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We consider the phase behavior of a simple model of a liquid crystal by means of modified mean-field
density-functional theory (MMF DFT) and Monte Carlo simulations in the grand canonical ensemble (GCEMC).
The pairwise additive interactions between liquid-crystal molecules are modeled via a Lennard-Jones potential
in which the attractive contribution depends on the orientation of the molecules. We derive the form of this
orientation dependence through an expansion in terms of rotational invariants. Our MMF DFT predicts two
topologically different phase diagrams. At weak to intermediate coupling of the orientation dependent attraction,
there is a discontinuous isotropic-nematic liquid-liquid phase transition in addition to the gas-isotropic liquid
one. In the limit of strong coupling, the gas-isotropic liquid critical point is suppressed in favor of a fluid-
(gas- or isotropic-) nematic phase transition which is always discontinuous. By considering three representative
isotherms in parallel GCEMC simulations, we confirm the general topology of the phase diagram predicted by
MMF DFT at intermediate coupling strength. From the combined MMF DFT-GCEMC approach, we conclude
that the isotropic-nematic phase transition is very weakly first order, thus confirming earlier computer simulation
results for the same model [see M. Greschek and M. Schoen, Phys. Rev. E 83, 011704 (2011)].
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I. INTRODUCTION

Liquid crystals are an interesting class of soft-matter
materials with a broad spectrum of applications. These range
from the more traditional ones in display technology [1,2] over
biosensors [3–5] and tribological applications [6] to photonic
[7,8] and organic electronic devices [9,10]. Even in the food
industry, liquid crystals are used to stabilize dispersions and
emulsions [11].

In view of the diversity of applications for liquid-crystalline
materials, a deeper theoretical understanding of their proper-
ties is a necessary prerequisite. As a first step in such a venture,
the nature of various phase transitions in liquid crystals needs
to be elucidated. In the context of this work, the isotropic-
nematic (IN) phase transition is of particular relevance.

Theoretically, this phase transition has been studied by
purely phenomenological approaches such as Landau theory
which is an expansion of the free energy in terms of the
alignment tensor where one retains terms that are necessary to
describe a first-order phase transition [12]. In 1949, Onsager
proposed a theory that allows one to understand the IN phase
transition in a fluid of hard rods [13]. He could show that the
Helmholtz energy of such a system can be decomposed into
an energylike contribution and another one accounting for the
entropy of mixing in a multicomponent mixture composed
of rods with different orientations. Later, Maier and Saupe
developed a mean-field theory of the IN phase transition where
they assume an interaction contribution to the Gibbs energy
depending quadratically on the nematic order parameter. The
total Gibbs energy is then minimized with respect to the
orientation distribution function [14–16].
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Due to the steady and enormous increase in computer power
since about the middle of the last century, computer-based
theoretical approaches have gained a lot of insight into details
of the IN phase transition in various model systems. For
example, Eppenga and Frenkel studied the IN phase transition
in a system composed of hard platelets [17]. Another shape of
liquid-crystal molecules (i.e., mesogens) that has frequently
been considered is that of a spherocylinder. If the interaction
between a pair of spherocylinders is “hard” (i.e., infinitely
repulsive with vanishing range), McGrother et al. determined
the phase diagram by means of Monte Carlo (MC) computer
simulations in the isothermal-isobaric ensemble [18].

Jungblut et al. studied a binary mixture of hard spherocylin-
ders and hard spheres both in the bulk and in confinement [19].
Because of the presence of the spherical particles (representing
a polymeric compound), a depletion attraction exists in this
model very much akin to that in the Asakura-Oosawa-Vrij
model [20,21]. By using a combination of a free-volume theory
developed by Lekkerkerker and Stroobants [22] and grand
canonical ensemble MC (GCEMC) simulations, Jungblut et al.
investigate the phase behavior of their model which exhibits
an IN phase transition in the bulk (see also Sec. VI).

Another interesting model has been proposed by Kihara
[23]. Here, the interaction between a pair of spherocylinders
has soft repulsive and attractive contributions. The phase
diagram of the Kihara model liquid crystal has been examined
by Cuetos et al. in detail [24].

Perhaps the most widely used potential in the study of the
phase behavior of liquid crystals is the Gay-Berne model [25]
which may be viewed as an improved overlap-potential model
suggested earlier by Berne and Pechukas [26]. The phase
diagram of the Gay-Berne liquid crystal has been determined
by de Miguel et al. [27]. The clear advantage of the Gay-Berne
model, on the one hand, is that it is a single interaction site
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potential for elongated molecules. One clear disadvantage of
the model, on the other hand, is that the potential parameters
have a rather complicated orientation dependence which
makes the Gay-Berne potential computationally quite costly.

For this study, we therefore decided to employ a rather
simple potential model that is computationally inexpensive. In
this so-called Hess-Su model [28], the distance dependence
of the interactions at fixed mesogenic orientation is described
by a Lennard-Jones potential. The orientation dependence is
accounted for by an anisotropy function constructed such that
the symmetry of the interaction between slightly elongated
mesogens is represented correctly. Because the mesogens
have an aspect ratio only slightly larger than one, GCEMC
simulations are relatively easy. However, for higher densities,
a problem may arise due to the inevitable deletion and creation
of molecules during the course of a GCEMC simulation [29].
These two processes quickly become prohibitively inefficient
at liquidlike densities.

