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Experimental detection of long-distance interactions between biomolecules through their diffusion
behavior: Numerical study
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The dynamical properties and diffusive behavior of a collection of mutually interacting particles are
numerically investigated for two types of long-range interparticle interactions: Coulomb-electrostatic and
dipole-electrodynamic. It is shown that when the particles are uniformly distributed throughout the accessible
space, the self-diffusion coefficient is always lowered by the considered interparticle interactions, irrespective of
their attractive or repulsive character. This fact is also confirmed by a simple model to compute the correction
to the Brownian diffusion coefficient due to the interactions among the particles. These interactions are also
responsible for the onset of dynamical chaos and an associated chaotic diffusion which still follows an
Einstein-Fick-like law for the mean-square displacement as a function of time. Transitional phenomena are
observed for Coulomb-electrostatic (repulsive) and dipole-electrodynamic (attractive) interactions considered
both separately and in competition. The outcomes reported in this paper clearly indicate a feasible experimental
method to probe the activation of resonant electrodynamic interactions among biomolecules.
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I. INTRODUCTION

The present work is the follow-up of a recent paper of
ours [1], where a first step was made to investigate why
and how long-range intermolecular interactions of electro-
dynamic nature might influence the 3D encounter dynamics
of biological partners. Based on a simple analytical study
in one spatial dimension, we have reported quantitative and
qualitative dynamical properties that will stand out in case
such interactions play an active role at the biomolecular level.
Moreover, non-negligible effects were reported in a parameter
domain accessible to standard laboratory techniques, sug-
gesting that the contribution of long-range electrodynamic
interactions in biological processes might be well estimated
from experimental measurements.

The physical observable chosen (the first encounter time
between two interacting biomolecules) turns out to be hardly
measurable in practice because it requires following the
dynamics of single molecules. Thus the present work aims
at filling this gap between theory and experimental feasibility.
This is achieved by investigating some transport properties of
long-range interactions acting among a set of particles freely
moving in a fluid environment.
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The novelty of the present work is that one-dimensional
(1D) analytic results in Ref. [1] are here replaced by 3D numer-
ical results in a more realistic context. In fact, biomolecules,
which are typically charged, move in three-dimensional space
where they are subjected to several interactions, from which
there is at least one kind of long-range one: electrostatic inter-
actions. Thus we begin by considering Coulomb interactions,
both screened and unscreened, for which all the parameters can
be precisely assigned. On this basis we get a reference scenario
allowing an assessment of the sensitivity of diffusion to forces
which are undoubtedly active among charged biomolecules.
Then we make electrodynamic forces enter the game: By
studying their possible competition with Coulomb forces
we can find out how new characteristic features of the
concentration dependence of diffusion can emerge making
the difference with the previous case. Therefore feasible
experiments can be identified.

Now, let us quickly outline the framework of the problem
of detecting long-range electrodynamic intermolecular inter-
actions. The starting point is the observation of the fact that
the high efficiency, rapidity, and robustness of the complex
network of biochemical reactions in living cells must involve
directed interactions between cognate partners. This should
be especially true for the recruitment of biomolecules at a
long distance in order to make them available at the right
time and at the right place. A long-standing proposal [2–4]
surmises that beyond all the well-known short-range forces
(chemical, covalent bonding, H bonding, and Van der Waals)
biomolecules could interact also at a long distance by means
of electrodynamic forces, generated by collective vibrations
bringing about large dipole moment oscillations. The existence
of collective excitations within macromolecules of biological
relevance (proteins and polynucleotides) is well documented

1539-3755/2014/90(2)/022703(14) 022703-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.022703


ILARIA NARDECCHIA et al. PHYSICAL REVIEW E 90, 022703 (2014)

experimentally, e.g., through the observation of low-frequency
vibrational modes in the Raman and far-infrared (THz)
spectra [5–9]. These spectral features are commonly attributed
to coherent collective oscillation modes of the whole molecule
(protein or DNA) or of a substantial fraction of its atoms.
These collective conformational vibrations are observed in the
frequency range of 0.1–10 THz [10–12]. A priori collective ex-
citations can be switched on and off by suitable environmental
conditions (mainly energy supply [2]), a property which is a
priori necessary in a biological context. Also, they can entail
strong resonant dipole interactions between biomolecules
when they oscillate with the same pattern of frequencies.
Resonance would thus result in selectivity of the interaction.
The reason for associating selectivity with resonance is that
if the dipoles of two objects vibrate at the same frequency
(or with more than one common frequency) they interact
through a long-range electrodynamic potential falling off with
distance as 1/r3, otherwise, off-resonance, the electrodynamic
potential falls off with distance as 1/r6, a short-range Van der
Waals-like potential (here the electromagnetic field mediating
the interaction is real at variance with true Van der Waals
interactions mediated by virtual photons). Details can be found
in Ref. [13].

Then the fundamental question is as follows: Does nature
exploit these long-distance electrodynamic intermolecular
forces in living matter? In other words, are these forces
sufficiently strong to play the above surmised role? Note that
while electrostatic interactions between charges or dipoles
in the cytoplasm are exponentially damped with distance,
Debye screening proves generally inefficient for interactions
involving oscillating electric fields. The electromagnetic field
radiated by charges or dipoles in the cytoplasm oscillating
faster than hundreds of MHz is not affected by Debye screen-
ing [14,15] and is able to produce long-distance interactions.
To answer the questions raised above one has to devise a
technologically possible experimental setup in vitro to begin
with—to detect some direct physical consequence of the
action of long-range interparticle interactions. As we shall
see throughout this paper, long-range interactions markedly
affect the self-diffusion properties of particles. This is also
true for electrostatic as well as for electrodynamic interactions,
although they entail different phenomenologies with some
common features.

By long-range interactions we mean an interaction potential
falling off with the interparticle distance r as 1/rν with
ν � d, d being the spatial dimension of the system. In a
looser sense, we also mean that the interparticle interactions
act at a long distance, “long” meaning much larger than
usual distance for which chemical and Van der Waals forces
act. Hence, in what follows, by “long distance” we mean
distances varying from several hundreds to several thousands
of angström. As we shall see, for collections of solute particles
homogeneously distributed in a given volume, the presence of
deterministic forces beside the stochastic ones (mimicking the
collisions of water molecules against a solute macromolecule)
entails a slowing down of diffusion, thus a decrease of the
diffusion coefficient. And this occurs independently of the
attractive or repulsive nature of the interparticle forces. An
independent signature of an increasing strength of the average

interparticle interactions is provided by an increase of the
degree of chaoticity of the dynamics, as measured by the
largest Lyapunov exponent.

In Sec. II we give the equations of motion of an ensemble of
solute molecules subjected to a random force plus the sum of
all the deterministic forces due to mutual interactions and we
define the three different intermolecular interactions potentials
that we used: Coulomb screened (short-range repulsive), pure
Coulomb (long-range repulsive), and dipole-dipole (long-
range attractive) interactions of electrodynamic origin. In the
same section, we also propose a simple theoretical derivation
of a formula that accounts for a correction to the Brownian
diffusion coefficient in presence of interactions among the
solute molecules.

In Sec. III we report the outcomes of the numerical study
of the previously mentioned models and we comment on the
observed phenomenology.

