

)
. (A9)

APPENDIX B: COEFFICIENTS D1, D21, D22, D23, D3, AND D4 IN EQ. (47)

The coefficients D1,D21, D22, D23, D3, and D4 in Eq. (47) are given as

D1 = sin2 θ cos θ

(
dl

dθ

)9

+ l sin2 θ

(
dl

dθ

)8

+ l2(5 cos θ − 4 cos3 θ )

(
dl

dθ

)7

+ 2l3 sin θ (8 − 7 cos2 θ )

(
dl

dθ

)6

+ l4 cos θ (17 − 14 cos2 θ )

(
dl

dθ

)5

+ l5 sin θ (7 cos2 θ − 3)

(
dl

dθ

)4

+ l6 cos θ (16 − 13 cos2 θ )

(
dl

dθ

)3

+ 2l7 sin θ cos2 θ

(
dl

dθ

)3

+ l8 cos θ (3 − 2 cos2 θ )
dl

dθ
, (B1)

D21 = l2 sin θ

[
−(4 cos2 θ − 5)

(
dl

dθ

)6

+ 6l sin θ cos θ

(
dl

dθ

)5

+ l2(42 cos2 θ − 41)

(
dl

dθ

)4

−2l3 sin θ cos θ

(
dl

dθ

)3

− l4(9 cos2 θ − 8)

(
dl

dθ

)2

− 8l5 sin θ cos θ
dl

dθ
− l6 cos2 θ

]
, (B2)

D22 = 2l3 sin3 θ

[
−9

(
dl

dθ

)4

+ 17l2

(
dl

dθ

)2

− l4

]
− 7l4 sin2 θ cos θ

dl

dθ

[
l2 +

(
dl

dθ

)2]
, (B3)

D23 = 3l4 sin3 θ

[
5

(
dl

dθ

)2

− l2

]
, (B4)

D3 = 2l3 sin2 θ

[
l3 cos θ + l

(
dl

dθ

)2

cos θ + 3 sin θ

(
dl

dθ

)3

− l sin θ
dl

dθ

(
2l + 5

d2l

dθ2

)][
l2 +

(
dl

dθ

)2]
, (B5)

D4 = l4 sin3 θ

[(
dl

dθ

)4

+ 2l2

(
dl

dθ

)2

+ l4

]
. (B6)
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