The motivation to conduct this study is the following. From
a finite-size scaling study of the IN phase transition, Greschek
and Schoen could demonstrate that in the Hess-Su model
the intersection of second-order cumulants of moments of
the order-parameter distribution is independent of system size
[30]. This is what one would expect for a continuous phase
transition. At the same time, Greschek and Schoen showed
that the correlation length at the IN transition is of the order
of a few molecular diameters which would be indicative of
a first-order transition. If the transition were indeed weakly
first order, both a discontinuous change in density at the
IN phase transitions should be minute and the change of
the order parameter around the transition should be smeared
out. In order to shed more light on the phase behavior, it
is therefore desirable to consider the whole phase diagram
and its topology. Because this would be a demanding task
using MC simulations, we employ density-functional theory
(DFT) complemented by GCEMC simulations for a few most
interesting thermodynamic states.

The remainder of this work is organized as follows. In
Sec. II, we introduce the Hess-Su model and focus in particular
on deriving the anisotropy function describing the orientation
dependence of the interaction between a pair of mesogens.
Section III summarizes some key concepts of the modified
mean-field (MMF) DFT approach adopted here. In Sec. IV, we
give a similar account of the GCEMC method and quantities
of interest to be computed. Our results are presented in Sec. V
and summarized and discussed in the concluding Sec. VI.

II. MODEL

We consider N mesogens with pairwise additive inter-
molecular interactions such that the total configurational
energy may be cast as

U (R,�) = 1

2

N∑
i=1

N∑
j=1
j �=i

ϕ(r ij ,ωi,ωj ). (2.1)

In Eq. (2.1), r ij = r i − rj denotes the distance vector between
the centers of mass of mesogens i and j located at r i and rj ,
respectively. We also introduce shorthand notations for the set

of center-of-mass positions R ≡ {r1,r1, . . . ,rN } and the set of
polar angles � ≡ {ωi,ωj , . . . ,ωN } specifying the orientations
of the mesogens. Here, ωi ≡ (θi,φi) assuming the mesogens
to have uniaxial symmetry where θi and φi are Euler angles.

To proceed, we assume that ϕ(r ij ,ωi,ωj ) can be decom-
posed into an isotropic and an anisotropic part according to
(see Chap. 2.2 of Ref. [31])

ϕ(r ij ,ωi,ωj ) = ϕiso(rij ) + ϕanis(r ij ,ωi,ωj ), (2.2)

where rij = |r ij |. We take the standard Lennard-Jones poten-
tial for the isotropic part, that is,

ϕiso(rij ) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6]
≡ ϕrep(rij ) + ϕatt(rij ), (2.3)

where ε is the depth of the attractive well and σ is the
“diameter” of a spherically symmetric reference molecule.

A. Expansion in rotational invariants

To obtain a closed expression for ϕanis we notice that
for linear molecules, we can generally expand this quantity
according to (see Chap. 2.3 of Ref. [31])

ϕanis(r ij ,ωi,ωj ) =
∑
li lj l

ϕli lj l(rij )�li lj l(ωi,ωj ,ω), (2.4)

where li (i = 1,2) and l are positive, semidefinite integers, ϕli lj l

is an expansion coefficient that depends only on the distance
rij = ∣∣r ij

∣∣, and

�li lj l(ωi,ωj ,ω) ≡
∑

mimj m

C(li lj l; mimjm)

×Ylimi
(ωi)Ylj mj

(ωj )Y∗
lm(ω) (2.5)

is a so-called rotational invariant. In Eq. (2.5), C denotes a
Clebsch-Gordan coefficient, Y is a spherical harmonic, and
the asterisk denotes the complex conjugate. The solid angle
ω describes the orientation of r̂ ij ≡ r ij /rij in a space-fixed
frame of reference. Throughout this work, the caret is used to
indicate a unit vector. The integer mi ∈ {−li , . . . ,li} where a
similar relation holds also for the pairs

(
lj ,mj

)
and (l,m).

Because the spherical harmonics form a complete orthonor-
mal set of functions [see, for example, Eq. (A.39) of Ref. [31]],
the rotational invariants form a complete set of functions as
well. However, only a subset of rotational invariants needs to
be considered here on account of symmetry considerations. As
explained in Chap. 2.3 of Ref. [31], the interaction potential
between a pair of linear molecules must be invariant if
molecules i and j interchange their identity. This corresponds
to a transformation in which ωi , ωj , and ω are replaced by
new variables ω′

i = ωj , ω′
j = ωi , and ω′ = −ω. Because of

the parity relation for spherical harmonics [see also Eq. (A.47)
of Ref. [31]]

Ylm(−ω) = (−1)lYlm(ω), (2.6)

ϕanis in Eq. (2.4) remains unaltered upon interchanging
mesogens i and j only if l is restricted to even integers or
zero in the expansion (2.5).

022507-2



DENSITY-FUNCTIONAL THEORY AND MONTE CARLO . . . PHYSICAL REVIEW E 90, 022507 (2014)

In addition, one assumes the mesogens to possess head-tail
symmetry (which is the case for quite a few organic molecules
exhibiting liquid-crystalline properties; see, for example, pp.
3–10 of Ref. [12]). The term “head-tail symmetry” refers to
the fact that ϕanis should also be invariant if one inverts the
orientation of either mesogen i or mesogen j [i.e., by replacing
in Eqs. (2.4) and (2.5) ωi by ω′

i = −ωi or ω′
j = −ωj while

maintaining the sign of either ωj or ωi , respectively]. The
parity relation (2.6) then implies that either li or lj must be even
as well or equal to zero. Because our mesogens are identical,
the label (i or j ) they carry is meaningless from a physics
point of view. This implies that the symmetry properties of the
interaction potential can only be preserved if both li and lj are
restricted to even integers or vanish independently.