The Sec. IV is devoted to some concluding remarks
about the results presented throughout the present work.
Moreover, for what concerns the feasibility of laboratory
experiments aimed at detecting long-range interactions among
biomolecules, we have identified an observable—the self-
diffusion coefficient—which can be easily accessed with
available experimental techniques and which is very sensitive
to intermolecular deterministic interactions.

II. MODELS

In the present section we define the model equations, the
molecular interaction potentials, the numerical algorithm, and
the relevant observables for the numerical study of an ensemble
of mutually interacting particles in presence of an external
random force.

A. Basic equations

We consider a system composed of N identical molecules,
modeled as spherical Brownian particles of radius R, mass
M , and a net number of electric charges Z, moving in a fluid
with viscosity η at a fixed temperature T , interacting through
a pairwise potential U (r) which depends only on the distance
r between their centers.

Under the assumption that the friction exerted by the fluid
environment on the particles is described by Stokes’s law,
the dynamics of the system is given by N -coupled Langevin
equations [16],

M
d2r i

dt2
= −γ

d r i

dt
−

N∑
j=1,j �=i

∇r i
U (|r i − rj |)

+
√

2γ kBT ξ i(t) for i = 1, . . . ,N, (1)

where r i is the coordinate of the center of i-th particle,
γ = 6πηR is the friction coefficient, and kB is the Boltzmann
constant. The stochastic displacements are uncorrelated so
ξ (t) = (ξ 1, . . . ,ξN ) is a 3N -dimensional random process
modeling the fluctuating force due to the collisions with water
molecules, usually represented as a Gaussian white noise
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process satisfying the following:

〈ξα(t)〉ξ = 0,
(2)〈

ξα
i (t)ξβ

k (t ′)
〉
ξ

= δαβδikδ(t − t ′),

where α,β = x,y,z are the Cartesian components of ξ i’s and
〈·〉ξ stands for an average over many realizations of the noise
process. As the random process is stationary the average
over different realizations of the noise is equivalent to a time
average,

〈f (ξ )〉ξ = lim
t→+∞

1

t

∫ t

0
f (ξ (τ ))dτ = lim

t→+∞〈f (ξ (t))〉t . (3)

Considering times much larger than the relaxation time τr =
M/γ , we can neglect inertial effects obtaining the overdamped
limit for Eqs. (1),

γ
d r i

dt
= −

N∑
j=1,j �=i

∇r i
U (|r i − rj |)

+
√

2γ kBT ξ i(t) i = 1, . . . ,N. (4)

In systems like the one we are interested in (involving protein
or nucleid acids in aqueous medium) τr is negligible compared
with the characteristic time scales for experimental observa-
tions,1 so we can assume that the dynamics for such systems is
described by Eqs. (4). As the deterministic interactions are in
general nonlinear, we are dealing with a system of first-order
stochastic differential equations (SDEs) which describes a
randomly perturbed nonlinear N -body dynamical system with
an expected complex (chaotic) dynamics since the integrability
is exceptional. For this reason, we undertake the numerical
integration of Eqs. (4). We remark that Eqs. (4) can be
considered as a Lagrangian description of a system whose
Eulerian description is given by a Fokker-Planck equation for
the N -body probability distribution PN (r1, . . . ,rN,t) [17] of
the following form:

∂PN

∂t
= γ

N∑
i=1

∇r i
·
[
DB∇r i

PN + PN

∇r i
U (r1, . . . ,rn)

γ

]
,

(5)

where DB = kBT /γ is the Brownian diffusion coefficient
and U (r1, . . . ,rn) = ∑N

i=1

∑
j>i U (|r i − rj |) is the total in-

teraction energy. It is well known that Gibbs configurational
distribution P

eq
N = P

eq
N (r1, . . . ,rN ) is the stationary solution

of Eq. (5) which also minimizes free energy [17],

P
eq
N = 1

Z
exp[−βU (r1, . . . ,rn)], (6)

where β = 1/kBT and

Z =
∫

exp[−βU (r1, . . . ,rn)]
N∏

i=1

d r i . (7)

1For example, for a biomolecule with a hydrodynamic radius R =
2 × 10−3μm and mass M = 15 kDa in pure water at 300 K, the
relaxation time τr is in the order of 10−6 μs.

The distribution of Eq. (6) defines an equilibrium measure μeq

as follows:

μeq(f (r i)) =
∫

f (r i)P
eq
N (r i)

N∏
i=1

d r i , (8)

which is invariant respect to the flow defined by Eqs. (4). As we
are interested especially in the behavior of systems described
by Eqs. (4) in the limit t → +∞, we assume that the system
thermalizes without any dependence on initial conditions, i.e.,
for every initial configuration {r i(0)}i=1,..N it exists a time t̃

such as PN (t) � P
eq
N for t > t̃ .

B. Model potentials

The explicit forms of the pairwise potential U (|r|) used in
our simulations have been the following. The first case that
we considered is the electrostatic interaction among identical
molecules in electrolytic solution; this is described by the
Debye-Hückel potential [18],

UDebye(r) = (Ze)2

ε|r|
e
− 2R

λD
( |r|

2R
−1)

(1 + R/λD)2
, (9)

where λD is the Debye length of the electrolytic solution, R is
the molecular radius, e is the elementary charge, and ε is the
static dielectric constant of the medium. As water is ubiquitous
in microscopic biological systems, we put ε = εwater � 80,
i.e., its static value at room temperature. Coulomb screening
is an essential feature of biological systems which shortens
the range of electrostatic interactions due to small ions freely
moving in the environment. In order to study how the diffusion
and dynamical properties of the system change by varying the
spatial range of the interactions, we consider different values
for λD and, in the ideal case of λD → +∞, we adopt the
pure Coulomb potential for charged particles in a dielectric
medium,

UCoul(r) = (Ze)2

ε|r| . (10)

The second case concerns a long-range attractive dipolar
potential [1,13,19]. This, in regularized form, reads as

UDipolar(r) = − c

|r|3 + α
, (11)

where c is a positive parameter and α is a parameter that pre-
vents U (r) from becoming singular. This potential describes
both an attractive electrostatic and an attractive electrodynamic
dipole-dipole interaction. In describing a system with a strong
Debye shielding, the use of the potential of Eq. (11) is
equivalent to the implicit assumption that this potential is of
electrodynamic origin. The parameter α flattens U (r) at short
distances when these are comparable with the radius R of
the molecules. In fact, when r is small, multipole moments
could play a role and, in principle, this would lead to the
description of the interaction among complex bodies whose
charge distributions should be taken into account [20]. Here it
is assumed that the net result of these interactions (which can be
attractive as well as repulsive), occurring when the molecules
are close one to the other, is zero. The softened potential
Eq. (11) solves this problem. The parameter α is fixed by

022703-3



ILARIA NARDECCHIA et al. PHYSICAL REVIEW E 90, 022703 (2014)

the condition that the second derivative of U (where the force
intensity reaches its maximal value) vanishes, that is, α = 2r3,
at r = 0.1μm. The value of the coefficient c, which controls
the force intensity, has been determined by the requirement
that U (r), at the same value r = 0.1 μm, is equal to a given
fraction of −kBT , whence U (r = 0.1 μm) = −kBT /10.

A priori, we could think that, in order to have some
observable effect, deterministic forces should overcome the
average thermal energy per degree of freedom. However,
we observed that this is not the case; for example, with
U (r = 0.1 μm) = −3kBT we always found a vanishing D.
This happens because deterministic forces keep almost the
same directions on time scales for which random forces (that
mimic water molecules collisions) incoherently change much
more their directions. The relevant physical consequence is
that interaction potentials definitely weaker than kBT can have
sizable effects. That the choice U (r = 0.1 μm) = −kBT /10
is realistic for biomolecules is supported by quantitative
estimates that can be found in Ref. [13].

C. Numerical algorithms

We have numerically studied systems of N molecules
confined in a cubic volume of size L. To get rid of spurious
boundary effects, periodic boundary conditions (PBC) have
been assumed, which implies the existence of an infinite
number of replicas or images throughout the space. As
we are interested in studying dynamical properties and
diffusive behavior of different concentrations of molecules,
we fixed the number of molecules N and varied the average
intermolecular distance 〈d〉 according to the relation

L = 3
√

N〈d〉. (12)

In the presence of long-range interactions and PBC, each
molecule contained in the previously mentioned box interacts
with all the molecules contained in the above-mentioned
images or replicas; that is, the pairwise potential U (r i ,rj ) =
U (|r i − rj )| in Eqs. (1) and (4) has to be replaced by an
effective potential U eff(r i ,rj ) of the following form:

U eff(r i ,rj ) =
∑
k∈Z3

U (|r i − rj + kL|), (13)

where Z3 is the space of three-dimensional integer vectors. In
order to compute the force Fj (r i) on the i-th particle due to
the j -th particles and all its replicas, we rearrange the terms of
the sum in Eq. (13), so

Fj (r i) = −∇xi
U (|xi − r̃j |)

+∇xi

∑
k∈Z3,k �=0

U (|xi − r̃j + kL|), (14)

where xi is the i-th particle image position into the reference
box and r̃j is the nearest image of j -th particle, that is,

|xi − r̃j | = |r i,j | = min
k∈Z3

|xi − rj + kL| <
L

√
3

2
= λNN.

(15)

It is clear by Eqs. (14) and (15) that short- and long-range
interactions (in the sense specified in the Introduction) have to

be managed in two different ways. For short-range interactions
it is always possible to define a cutoff length scale λcut such
that the effects of the interactions beyond this distance are
negligible. In the systems we have studied by means of
numerical simulations, the Debye electrostatic potential is a
short-range potential with a cutoff scale of the order of some
units of the Debye length λD . As for each case considered
it is λNN > 30λD , the second term on the right-hand side
of Eq. (14) has been neglected in numerical computations.
For long-range interactions [i.e., Coulomb potential Eq. (10)
and dipole-dipole electrodynamic potential Eq. (11)], it is not
possible to define a cutoff length scale λcut so, in principle, the
infinite sum in Eq. (14) should be considered. A classical way
to account for long-range interactions resorts to the so-called
Ewald summation [21]. In the subsequent section we describe
a more recent and practical method—replacing Ewald’s—
known as isotropic periodic sum (IPS). The equations of
motion (4) were numerically solved using the Euler-Heun
algorithm [22], a second-order predictor-corrector scheme.
The position r i,n of the i-th particle at time tn = t0 + n�t ,
t0 being the initial time, is obtained by the following:

r i,n = r i,n−1 + 1

2γ
[F(r i,n−1) + F(r̃ i,n)]�t +

√
2kT

γ
ξ i,n−1,

(16)

where F is the resultant of the forces acting on the i-th particle
and r̃ i,n is calculated with the Euler predictor by the following:

r̃ i,n = r i,n−1 + 1

γ
F(r i,n−1)�t +

√
2kT

γ
ξ i,n−1. (17)

The initial position of each particle is randomly assigned at
t0 using a uniform probability distribution in a cubic box of
edge L.

1. IPS correction to long-range potentials

Because of the long-range nature of Coulomb and dipolar
potentials [described by Eqs. (10) and (11), respectively] the
force acting on each particle is given by the sum of the forces
exerted by all the particles in the box and by the particles
belonging to the images. For the computation of these forces,
we used the IPS method [23,24], a cutoff algorithm based
on a statistical description of the images isotropically and
periodically distributed in space. Assuming that the system is
homogeneous on a length scale Rc, we can define an effective
pairwise IPS potential U IPS = U IPS(|r i,j |,Rc), which takes
into account the sum of pair interactions within the local region
and with the images of this one,

U IPS(|r i,j |,Rc) =
⎧⎨
⎩

U (|r i,j |) + φ(|r i,j |,Rc), |r i,j | � Rc

0, |r i,j | > Rc

,

(18)

where φ(|r i,j |,Rc) is a correction to the potential obtained
by computing the total contribution of the interactions with
the particle images beyond the cutoff radius Rc [23,24].
For the Coulomb potential of Eq. (10), we obtained an
analytical expression for the IPS correction φCoul(r i,j ,Rc).
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For computational reasons this has been approximated by a
polynomial of degree 7 in x = |r i,j |/Rc with x in the interval
(0; 1] as follows:

φCoul(x) = −9.13636 × 10−7 + 0.000100298x

+ 0.298588x2 + 0.0151595x3

+ 0.00881283x4 + 0.10849x5

− 0.0930264x6 + 0.0482434x7. (19)

For the regularized dipole potential of Eq. (11) it is not possible
to compute analytically the IPS correction. Nevertheless,
since the regularization constant α in Eq. (11) could be
negligible with respect to R3

c , so α/R3
c � 1, we will assume

that the dipolar potential has the form UDipolar(r) � c/r3

for r � Rc. Thus, we can compute the exact IPS correction
φDipolar(|r i,j |,Rc), and, approximating this by means of a
polynomial, we obtain the following:

φIPS
Dipolar(x) = −3.34576 × 10−6 + 0.000199865x

+ 0.936254x2 + 0.0259481x3

+ 0.0971465x4 + 0.184721x5

− 0.146205x6 + 0.0877732x7. (20)

We have chosen Rc = L/2 under the hypothesis that on this
scale the system is homogeneous.

D. Long-time diffusion coefficient

We aim at assessing the experimental detectability of long-
range interactions between biomolecules, taking into account
quantities accessible by means of standard experimental
techniques. A valid approach to do so is the study of transport
properties. For this reason, in our simulations we chose the
long-time diffusion coefficient D as main observable of the
system described by Eqs. (4). This coefficient is defined,
consistently with Einstein’s relation [21], as

D = lim
t→+∞

〈|�r i(t)|2〉
6t

, (21)

where �ri(t) = r i(t) − r i(0) is the total displacement of a
particle in space and 〈ai〉 = 1/N

∑N
i=1 ai , the average over the

particle set. We remark that in our system the displacements
�r i(t) are not mutually independent due to the interaction
potential U (|r i − rj |) in Eqs. (4) which establishes a coupling
between different particles; in that case, the average over
the particles index concerns correlated stochastic variables.
Nevertheless, as our system is nonlinear with more than
three degrees of freedom, it is expected to be chaotic [25]
so, in this case, the statistical independence of particle
motions is recovered. Moreover, when a chaotic diffusion gives
〈|�r i(t)|2〉 ∝ t (which is the case of the models considered
in the present work), the diffusion coefficient D is readily
computed through a linear regression of 〈|�r i(t)|2〉 expressed
as a function of time. In what follows we refer to 〈|�r i(t)|2〉
as mean-square displacement (MSD).