B. Selection rules for Clebsch-Gordan coefficients

Next, one uses the fact that only some of the Clebsch-
Gordan coefficients in Eq. (2.5) are nonzero. For example,
nonvanishing Clebsch-Gordan coefficients must satisfy the
triangle inequality

|li − lj | � l � li + lj (2.7)

[see Eq. (A.131) of Ref. [31]]. However, even though this
selection rule limits the number of terms to be considered in
the triple sum in Eq. (2.4) to some extent, an increasingly
larger number of terms has to be considered the larger li , lj ,
and l become. This number of terms becomes overwhelming
rather quickly. Therefore, the triple sum in Eq. (2.4) needs to
be truncated at some point if the approach outlined here is to
be of any practical use.

In the following, we will therefore restrict the discussion to
li,j � 2. Because of Eq. (2.7), one needs to consider in Eq. (2.4)
only contributions involving the six rotational invariants �000,
�022, �202, �220, �222, and �224.

These rotational invariants can be subsumed into three
groups according to the following criteria. The first group
consists of �000 as its only member. Because of li = lj = l = 0
we also have mi = mj = m = 0. Therefore, the triple sum
in Eq. (2.5) vanishes altogether such that �000 = (4π )−3/2

because C (000; 000) = 1 and because of the definition of
Y00 = (4π )−1/2.

The second group is composed of three rotational invariants
which have in common that one of the indices {li ,lj ,l} is zero
whereas the remaining two are equal. To find out which terms
survive in Eq. (2.5), one needs to employ the relation

m = mi + mj (2.8)

which establishes a second selection rule (besides the triangle
inequality) for nonzero Clebsch-Gordan coefficients. These
nonvanishing coefficients obtain for the set {li ,lj ,l,mi,mj ,m}
only if both selection rules are satisfied simultaneously [see
also Eqs. (A.130) and (A.131) of Ref. [31]]. Therefore, the
triple sum in Eq. (2.5) reduces to a single one.

The third group contains two members, namely, �222

and �224. These two rotational invariants share as their
common characteristic that none of the indices {li ,lj ,l} vanish.
Hence, because of the second selection rule the triple sum in
Eq. (2.5) remains. As a consequence, a much larger number of
orientation dependent terms survive. To limit the calculational

burden we assume that the refinement of ϕanis accomplished by
incorporating terms proportional to �222 and �224 in Eq. (2.4)
is negligibly small. Therefore, these terms will be ignored
henceforth in the approximate representation of ϕanis.

To obtain a closed expression for ϕanis, the expansion coef-
ficients ϕli lj l in Eq. (2.4) need to be determined. Because our
mesogens are uncharged and nonpolar we focus exclusively on
dispersion interactions. One can then show (see Chap. 2.6 of
Ref. [31]) that ϕli lj l ∝ r−6

ij irrespective of the integers li , lj , and
l. In particular, ϕ000 = ϕatt where ε [see Eq. (2.3)] depends on
the static polarizabilities along the principal axes of the linear
mesogens. In a similar fashion, the constants of proportionality
for the other expansion coefficients depend on a couple of
numerical constants and various combinations of the static po-
larizability that we combine into two dimensionless constants
ε1 and ε2, such that ε1ε and ε2ε account for the strengths
of interaction associated with these different polarizabilities.
However, the precise dependence of both constants on the
static polarizabilities is of no concern in this work. Instead, we
refer the interested reader to Chap. 2.6 of the book by Gray
and Gubbins [31]. Thus, we obtain

ϕanis(r ij ,ωi,ωj ) = ϕatt(rij )
 (̂r ij ,ωi,ωj ), (2.9)

where the anisotropy function may be cast as


 (̂r ij ,ωi,ωj )

(4π )3/2
√

5
= ε1�220 +

√
5 ε2

5
(�202 + �022) (2.10)

and we dropped the arguments of the rotational invariants for
notational convenience.

For the computer simulations to be presented and discussed
below a slightly different form of 
 turns out to be more
convenient. Based upon the analysis by Stone [32], one obtains
(see also Appendix)

�220(ωi,ωj ,ω) =
√

5

(4π )3/2
P2[̂u(ωi) · û(ωj )], (2.11a)

�202(ωi,ωj ,ω) = 5

(4π )3/2
P2[̂u(ωi) · r̂ ij ], (2.11b)

�022(ωi,ωj ,ω) = 5

(4π )3/2
P2[̂u(ωj ) · r̂ ij ], (2.11c)

where P2 (x) = (
3x2 − 1

)
/2 is the second Legendre polyno-

mial and û (ωi) and û
(
ωj

)
specify the orientation of mesogens

i and j . Hence, with Eqs. (2.11a)–(2.11c) we can rewrite
Eq. (2.10) as


 (̂r ij ,ωi,ωj ) = 5ε1P2[̂u(ωi) · û(ωj )]

+ 5ε2{P2[̂u(ωi) · r̂ ij ]

+P2[̂u(ωj ) · r̂ ij ]}. (2.12)

Hence, in GCEMC the interaction potential between a meso-
genic pair follows from Eqs. (2.2), (2.9), and (2.12).