E. Self-diffusion coefficient for interacting particles

In this section, we derive a formula which corrects the
Brownian diffusion coefficient by taking into account molec-

ular interactions described by U (r) in Eqs. (1). Following the
classical derivation given by Langevin, we rewrite Eqs. (1) in
terms of the displacement of each particle with respect to its
initial position: �r i = r i(t) − r i(0),

M
d2�ri

dt2
= −γ

d�r i

dt
−

N∑
j=1

∇r i
U (r i ,rj )

+
√

2γ kBT ξ i(t) for i = 1, . . . ,N, (22)

since dnri/dtn = dn�ri/dtn. Taking the scalar product with
�r i of both sides, we obtain the following:

1

2
M

d2|�r i |2
dt2

− Mv2
i

= −γ

2

d|�r2
i |

dt
− �r i ·

N∑
j �=i

∇r i
U (r i ,rj )

+
√

2γAkBT �r i · ξ i(t) for i = 1, . . . ,N, (23)

where v2
i = |d�r i/dt |2 = |d r i/dt |2. Introducing the time

derivative of the square module of the total displacement
zi = d|�r i |2/dt , we obtain

1

2
M

dzi

dt
− Mv2

i

= −γ

2
zi − �ri ·

∑
i �=j

∇ri
U (r i ,rj ) +

√
2γ kBT �r i · ξ i(t)

for i = 1, . . . ,N. (24)

According to Eq. (21) the self-diffusion coefficient D can be
equivalently expressed in terms of zi as

D = lim
t→+∞

1

6t

∫ t

0

d〈|�r i(τ )|2〉
dτ

dτ = lim
t→+∞

1

6
〈〈zi〉〉, (25)

where 〈〈·〉〉 indicates a double mean over particles and time.
Let us now apply this double averaging to Eqs. (24) and remark
that 〈〈�r i · ξ i(t)〉〉 = 0 because the time average is equivalent
to an average over noise realizations [see Eq. (3)]. Thus we get
the following:

〈〈zi〉〉 = − 1

γ
M

〈〈
dzi

dt

〉〉

+ 2

γ

⎡
⎣M

〈〈
v2

i

〉〉 −
〈〈

�ri ·
∑
i �=j

∇r i
U (r i ,rj )

〉〉⎤
⎦ ,

(26)

whose limit for t → +∞ gives an expression for the diffusion
coefficient which explicitly depends on U (r), according to
Eq. (25). We assume that such a limit is finite for every term
on the right-hand side in Eq. (26) and that

lim
t→+∞

〈〈
dzi

dt

〉〉
= 0, (27)

which amounts to considering that the motion is diffusive.
Since we consider systems at thermodynamic equilibrium,
the equipartition theorem entails limt→+∞ M〈〈v2

i 〉〉 = 3kBT .
We thus obtain the following expression for the diffusion
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coefficient D,

D = lim
t→+∞ D0

[
1 − 〈〈�r i(t) · ∑

i �=j ∇ri
U (r i ,rj )〉〉

3kBT

]
, (28)

where D0 = kBT /γ is the Brownian diffusion coefficient.
We remark that the correction term does not depend on

initial conditions, as it would appear at a first glance at the
equation above. In fact, having assumed thermal equilibrium,
the dynamics is self-averaging so time averages of observables
for very long time t (ideally t → +∞) are equivalent to an
average over initial conditions.2 For numerical calculations,
the potential-dependent term in Eq. (28) is computed using
the following:

�D

D0
= D0 − Ds

D0
= 1

N

N∑
i=1

[
1

m

m∑
k=1

�r i(k�t) · Fi(k�t)

]
,

(29)

where �r i(k�t) = r i(k�t) − r i(0) is the total displacement
of the i-th particle at the k-th integration step [taking
into account PBC according to Eq. (14) and possibly IPS
corrections] and Fi(k�t) is the resultant force acting on the
i-th particle.

F. Measuring chaos in dynamical systems with noise

Equations (4) are a system of nonlinear differential equa-
tions with additive noise. A relevant observable measuring the
degree of instability of the dynamics is the largest Lyapunov
exponent (LLE). The definition and numerical computation
of the LLE is standard for noiseless deterministic maps
and dynamical systems [26], while it is more debated and
controversial for randomly perturbed dynamical systems,
the difficulty being due to the nondifferentiable character
of stochastic perturbations [27–29]. However, note that our
system is, in principle, a smooth dynamical system because the
stochastic term in Eqs. (4) is just a simplified way to represent
the deterministic (and differentiable) collisional interactions
between Brownian solute particles with solvent molecules
(water). In other words, Eqs. (4) are a practical representation
of the dynamical system described by the following smooth
ordinary differential equations (ODEs):

γ
d r i

dt
= −

n∑
j=1

∇r i
U (|r i − rj |) +

√
2γ kBT f i(t), (30)

where f (t) = ( f 1(t), . . . , f N (t)) is a 3N -dimensional time-
dependent vector of functions representing the effect of
collisions of water molecules with Brownian particles on
a microscopic scale. If we look at f (t) on a time scale
comparable to the characteristic collision time of water
molecules with Brownian particles (τcoll ∼ 1 ps), f (t) is a

2A naive computation, neglecting the effect of PBC, would always
give a value of the diffusion coefficient that is increased with respect to
the Brownian one in the case of repulsive interactions and decreased
in the case of attractive interactions. The presence of infinite replicas
due to PBC makes this statement incorrect in our case, as it can be
seen using the form of the effective potential in Eq. (13).

differentiable function and its Fourier spectrum has a priori
a cut-off frequency. In spite of this, since we study the
dynamics on time scales which outnumber τcoll by at least
six orders of magnitude, f (t) can be safely approximated by
the standard white noise specified by Eqs. (2) and (3). The
white noise approach is useful for the numerical computation
of the dynamics, but the underlying physics is in principle
well described by the ODEs system of Eqs. (30). Having
this in mind, we get rid of the subtleties of defining chaos
in randomly perturbed dynamical systems and we resort to
standard computational methods [30]. Deterministic chaos
stems from two basic ingredients: stretching and folding of
phase-space trajectories. In our case, the folding of trajectories
in phase space is guaranteed by PBC, which make phase space
compact, while stretching is given by the local instability of
the trajectories. Hence their average instability is measured
through the usual largest Lyapunov exponent λ, defined as
follows:

λ = lim
t→+∞

1

t
ln

‖ζ (t)‖
‖ζ (0)‖ , (31)

where ‖ · ‖ is the Euclidean norm inR3N and ζ = (ζ1, . . . ,ζ3N )
is a 3N -dimensional vector whose time evolution is given by
the following tangent dynamics equations:

dζ i

dt
= − 1

γ

N∑
k=1

∂2U

∂xi∂xk

∣∣∣∣
x(t)

ζ k(t) i = 1, . . . ,3N. (32)