III. DENSITY-FUNCTIONAL THEORY

For the model introduced in Sec. II, we shall briefly sketch
some key elements of DFT used in this work. Further details
can be found in Refs. [33,34].
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A. Modified mean-field grand potential functional

In DFT we are seeking coexisting equilibrium states for
a given temperature T and chemical potential μ. In the
absence of external fields (globally or meta) stable states are
characterized by minima of the grand potential functional [see,
for example, Eq. (1) of Ref. [35]]

�[ρ(r,ω)] = F[ρ(r,ω)] − μ

∫
d r dω ρ(r,ω), (3.1)

where F is the total free-energy functional and ρ (r,ω) is the
orientation dependent local density. We follow our earlier work
[33,34] in that we treat pair correlations in a so-called modified
mean-field (MMF) fashion. At MMF level one approximates
the orientation dependent pair correlation function by the
Mayer f function f (r12,ω1,ω2) ≡ exp [−βϕ (r12,ω1,ω2)] −
1 (β ≡ 1/kBT , kB Boltzmann’s constant). This approximation
becomes exact in the limit of vanishing density.

Here and following, we explicitly utilize the fact that
our bulk system is homogeneous such that the orientation
dependent local density can be decomposed according to
ρ (r,ω) = ρα (ω) where ρ is the mean number density. We
expand the orientation distribution function α (ω) in terms of
Legendre polynomials {Pl},

2πα(ω) ≡ α(x) = 1

2
+

∞∑
l=1

αlPl(x) (3.2)

on account of the uniaxial symmetry of the N phase. In
Eq. (3.2), x ≡ cos ϑ , and α0 = 1

2 . In the I phase, the set of
order parameters {αl}l�1 vanishes identically; nonzero order
parameters characterize the N phase.

Following the derivation detailed in Secs. III A and III B of
Ref. [34] we can eventually express the grand potential as

β�

V
=β[f hs − ρμ]+ρ

∫ 1

−1
dx α(x) ln[2α(x)] + ρ2

∞∑
l=0

α2
l ul,

(3.3)

where f hs ≡ Fhs/V is the free-energy density of a hard-sphere
reference fluid (including the ideal-gas contribution). For the
configurational contribution to f hs we adopt the well-known
Carnahan-Starling expression [36]. In Eq. (3.3) and within
the scope of the MMF approximation, the set of coupling
coefficients {ul}l�0

ul = − (−1)l√
π (2l + 1)3/2

∫ ∞

σ

dr12 r2
12 fll0(r12). (3.4)

They describe the contribution of intermolecular interactions
to � [33,34]. In Eq. (3.4),

fll0(r12) = 4π

∫
dω1 dω2 dω f (r12,ω1,ω2)

×�∗
ll0(ω1,ω2,ω) (3.5)

is a coefficient in the expansion of f (r12,ω1,ω2) [31].
The set of coefficients {fll0}l�0 in Eq. (3.5) may be evalu-

ated employing a high-temperature expansion of the Mayer f

function [see Eq. (3.5) of Ref. [33]]. Assuming βϕanis 
 1, we
expand the anisotropic part of the orientation dependent Mayer
f function in a Taylor series retaining terms up to second

order in βϕanis. Aside from the trivial coefficient f000 the first
nontrivial contribution arises through f220. This is because the
anisotropic part of ϕ depends only on the rotational invariants
�220, �022, and �202 given our current level of approximations
(see Sec. II B) and because of the orthogonality of rotational
invariants [see Eq. (3.12) of Ref. [33]]. Moreover, as has
been argued by Groh and Dietrich [37], the contribution of
terms proportional to αl in Eq. (3.3) diminishes the larger l is.
Hence, aside from the trivial term corresponding to α0, which
is always nonzero, we shall retain only the first nontrivial one
corresponding to α2 in Eq. (3.3). This necessitates the calcu-
lation of u0 and u2 for which f000 and f220 are required [see
Eq. (3.4)].

Using the orthogonality of rotational invariants together
with Eq. (3.31) of Ref. [33] and �000 = (4π )−3/2 we eventually
arrive at

u0

8π
= −I (0) −

(
5

2
ε2

1 + ε2
2

)
I (2)(β) (3.6)

from Eq. (3.4) after tedious but relatively straightforward
algebraic manipulations. In Eq. (3.6),

I (n)(β) ≡
∫ ∞

σ

dr12 r2
12 [βϕatt(r12)]n

×{exp[−βϕiso(r12)] − δn0}, (3.7)

where δn0 is the Kronecker symbol. Likewise, we obtain

5u2

8π
= ε1I (1)(β) −

(
5

7
ε2

1 +
√

5

5
ε2

2

)
I (2)(β) (3.8)

after even more involved algebraic manipulations that we are
not presenting in detail for the sake of conciseness. For more
details, the interested reader is instead referred to our earlier
publications [33,34]. Moreover, we note in passing that the
remaining integrations in Eqs. (3.6) and (3.8) need to be
carried out numerically. In practice, we employ the simple
trapezoidal rule which is accurate enough if a one-dimensional
mesh with a spacing of 10−2σ between neighboring nodes is
used.

B. Phase equilibrium

From the discussion in the preceding Sec. III A it is evident
that � is a function of ρ and a functional of α (x). Hence,
thermodynamic equilibrium states are associated with minima
of � with respect to ρ and α (x). Therefore, we are seeking
simultaneous solutions of the equations

β

V

(
∂�

∂ρ

)
= 0, (3.9)

β

V

δ�

δα(x)
= λ(T ,ρ), (3.10)

where λ is a Lagrangian multiplier introduced to make sure
that α (x) is properly normalized [34,35].

Consider now two phases labeled ′ and ′′ coexisting
at temperature T and pressure P . These phases may be
characterized by their respective densities ρ ′ and ρ ′′ as well
as by their orientational distributions α ′ (x) and α ′′ (x). For
the two phases to coexist, their densities and orientational
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distributions have to satisfy

� ′

V
= � ′′

V
= −P, (3.11)

β

V

∂ �

∂ ρ

∣∣∣∣
ρ ′,α ′

= β

V

∂ �

∂ ρ

∣∣∣∣
ρ ′′,α ′′

, (3.12)

where P denotes pressure.
At this stage it is worthwhile to remind ourselves of

the head-tail symmetry of the mesogens (see Sec. II B).
Consequently, the orientation distribution function α (x) must
also be invariant under the transformation ϑ → ϑ ′ = ϑ + π

which implies that α (x) must be an even function of x. This, in
turn, suggests that αl = 0 if l is odd. We obtain the parameters
{αl} from

αl = 2l + 1

2

∫ 1

−1
dx α(x)Pl(x). (3.13)

Hence, the leading nontrivial term in the expansion (3.2) is the
one for l = 2. Equation (3.13) is an immediate consequence
of the orthogonality of the Legendre polynomials [see, for
example, Eq. (A.9b) of Ref. [31]] and follows directly from
Eq. (3.2).

Equation (3.11) may be rearranged such that for any given
T , coexisting phases can be associated with solutions of the
equation

0 = s1(T ,ρ ′,ρ ′′,α ′′
2 ) ≡ β[f hs(T ,ρ ′) − ρ ′μhs(T ,ρ ′)]

−β[f hs(T ,ρ ′′) − ρ ′′μhs(T ,ρ ′′)]

− u0

4
(ρ ′2 − ρ ′′2) + ρ ′′2u2α

′′
2

2
, (3.14)

where we assume throughout this work that phase ′ is always
isotropic such that α′

2 = 0. If phase ′′ is isotropic, too [which
is the case for the coexistence between gas (G) and I phases],
the last summand on the third line of Eq. (3.14) vanishes
identically. In Eq. (3.14), μhs ≡ (

∂f hs/∂ρ
)
T ,V

is the chemical
potential of the hard-sphere reference fluid [see Eqs. (3.11)
and (3.27) of Ref. [34]].

Employing now the explicit expression for the Lagrangian
multiplier λ [see, for example, Sec. III.D of Ref. [34]],
Eq. (3.13) allows us to derive from Eq. (3.10) a second equation

0 = s2(T ,ρ ′,ρ ′′,α ′′
2 ) ≡ β[μhs(T ,ρ ′) − μhs(T ,ρ ′′)]

+ u0

2
(ρ ′ − ρ ′′) + ρ ′′u2α

′′
2

2 + ln
1

2

∫ 1

−1
dx 
(x) (3.15)

which we solve numerically for its zeros as well. In Eq. (3.15),


(x) ≡ exp[−5ρ ′′u2α
′′
2P2(x)]. (3.16)

Because we consider terms up to l = 2 in the expansion of
α (x) in Eq. (3.2), we have one additional equation that needs
to be solved self-consistently for α2. This equation follows
directly from Eq. (3.13) and the expression for the Lagrangian
multiplier λ introduced in Eq. (3.10) [see Eqs. (3.28)–(3.30)
of Ref. [34]]. More specifically, we solve

0 = s4(T ,ρ ′′,α ′′
2 ) ≡ α′′

2 − 5

2

∫ 1
−1 dx 
(x)P2(x)∫ 1

−1 dx 
(x)
. (3.17)

Together, Eqs. (3.14), (3.15), and (3.17) form a system of
three coupled, multivariate polynomial equations that can be
solved iteratively by the lower and upper (LU) triangular
decomposition method (see Appendix of Ref. [34]).

IV. MONTE CARLO SIMULATIONS

In the previous section, the grand potential functional
is minimized to determine the phase boundaries for our
liquid-crystal model. This approach is based upon three key
assumptions, namely,

(1) the MMF approximation for pair correlations;
(2) the validity of the high-temperature expansion of the

anisotropic part of the Mayer f function;
(3) the truncation of the expansion of the orientation

distribution function after the first nontrivial term.
All three approximations are a priori uncontrollable and

their performance can only be judged by comparison with
another approach free of these assumptions. In this regard, the
MC method is ideal because it is essentially a first-principles
method in the sense that beyond the assumption of pairwise
additive interactions [see Eq. (2.1)] and ergodicity, no other
assumptions are invoked.

A. Basic considerations

Similar to Sec. III, the key quantity that we seek to compute
here is the grand potential whose exact differential is given by

d� = 1

kBβ2
S dβ + N dμ − P dV, (4.1)

where S is entropy. Because we are dealing with a homoge-
neous bulk fluid at constant T and μ, � is a homogeneous
function of degree one in V . Thus, invoking Euler’s theorem
[38], ω ≡ �/V = −P immediately follows.

Hence, computing P as a function of T and μ we can obtain
solutions of Eq. (3.11) for a pair of phases ′ and ′′. To obtain
a molecular expression for P , the key quantity is the grand
canonical partition function [39,40]

� =
∑
N

exp(βμN)

N !�5N

( I
2m

)N ∫
d R d� exp[−βU (R,�)]

(4.2)

for linear molecules where U is given in Eq. (2.1).
In Eq. (4.2), d R d� is shorthand notation for
d r1d r2 . . . d rNdω1dω2 . . . dωN . The additional factor
of 1/2N takes notice of the head-tail symmetry of our
mesogens. In addition, I is the moment of inertia of a
mesogen, m is its mass, and � =

√
βh2/2πm is the thermal

de Broglie wavelength where h denotes Planck’s constant.
Using now straightforward thermodynamic reasoning (see,
for example, Sec. 3.3 of [31]), it is easy to verify that

� = −β−1 ln �(μ,V,T ). (4.3)

Because of Eq. (4.2), we need to generate microstates (R,�)
distributed in configuration space according to the probability
(density) exp {−β [U (R,�) − μN] − ln N ! − 5N ln � (β)}.
To achieve this and because the mesogens have an aspect
ratio slightly larger than one we adopt a modified version of
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the algorithm suggested by Adams for spherical molecules
[29]. This algorithm, which allows one to numerically realize
a Markov process, proceeds in a sequence of steps. In the first
one, each of the N mesogens is considered sequentially. It
is then decided with equal probability whether to rotate the
actual particle or to displace its center of mass. Depending on
the associated change in energy, the rotation or displacement
attempt is accepted (or rejected).