Of course, a positive LLE indicates deterministic chaos. Using
the above definition we expect that the LLE vanishes in the
absence of an interaction potential U (r) in Eqs. (30) since
the tangent dynamics equations (32) becomes trivial. Note
that the term f (t) does not contribute to Eqs. (32), which
means that the precise functional form of “noise” has no
influence on the chaotic properties of the system. Besides its
theoretical interest, computing LLEs has to do also with the
possibility, at least in principle, of working out these quantities
from experimental data. This could provide an additional
observable to probe the presence of long-range intermolecular
interactions. For numerical computations of the LLE Eq. (31)
is replaced by the following:

λ = 1

Nstep�t

Nstep∑
m=1

ln
‖ζm‖

‖ζm−1‖ , (33)

where Nstep is the total number of integration steps and �t

is the time step. In practice, to compute the time evolution
of the tangent vector in Eqs. (32) for N = 1200 particles
(consequently, for 3N = 3600 degrees of freedom) amounts to
computing about 6.5 million matrix elements of the Hessian of
U (r) for each time. This would be a very heavy computational
task, thus we resorted to an old algorithm described in the
celebrated paper by Benettin et al. [26]. This consists of
considering a reference trajectory x(t) and of computing
very short segments of varied trajectories x̃(t) issuing very
close to this reference trajectory. Details are given in the
quoted paper.
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III. NUMERICAL RESULTS

In the present section we report the effect of long-distance
interactions on the diffusion behavior of a collection of
molecules by analyzing how D deviates from its Brownian
value. The numerical integration of Eqs. (4) was performed
using the model potentials given in Sec. II B, using the
integration algorithm with periodic boundary conditions and
the IPS corrections to the interactions both described in
Sec. II C. The computer code used was written in FORTRAN90,
developed in a parallel computing environment. This program
was run on a computer cluster for typical durations of 500 to
1500 h (total CPU time) for each simulation. The overall CPU
time needed for the results reported in this section amounts to
about 200 000 CPU hours. All the simulations were performed
considering a system of 1200 molecules (since we typically
used 120 processors) of radius R = 0.002 μm, at a temperature
of 300 K, with an integration time step h = 0.001 μs and each
computation consisted of 5–8 × 106 steps. In this paper, we
use the following system of units: μm for lengths, kDa for
masses (1 kDa = 6.0221 × 10−20gr), and μs for time.

In our simulations we considered uniform random initial
conditions to mimic a typical experimental setup with a drop
of aqueous solution of biomolecules. Then we considered the
system in a bona fide equilibrium state when, by integrating
the dynamics, 〈r2(t)〉 reached a stable linear time dependence
on a millisecond time scale.

The values of the self-diffusion coefficient D have been
obtained by means of a least-squares fit of the time dependence
of the MSD, that is, using the following fitting function:

〈r2(t)〉 = b0 + 6Dt, (34)

where the additive offset b0 has no physical relevance but has
been included in order to better estimate the long-time behavior
of the MSD. In the following sections, the values of D will
be plotted normalized by the Brownian diffusion coefficient
D0. This coefficient is known a priori and is compared with
the numerical outcome obtained for very low concentrations.
These values are found to be in very good agreement within
typical statistical errors of the order of 1/

√
N = 1/

√
1200. As

we will see in the following (see Figs. 2, 4, and 10), the results
for 〈r2(t)〉 are, to an excellent degree of approximation, straight
lines. Thus, the errors in determining the diffusion coefficient
values are tiny, smaller than the size of the symbols referring
to D. We will also see that, in addition to the standard source
of diffusion represented by the random forces

√
2γ kBT ξ i(t),

another source of diffusion is given by the intrinsic chaoticity
of the particle dynamics stemming from the interparticle
interactions. The latter contribution to diffusion does not alter
the linear time dependence of the MSD. This circumstance is
not new and has been reported in many examples of chaotic
diffusion [31–35]. To give a measure of spatial correlation
in the simulated system we calculated the radial distribution
function g(rn) defined as follows:

g(rn) = 1

N

N∑
i=1

[
Ni,rn

4π
3 (n3 − (n − 1)3)ρδ3

]
n = 1, . . . ,NBin,

(35)

++++++++++++++++++
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+

FIG. 1. (Color online) Excluded volume simulations. Semilog
plot of the normalized theoretical self-diffusion coefficient D/D0

(open circles) computed according to Ref. [36] compared to the
outcomes of the standard numerical simulations (crosses) given by
[Eqs. (21) and (34)] versus the average distance between the particles
with vanishing intermolecular potential.

where Ni,rn
represents the number of particles at an “effective”

distance r ∈ [rn − δ; rn + δ) from the i-th particle (i.e., taking
into account also different images of the system for PBC), with
δ = L/(2NBin), rn = (2n − 1)δ, and ρ = N/L3. Although the
function g(rn) has a discrete domain, we will refer to it as
g(r) for the sake of simplicity and as we set NBin = 1000.
We calculated the distance between all pairs of molecules and
binned them into a histogram normalized to the density of the
system. This function gives a measure of the spatial correlation
in the system since it is proportional to the probability of
finding a molecule at a given distance r from another one. In
addition, we have measured the Lyapunov exponent, according
to what is given in Sec. II F, and the correction to the Brownian
value D0, according to Eq. (29).

A. Excluded volume effects

As we already said, we aim at investigating the different
possible sources of deviation from Brownian diffusion, thus
we begin with the most simple possibility: excluded volume
effects at the foreseen experimental conditions. We considered
hard spheres with vanishing intermolecular potential, U =
0, and modeling impenetrability as follows: Whenever two
molecules i and j get in touch and interpenetrate at some
time t (that is |r i(t) − rj (t)| < 2R, with R the radius of each
molecule) we get back to t − h and redraw the ξ i(t) until
r i,j (t) are such that the impenetrability condition is satisfied.
In Fig. 1 we can see that the excluded volume effects on
diffusion coefficient D normalized with the Brownian value
D0 are very small. These results agree with the theoretically
predicted values [36] according to which D = D0[1 − 2φ],
where φ = 1/6πR3n and n = N/L3 is the number density.

B. Effects of long- and short-range electrostatic interactions
at fixed average intermolecular distance

The next step is obtained by switching on interparticle
interactions, keeping fixed all the parameters (temperature,
viscosity, average interparticle distance, and Debye length)
but the number of charges Z. This way, we can vary only
the intensity of the interparticle forces measuring the largest
Lyapunov exponent and how D deviates from Brownian
motion. To begin with, the screened Coulomb potentials
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FIG. 2. (Color online) (a) Normalized self-diffusion coefficient
D/D0 (circles) computed according to Eq. (29) compared to the out-
comes of the standard computation (squares) according to Eqs. (21)
and (34) versus the number of charges Z of the particles interacting
through the Coulomb potential with λD = 0.01 μm [Eq. (9)] at
average interparticle distance 〈d〉 = 0.04 μm. On the second axes
we report the largest Lyapunov exponent [Eq. (33)] (rhombus).
Full symbols represent the corresponding theoretical values for the
vanishing Z value. (b) Plot of the time evolution of the simulated
MSD for different values of charge. The charge Z increases starting
from the top line that correspondsto Z = 10 and passing to Z = 50
to Z = 100 and up to the bottom line corresponding to Z = 180.

defined in Eq. (9) have been considered for an average
intermolecular distance 〈d〉 = 0.04 μm and a Debye length
λD = 0.01 μm. In Fig. 2 and in Fig. 3, we report the outcomes
of these numerical simulations.