Once all N mesogens have been considered, it is attempted
to change their number. During this second step, it is first
decided with equal probability whether to remove one of
the existing mesogens from the system or to add a new one
at a randomly chosen position and with a randomly chosen
orientation. Again, an energy criterion is employed to decide
if the attempt is accepted. A total number of N ′ attempts is
made where N ′ is the actual number of mesogens present in
the system during the first step. The 2N ′ attempts constitute a
MC cycle.

B. Properties

To identify equilibrium phases in GCEMC, we need to
compute ω = −P . At fixed T , this is expected to be a
single-valued function of μ in the one-phase region of any
thermodynamic phase. However, because we also have from
Eq. (4.1) (

∂ω

∂μ

)
β,V

= −ρ, (4.4)

we expect plots of ω versus μ along a subcritical isotherm to
have different slopes for any pair of phases having different
densities. If phases ′ and ′′ coexist at some μ = μx, ω ′ (μx) =
ω ′′ (μx) such that the slope of ω changes discontinuously at
μx.

This approach obviously requires P as its key ingredient
which we obtain from Clausius’ virial. It states that

βP

ρ
= 1 +

〈
β

N

N∑
i=1

r i · Fi

〉

= 1 + 24βε

〈
1

N

N∑
i=1

N∑
j=1
j �=i

ϕrep(rij ) + 1

2
ϕatt(rij )

× [1 + 
 (̂r ij ,ωi,ωj )]

〉
, (4.5)

where Fi is the total force exerted on mesogen i, 〈. . .〉 denotes
a grand canonical ensemble average, and Eqs. (2.1)–(2.3), and
(2.9) have also been invoked.

Whereas the density difference �ρ = |ρ ′ − ρ ′′| is a suitable
order parameter for condensation and evaporation because
�ρ > 0, a different order parameter is required to distinguish
between ordered (i.e., N) and disordered (i.e., I) phases because
here �ρ � 0 and therefore the slopes of ω ′ and ω ′′ are hard
if not impossible to distinguish. To introduce a suitable order
parameter to analyze the IN phase transition, it has therefore
been suggested quite some time ago by Eppenga and Frenkel

[17] to consider the alignment tensor

Q =
〈

1

2N

N∑
i=1

[3û(ωi) ⊗ û(ωi) − 1]

〉
, (4.6)

where 1 is the unit tensor and ⊗ represents the tensor product.
Hence, Q can be represented by a 3 × 3 matrix that is real,
symmetric, and traceless. The alignment tensor satisfies the
eigenvalue equation

Qn̂±,0 = λ±,0n̂±,0, (4.7)

which we solve numerically using Jacobi’s method [41]
to obtain the three eigenvalues λ− < λ0 < λ+. Following
standard practice [17], we take the largest eigenvalue λ+ =
P2 = 2α2/5 as the nematic order parameter and the associated
eigenvector n̂+ as the nematic director.

According to its definition, λ+ = 0 in the G or I phase.
However, this is only true in the thermodynamic limit. In any
computer simulation, where one inevitably deals with systems
of finite extent, a small residual nematic order persists. This
is because the interaction potential favors the formation of
small domains in which mesogens tend to align their longer
axes in a more or less parallel fashion. If the thermodynamic
state pertains to the G or I phase, the correlation length
associated with these domains vanishes more or less on the
same length scale as does the interaction potential. Therefore,
if two domains are sufficiently far apart, their local directors
may point in different and uncorrelated directions. In a finite
system, therefore, the global nematic order averages out up to
a residual value which is the smaller the larger the system is.
This is because in a larger system, more local domains exist
over which one has to average to obtain the global nematic
order parameter.

In a computer simulation, such finite-size effects are usually
unwanted. However, one can turn this ostensible disadvantage
into an advantage within the scope of finite-size scaling theory.
Consider, for example, the distributions p(λ+,0) of the largest
and of the middle eigenvalue of Q which may be analyzed in
terms of their moments〈

λn
+,0

〉 ≡
∫ 1

0
dλ+,0 λn

+,0 p(λ+,0). (4.8)

In the context of finite-size effects at phase transitions,
suitably defined cumulants of moments of the order-parameter
distribution are of particular interest [42–44]. They are defined
as ratios of moments of the order-parameter distribution where

g+,0
n ≡ 〈λn

+,0〉
〈λ+,0〉n (4.9)

is the cumulant of nth order. In many cases, g4 has been
considered (see, for example, Refs. [44,45]). However, it is
clear from Eqs. (4.8) and (4.9) that the larger n is, the more
probed are the “wings” of the order-parameter distribution.
Unfortunately, as one moves into these wings the statistical
accuracy of p diminishes so that higher-order cumulants are
expected to be less accurate. To avoid this difficulty, it had
been suggested by Weber et al. [46] to use the lowest-order
cumulant for which n = 2 in Eq. (4.9).