In Fig. 2(a) we can see that the stronger the interparti-
cle interaction the larger the deviation from the Brownian
diffusion, that is, the stronger the decrease of the diffusion
coefficient D. The degree of chaoticity, represented by the
largest Lyapunov exponent, is also affected by the strength
of the interparticle interaction. At the same time, the time
dependence of the MSD remains linear, that is, the chaotic
diffusion still follows the Einstein-Fick law [35], as it can be
seen in Fig. 2(b). The decreasing of the diffusion coefficient
occurring in the presence of repulsive interactions is due to the
fact that the molecules uniformly fill all the accessible volume,
thus, since there is no room for a free expansion of the system,
the motion of any given molecule is somewhat hindered and
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FIG. 3. (Color online) Radial distribution function g(r)
[Eq. (35)] and particle position snapshots at the final simulation
time for four charge values of Fig. 2 starting from the top with
Z = 10 on the first line, Z = 50 on the second line, Z = 100
on the third line, and Z = 180 on the last one. The large dashed
black line corresponds to r = λD = 0.01 μm while the short dashed
black line corresponds to the r = 〈d〉 = 0.04 μm. The full black line
shows the value g(r) = 1. In the left panels the units of r are μm, as
well as the units of the snapshots axes to the right.

slowed down by the surrounding ones. On the contrary, in
the presence of repulsive forces an increase of diffusion is
expected when measured by mutual diffusion coefficient [37].
The latter describes the decay of a concentration fluctuation
and it is intuitive that under the action of repulsive forces a
local higher density of particle diffuses faster than a Brownian
diffusion. We can also observe a strikingly good agreement
between the values of D obtained through the time dependence
of the MSD and by computing the theoretical corrections to
Brownian value D0 due to deterministic forces, according to
Eq. (29). The behavior of the Lyapunov exponents [Fig. 2(a)]
is characterized by an initial increase of the chaoticity of
the system with a bending—towards lower values—beginning
around Z = 120. Such results can be qualitatively understood
with the aid of the radial distribution functions g(r) reported
in Fig. 3.

The pattern of g(r) shows a transition from a gaseous-like
system to more and more spatially correlated systems with
increasing Z. The higher the Z the larger the range of spatial
ordering, as indicated by a larger numbers of peaks displayed
by the function g(r) at distance values which are multiples
of the average intermolecular distance. This is similar to a
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FIG. 4. (Color online) (a) Normalized self-diffusion coefficient
D/D0 (black circles) computed according to Eq. (29) compared
to the outcomes of the standard computation [gray (green) circles]
according to Eqs. (21) and (34) versus the number of charges Z of
the particles interacting through a pure Coulomb potential [Eq. (10)]
at average interparticle distance 〈d〉 = 0.04 μm. On the second axes
we report the largest Lyapunov exponent [Eq. (33)] (rhombus). Full
symbols represent the corresponding theoretical values for vanishing
Z value. (b) Plot of the time evolution of the simulated MSD for
different values of charge. The charge Z increases starting from the
top line that corresponds to Z = 10 and passing to Z = 50 and to
Z = 100 and up to the bottom line corresponding to Z = 180.

transition from a gaseouslike state system to higher spatially
ordered systems (like a liquid or possibly a glass).

We can surmise that the behavior of the LLE is due to
the competition between the chaotic dynamics and the spatial
ordering. To better elucidate this phenomenology, we have
considered the unscreened Coulomb potential.

The results reported in Figs. 4 and 5 have been obtained by
means of the Coulomb potential defined in Eqs. (10) and (19)
having kept constant all the parameters (as above with 〈d〉 =
0.04 μm) with the exception of the number of charges Z.

Likewise in Fig. 2, we can observe that the stronger
the interparticle interaction, the larger the deviation from
Brownian diffusion, with a linear time dependence of the
MSD for all the charge values used in these simulations, as
shown in Fig. 4(b). The increase of the strength of chaos,
measured by Lyapunov exponents, observed between Z = 10
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FIG. 5. (Color online) Radial distribution function g(r)
[Eq. (35)] and particle position snapshots at the final simulation time
for four charge values of Fig. 4 starting from the top with Z = 10 on
the first line, Z = 50 on the second line, Z = 100 on the third line,
and Z = 180 on the last one. Short dashed black line correspond to
the r = 〈d〉 = 0.04 μm. Full black line show the value g(r) = 1.
In the left panels the units of r are μm, as well as the units of the
snapshots axes to the right.

and Z = 50 [Fig. 4(a)] is related to the increase of the
strength of intermolecular interactions. This corresponds to
a gaseous-like state of the system as shown by the first
panel of Fig. 5. In the second panel of the same figure, the
maximum value reached by the LLE, at Z = 50, is attained
when a sufficient degree of spatial order sets in so it competes
with dynamical chaos of the gaseouslike phase. The strong
decrease of the LLE observed from Z = 75 is due to a further
enhancement of spatial order, as shown by the g(r) in the third
panel of Fig. 5. The fourth panel of the same figure shows
a crystal-like arrangement of the molecules confirmed by the
pattern of the function g(r) [21]. Moreover, for Z � 120, the
LLE drops to values very close to zero with a pattern displaying
a seemingly sharp transition. Correspondingly, the diffusion
coefficient also drops to zero after a monotonous decrease
from its Brownian value at Z = 0. Finally, the values of D/D0

given by Eq. (29), reported in Fig. 4(a), are again in very good
agreement with the outcome of the standard computation;
a growing discrepancy is observed in the above-mentioned
transition occurring at Z = 120 where the degree of chaoticity
is close to vanishing.
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C. Effects of long- and short-range electrostatic interactions
at fixed charge value

Let us now consider the effect of changing the interaction
strength resulting from a variation of the average intermolecu-
lar distance and a variation of the action radius of electrostatic
forces. This is obtained by using different Debye lengths
(λD = 0.001 and 0.01 μm) for the screened Coulomb potential
defined in Eq. (9) and by using the Coulomb potential defined
in Eqs. (10) and (19) (λD = ∞) for different charge values
(Z = 10 and Z = 100).

The choice of these parameter values is partially inspired,
on the one side, by the typical range of values of charges
for proteins (Z = 10 is a reasonable value for many proteins
at physiological pH) and for small fragments of nucleic
acids (each pair of nucleotides brings about two unbalanced
electron charges), and, on the other side, the lowest value
λD = 0.001 μm is approximately the Debye length of the
cytosol while longer Debye lengths are relevant for prospective
in vitro experiments.

Let us remark that even though electrostatic attractive
interactions play a role in biological contexts, in view of
the experimental setups we envisage to detect long-range
electrodynamic interactions, the use of identical particles is
the most favorable to begin with (in fact, the excitation of
collective vibrations of identical particles necessarily entails
resonance: All of them vibrate with the same frequency
spectrum). As a consequence, we have considered only
repulsive electrostatic interactions.

Figure 6 summarizes the dependence of the normalized
mean diffusion coefficient as a function of the average distance
among the molecules. Different values of λD are considered for
Z = 10 [Fig. 6(a)] and Z = 100 [Fig. 6(b)]. We can observe
that at low concentrations diffusion reaches its Brownian limit
characterized by D/D0 � 1, and the larger the Debye length
and the number of charges the larger the decrease of the
diffusion coefficient. It turns out that an appreciable change
in the diffusion coefficient shows up for λD � 0.01 μm. The
outcomes of numerical computations obtained for Z = 100
and λD = ∞ are reported also in Fig. 7 and compared with
the values of the LLE and of the outcomes of the theoretical
correction to the Brownian diffusion coefficient (29). At
very high dilutions corresponding to an average interparticle
distance larger than 10 μm, the diffusion is Brownian while
at shorter interparticle distances the effect of electrostatic
interactions is again a decrease of the diffusion coefficient
up to a concentration corresponding to 〈d〉 = 0.03 μm, where
diffusion stops. By resorting to the computation of the radial
distribution functions we observe the same phenomenology
reported in Fig. 5; that is, in the case of Brownian diffusion the
corresponding radial distribution function closely resembles
that in first panel of Fig. 5. When diffusion deviates from
being purely Brownian the radial distribution shows regular
peaks as in the second and third panels of Fig. 5 and it looks
like that in the fourth panel of Fig. 5 when diffusion stops.
At the same time, we observe an increase of the LLE which
corresponds to the decrease of D up to the point where D

vanishes. When D vanishes, a sudden drop of the LLE is
observed to practically zero values. Finally, we observe a very
good agreement of the theoretical correction to the Brownian
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FIG. 6. (Color online) Semilog plot of the normalized self-
diffusion coefficient D/D0 versus the average distance of the particles
interacting through Coulomb potentials [Eqs. (10) and (19)] for
different combinations of λD values at Z = 10 (a) and Z = 100
(b). The symbols indicate the Debye length values: λD = 0.001 μm
correspond to triangles, λD = 0.01 μm, to squares and λD = ∞ to
circles.

diffusion coefficient except when diffusion stops; this suggests
that a developed chaoticity of the dynamics is a requisite for
such a computation to be reliable. In other words, when the
largest Lyapunov exponent becomes exceedingly small, the
requirement that the dynamics has to be self-averaging (see
Sec. II E) is no longer fulfilled.

D. Long-range attractive dipolar effects

As noted in the Introduction, we are interested in verify-
ing the experimental detectability of long-range interactions
among molecules of biological interest through their diffusive
behavior. In this section, we focus on the study of diffusive
and dynamical properties of the system when both the
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FIG. 7. (Color online) Semilog plot of the normalized self-
diffusion coefficient versus the average distance of the particles
interacting through Coulomb potential [Eqs. (19)] with Z = 100. The
normalized self-diffusion coefficient D/D0 (black circles) computed
according to Eq. (29) is compared to the outcomes of the standard
computation [gray (green) circles] according to [Eqs. (21) and (34)].
On the second axes we report the largest Lyapunov exponent
[Eq. (33)] (rhombus). The dashed lines are guides to the eye.

electrostatic Debye potential, described in Eq. (9), and the
attractive dipole-dipole electrodynamic potential, described in
Eqs. (11) and (20), are involved. The choice of considering
the simultaneous presence of these two kinds of interactions
is motivated by the fact that biomolecules are charged objects
with nonvanishing dipolar moments. The dynamical properties
and diffusive behavior in the presence of an attractive inter-
action qualitatively differ from those observed in the previous
sections regarding only the repulsive Coulomb potential. For
the sake of clarity, we present and compare the combined
presence of Coulomb and dipole-dipole electrodynamic poten-
tials (represented by full symbols) with the presence of only
Coulomb potential (represented by open symbols), the latter
already presented in the previous section. The kind of symbol
corresponds, as before, to the different Debye length values:
triangles correspond to λD = 0.001 μm and squares to λD =
0.01 μm. In Fig. 8 the numerical outcomes for the normalized
diffusion coefficient, D/D0, are reported as a function of the
average intermolecular distance for two charge values, Z = 10
[Fig. 8(a)] and Z = 100 [Fig. 8(b)], and different values of the
Debye lengths, both in the presence and absence of the dipole-
dipole electrodynamic potential. At very high dilutions, in a
range between 〈d〉 = 1 μm and 〈d〉 = 0.2 μm, the diffusion
follows its Brownian limit characterized by D/D0 � 1 for
each combination of charge or potential as observed in both
panels of the aforementioned figure. Let us resume, first, the
results when only the Coulomb potential is involved; in order
to observe a significant deviation from the Brownian limit
the Debye length must be at least equal to 0.01 μm (open
squares) with a more pronounced effect for Z = 100 where
the deviation from Brownian motion reaches D/D0 � 0.3. To
begin with, we switch on the dipolar potential, focusing on
the lower charge value, Z = 10 [Fig. 8(a)]. We can observe a
sharp decrease of the normalized diffusion coefficient, with a
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FIG. 8. (Color online) Semilog plot of the normalized self-
diffusion coefficient D/D0 versus the average distance of the particles
interacting only through Coulomb potential [Eq. (10)] and through
the Coulomb potential and the attractive dipole-dipole potential
[Eq. (20)] for different combinations of λD values at Z = 10 (a)
and Z = 100 (b). The symbol shapes indicate the Debye length
values, λD = 0.001 μm corresponds to triangles, and λD = 0.01 μm
to squares, while open symbols represent Coulomb potential and full
ones the combined action of Coulomb and dipole-dipole potentials.

transition between a diffusive Brownian motion and an absence
of diffusion. These results are independent of the action radius
of Coulomb potential; in fact, no difference has been observed
between the two different Debye length values. The results
reported in Fig. 8(b) are obtained by switching on the dipolar
potential and by increasing the intensity of Coulomb potential
(taking Z = 100). When the Coulomb interactions is weak
(λD = 0.001 μm full triangle), so the dipolar contribution
overcomes it, we can observe the same aforementioned sharp
transition characterized by no diffusion.

On the contrary, with a larger Debye length (λD = 0.01 μm
full square) the effects of a competition between the two
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FIG. 9. (Color online) Semilog plot of the normalized self-
diffusion coefficient versus the average distance of the particles in-
teracting through Coulomb and dipolar potential [Eqs. (10) and (20)]
with Z = 100 and λD = 0.001 μm. The normalized self-diffusion
coefficient D/D0 (circles) computed according to Eq. (29) is
compared to the outcomes of the standard computation (triangles)
according to Eqs. (21) and (34). On the second axes we report the
largest Lyapunov exponent [Eq. (33)] (rhombus).

potentials, repulsive and attractive, respectively, are observed
when the average intermolecular distance is varied. At large
average intermolecular distances the particle motions are prac-
tically independent from one another, resulting in Brownian
diffusion, while at shorter distances the mutual interactions
play an important role. The interplay between the repulsive and
attractive interactions leads to a diffusion behavior dominated
by the dipolar interactions in a small range of distances

in correspondence with the transition from D/D0 � 1 to
D/D0 � 0, as observed in Fig. 8(a). At smaller values of 〈d〉,
the dipolar effect on diffusion is balanced by the presence of
short-range Coulomb repulsion, thus preventing the formation
of a clustered system. In Fig. 9, we report the outcomes
of numerical computations of D/D0 versus 〈d〉 obtained in
the case of a dominant dipolar potential with respect to the
Coulomb one (Z = 100 and Debye length λD = 0.001 μm).