Moreover, following again Weber et al. [46] one anticipates

〈λn
+,0(·,L)〉 = Lnβ/νX+,0(·,L/�) (4.10)
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at a continuous phase transition where L is the linear dimension
of the (cubic) system under consideration. In this expression,
β is the order-parameter critical exponent (not to be confused
with β = 1/kBT as it is used everywhere else in this paper),
ν is the critical exponent associated with the divergence
of the correlation length �, · stands for the thermodynamic
field driving the transition, and X represents the so-called
scaling function. Because X depends only on the ratio L/�,
gn for different L have to intersect in a unique, albeit model-
dependent point at which � → ∞ (critical point) [44,47].

If the phase transition is discontinuous in principle but
rounded on account of the finite size of the system, cumulants
for different system sizes do not necessarily intersect in single
point because � remains finite. In this case, pairs of curves
for different L may intersect in different points such that
deviations of these points from a unique intersection scale
as L−d where d is the system dimension as was shown by
Vollmayer et al. [47] for the q-states Potts model and by
Weber et al. for a lattice model of flexible polymers [46]. In
addition, Vollmayer et al. demonstrated that the “distance” of a
unique cumulant intersection from the point at which the phase
transition would occur in the thermodynamic limit scales as
L−2d [see Eqs. (34) and (36) of Ref. [47]]. Hence, if the system
is sufficiently large, it may seem that even at a discontinuous
phase transition all cumulants intersect in a unique point which
then for all practical purposes may be taken as the state point at
which the phase transition would occur in the thermodynamic
limit.

V. RESULTS

Before turning to a discussion of results obtained in this
work, it should be emphasized that all quantities are given in
the usual dimensionless (i.e., “reduced”) units. For example,
lengths are given in units of σ and energies are given in units
of ε. Other quantities are expressed in units of combinations
of these basic quantities. For instance, we shall express
temperatures in units of ε/kB and pressures in units of ε/σ 3.

To solve Eqs. (3.14), (3.15), and (3.17), we employ the
iterative scheme detailed in Appendix A of Ref. [34]. However,
because of the more complex form of integrals related to the
orientation distribution function in this study, these integrals
are calculated numerically using a simple trapezoidal rule.
Notice also that because of the free-energy functional used
in this work, solid phases cannot be accounted for. Hence,
only coexistence between fluidic (G, I, or N) phases has been
considered.

In the parallel MC simulations, we cut off interactions
between mesogens whose centers of mass are separated by
a distance rc � 3.0; no correction is applied for neglected
interactions beyond rc. The interaction potential remains
unshifted at rc. In addition, we employ a combination of a
link cell and a Verlet neighbor list to further speed up the
simulations. The implementation of both lists is described in
Sec. 5.3 of the book by Allen and Tildesley [48]. Two mesogens
are considered neighbors if their centers of mass are separated
by a distance rN � 3.5. Based upon previous experience with
this model [30], we consider systems comprising between
N ≈ 500 and 2000 mesogens. Our results are based upon
simulations comprising 104 MC cycles for equilibration
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FIG. 1. (Color online) Phase diagrams in T -ρ representation
showing coexistence between G and N ( , ), G and I phases
( , ), and I and N phases ( , ). In all parts of the figure
ε2 = 0.00; (a) ε1 = 0.04, (b) ε1 = 0.06, (c) ε1 = 0.08. Inset in part
(a) is an enhancement where data for ε1 = 0.0 (�, ) are also
shown. Phase boundaries separate the G from the I phase for both
data sets plotted in the inset.

followed by 105 cycles during which ensemble averages are
computed.

A. Modified mean-field density-functional theory

We begin our presentation of results with phase diagrams
generated within the framework of MMF DFT in Fig. 1. These
phase diagrams have been generated by setting the anisotropy
parameter ε2 = 0.00 to study separately the impact of terms
proportional to ε1 and ε2 in the anisotropy function 
 [see
Eq. (2.10)].

In the plot shown in Fig. 1(a) we see that for the smallest
value ε1 = 0.04, a G phase coexists with an N phase at
sufficiently low T . As T increases above about 1.00, the N
phase is eventually transformed into an I phase which is stable
at lower densities up to ρ � 0.65. At higher densities, IN phase
coexistence is observed. Except for the lowest T at which IN
phase coexistence is found, the densities of I and N phases are
rather similar but never seem to become identically the same
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within numerical resolution. In other words, there does not
seem to be any critical point between I and N phases which
is consistent with the phase diagram for the Gay-Berne model
investigated by de Miguel et al. [27]. At Ttr � 0.972, a triple
point exists in our model at which G, I, and N phases coexist.

In addition to the phase diagram of the liquid crystal,
we also show the phase diagram of a simple Lennard-Jones
fluid in the inset of Fig. 1(a). The Lennard-Jones fluid is
a special case of the Hess-Su model realized by setting
ε1 = ε2 = 0.00 in Eq. (2.11a). Notice again the absence
of liquid-solid phase coexistence due to the form of the
free-energy functional used here. By comparison between
the Lennard-Jones and the Hess-Su phase diagrams, one
notices from Fig. 1(a) that the orientation dependence of the
mesogen-mesogen interaction is only of negligible importance
as far as the phase boundaries between the G and I phases
are concerned.