In the same figure, we add to D/D0, the values of the
LLE and of the outcomes of the theoretical correction to the
Brownian diffusion coefficient due to interparticle interactions
[Eq. (29)]. This figure shows a good agreement between the
theoretical correction to D0 and the numerical results. We
can also observe that the transition from a diffusive to a
nondiffusive behavior goes with a sharp increase of the LLE,
indicating a transition from a nonchaotic to a chaotic dynamics.
Note that, in the transition region, fluctuating patterns of the
LLE and of the theoretical correction to D0 are found.

While the regular oscillation of D/D0 versus 〈d〉 is
due to a competition between two forces of opposite sign
(repulsive electrostatic and attractive dipolar), the oscillation
of the Lyapunov exponent below the transition has only a
qualitative meaning. The clustering transition is reminiscent
of a phase transition, implying the well-known phenomenon of
the critical slowing down of dynamical variables correlation.
We can thus surmise that in this region, the dynamics
displays long transients to the final clustered configurations, so
memory of the initial conditions could be kept as is confirmed
by numerical simulations performed with different initial
conditions. However, knowing the exact shape of λ versus
〈d〉 would not add any relevant information with respect to the
aims of the present work.

In Fig. 10 the radial distribution functions of the particles
and the snapshots of their positions are given. These results
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FIG. 10. (Color online) Radial distribution function g(r) [Eq. (35)], particle position snapshots at the final simulation time and mean-square
displacement versus time at two average interparticle distances, 〈d〉 = 0.18 μm (first line) and 〈d〉 = 0.04 μm (second line), for particles of
Z = 100 interacting with a Coulomb potential [Eq. (10) with λD = 0.001 μm] and with a dipolar potential [Eq. (20)]. The large dashed black
line corresponds to r = λD while the short dashed black line corresponds to the r = 〈d〉. The full black line shows the value g(r) = 1. In the
left-hand panels the units of r are in μm, as well as the units of the snapshot axis to the right. In the right-hand panels, the units are μm2 for
the MSD and μs for the time.
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refer to two average interparticle distances and confirm a
transition from a gaseous-like state to a clustered configuration.

Summarizing, the diffusion quasiarrest is always connected
to the occurrence of large clusters, as shown by the lower
panels in the center and right sides of Fig. 10. The clustering
phenomenon associated with a sudden drop of the diffusion
coefficient at some critical average distance among the
particles is very sharp (Fig. 9). This is strongly reminiscent of
a phase transition due, as usual, to the competition between the
entropic driving toward thermal disorder and the deterministic
forces trying to make order in the system. In the clustered
phase the particles are confined in definitely smaller space and,
in spite of the appearance of chaos due to the deterministic
forces that drive the clustering, the particles are not free to
move everywhere as in the gaseous phase, thus diffusion is
hindered.

Finally, let us note that the results presented in the current
section indicate a possibility to disentangle the effects of
electrostatic and electrodynamic interactions. In fact, by
using a sufficiently high ion concentration in prospective
experiments, and so weakening the electrostatic forces, only
the effects of electrodynamic interactions would be observed.

IV. CONCLUDING REMARKS

As already stated in the Introduction, the present work is the
follow-up to a recent one aimed at assessing the experimental
possibility of detecting long-range electrodynamic interactions
between biomolecules. At variance with the outcomes of
the previous work, the substantial advance provided by the
present one consists of a conceptual proof of feasibility of
an experimental approach resorting to an actually measurable
observable. In particular, this observable is the diffusion
coefficient that can be measured by means of several available
techniques like pulsed-field gradient nuclear magnetic reso-
nance forced Rayleigh scattering (FRS), fluorescence recovery
after photobleaching (FRAP), and fluorescence correlation
spectroscopy (FCS), to mention some of them. The long-
range electrodynamic forces we are after have hitherto eluded
observation in spite of many studies on the diffusion behavior
of biomolecules in solution. We surmise that until now no
evidence has been reported about the presence of these
interactions because they are not compatible with thermal
equilibrium [13,19], contrary to previous predictions [3], the
consequence being the need for an out-of-equilibrium driving
of the biomolecules by means of a source of collective excita-
tion. In order to achieve the above-mentioned assessment about
experimental detectability of electrodynamic intermolecular
interactions, we have performed numerical simulations whose
outcomes can be summarized as follows:

(i) We have found that, for dilute systems (〈d〉 ranging from
about 400 Å to 30 000 Å), the diffusion coefficient is sensitive
to all the interactions considered. Starting with a uniform
distribution of molecules in all the accessible volumes, an
interesting phenomenon is observed: The diffusion coefficient
decreases independently of the repulsive or attractive nature
of the molecular interactions (repulsive Coulomb with and
without screening, attractive electrodynamic dipole-dipole).

(ii) Moreover, we observed that, in the gaseous-like phase,
a decrease of the diffusion coefficient is always accompanied

by an increase of chaos. On the contrary, when spatial order
sets in, a decrease of the diffusion coefficient is always
accompanied by a decrease of chaos. Even though it is
well known that no simple relation exists between Lyapunov
exponents and transport properties in dynamical systems, the
qualitative correspondences observed are consistent with the
intuitive idea that both phenomena are related to the intensity
of intermolecular interactions.

(iii) Nice transitional phenomena have been observed: for
Coulomb interactions a first transition from purely stochastic
diffusion to chaotic plus stochastic diffusion is found; then,
at sufficiently high concentrations, a spatial ordering of the
molecules is found resembling a crystal-like structure. For
dipole-dipole interactions an abrupt clustering transition is
observed, which is strongly reminiscent of an equilibrium
phase transition.

(iv) The simple theoretical model proposed in Sec. II E
gives the good values of the diffusion coefficients computed
along the dynamics in the presence of intermolecular interac-
tions within a few percentages of error. This result paves the
way—at least in principle—to analytic predictions if the time
averages used in this work are replaced by statistical averages
Eq. (8) worked out with the Boltzmann-Gibbs weight [Eq. (6)]
(which is the stationary measure associated with our model
equations).

From the experimental point of view, which was the
main motivation of the present work, we conclude that the
variations of the diffusion coefficient D with respect to its
Brownian value, as well as the patterns of D versus the average
interparticle distance 〈d〉, are such that the practical possibility
exists of experimentally tackling the problem of interest by
means of, for example, one of the above-mentioned techniques.

Let us conclude with a remark about the applicability of
the above-reported results to two-dimensional systems like,
for example, protein diffusion on lipid membranes. The same
kind of computations reported above can be performed also in
two dimensions. But a priori we expect nontrivial differences
between the two- and three-dimensional cases, for example,
the potential 1/r3 is long range in three dimensions but short
range in two dimensions because in the latter case the exponent
3 is larger than the spatial dimension. Another example of a
difference is that in the absence of deterministic interactions a
random “walker” in one dimension and two dimensions will
always almost surely return to the starting point, whereas this
is not the case in three dimensions because, due to Polya’s
theorem, the probability to return to the origin drops to about
0.34, and this, of course, affects also the encounter probability
of two different objects.
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