In particular, the critical temperatures Tc � 1.226
(Lennard-Jones) and Tc � 1.235 (Hess-Su) are nearly the
same. Comparing Tc for the Lennard-Jones fluid from our
MMF DFT with computer simulations of Potoff and Pana-
giotopoulos [49], who obtained a value of Tc � 1.3120(7),
reveals very good agreement between both approaches. How-
ever, the agreement is somewhat less satisfactory as far as
the critical density is concerned. Here, our MMF DFT result
ρc � 0.249 differs from the value ρc � 0.316(1) reported by
Potoff and Panagiotopoulos [49] by roughly 21%. Because the
critical density is determined by packing effects, we suspect
that a more satisfactory agreement would be obtainable if a
more sophisticated form of the pair correlation function would
have been used.

If ε1 is increased to 0.06, the plot in Fig. 1(b) shows a
topology of the phase diagram qualitatively similar to the one
in Fig. 1(a). However, the triple point has shifted to a higher
temperature Ttr � 1.138. One also notices by comparing plots
in Figs. 1(a) and 1(b) that the density difference between
I and N phases at Ttr increases with increasing coupling
constant ε1. At the same time, the critical temperature in
Fig. 1(b) (Tc � 1.247) remains almost constant compared with
the phase diagrams plotted in Fig. 1(a). This suggests that for
sufficiently large ε1, GI coexistence may be suppressed in favor
of coexistence between a relatively dense isotropic phase and
an N phase. This is indeed so as one can see from Fig. 1(c)
for ε1 = 0.08. Here, we see that the G-I near-critical regime
visible in the plots in Figs. 1(a) and 1(b) has given way to a
rather flat part of the coexistence curve centered more or less
on ρ ≈ 0.30.

The new feature in the phase diagram of our model liquid
crystal as opposed to the “simple” Lennard-Jones potential is
coexistence between relatively dense disordered and ordered
phases. The degree of order exhibited by the latter can
be quantitatively discussed in terms of the nematic order
parameter P2. A plot of P2 as a function of T along the
phase boundary of the N phase [see also Fig. 1(b)] shows
that the order parameter decreases steadily with increasing T .
Interestingly, P2 seems to level off at higher T and approaches
a value of about 0.44. This “magic” number is also obtained
in Mayer-Saupe theory as explained in the book by de Gennes
and Prost [12]. As these latter authors point out, this limiting
value is universal within the framework of Mayer-Saupe theory
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FIG. 2. (Color online) Plot of P2 as a function of temperature T

for ε1 = 0.06 [see Fig. 1(b)]. Data points refer to the higher-density
phase boundaries between coexisting G-I ( , ) and I-N phases
( , ). The horizontal line demarcates P2 = 0.44 (see text).

whereas it turns out to be temperature dependent in general
within the framework of MMF DFT.

The approach of the Mayer-Saupe limit can be rationalized
within MMF DFT. For sufficiently high T , I (2) (β) 
 I (1) (β)
such that Eq. (3.8) can be approximated by its leading term,
that is,

5u2

8π
≈ ε1I (1)(β). (5.1)

This expression can also be obtained by retaining in the
expansion of the orientation dependent part of the Mayer
f function only the leading term proportional to βϕanis and
computing f220 from Eq. (3.5). It is then clear that on
account of the orthogonality of rotational invariants, the only
contribution to f220 comes from the Mayer-Saupe term �220

[see Eq. (2.11a)] in the anisotropy function 
 in Eq. (2.12).
This explains why the Mayer-Saupe limit for P2 in Fig. 2 is
reached for sufficiently high T . Deviations from this limiting
value are to be expected for low T because then the above
approximation is not valid and the full expression for u2 in
Eq. (3.8) has to be taken into account. Hence, because in the
present analysis ε2 = 0, a correction in proportion to ε2

1 has to
be considered in Eq. (3.8).

Next, we investigate the impact of ε2 on the phase diagrams
in Fig. 3. Comparing plots in Figs. 1 and 3, one notices that
larger values of the coupling constant ε2 are required in the
latter case for the N phase to occur. This makes sense as
one notices from Eq. (3.8) that ε2 enters the MMF DFT
quadratically in leading order. More specifically, the plot in
Fig. 3(a) reveals that the N phase is completely absent such that
only GI phase coexistence is observed. From the plots in the
inset of Fig. 3(a) and the phase diagram of the Lennard-Jones
fluid displayed in Fig. 1(a), the topological equivalence of
both phase diagrams is evident. The only difference is that the
critical temperature is a bit higher in Fig. 3(a).

At larger values of ε2, plots in Figs. 3(b) and 3(c) indicate
that coexistence between G, I, and N phases becomes possible
such that from a topological perspective these phase diagrams
are equivalent to the one shown in Fig. 1(b). Over the range
of ε2 for which our numerical technique is stable we fail
to observe a phase diagram that would be topologically
equivalent to the one depicted in Fig. 1(c).
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FIG. 3. (Color online) As Fig. 1, but for ε1 = 0.00 and (a) ε2 =
0.12, (b) ε2 = 0.29, and (c) ε2 = 0.40.

Moreover, unlike their counterparts in Fig. 1 the phase
diagrams displayed in Fig. 3 show a pronounced impact of
ε2 on the GI critical point which appears to be elevated more
the larger ε2 is. Because of the dependence of the critical
temperature on ε2 it seems interesting to see to what an extent
the law of corresponding states is obeyed by the present model.
To that end, we focus on the “reduced” phase diagrams in
Fig. 4.

In Fig. 4(a), we exhibit phase diagrams that are topo-
logically equivalent for our choice of ε1 = 0.04 unlike their
counterparts presented in Fig. 3. In particular, we see from the
plots in Fig. 4(a) that coexistence is obtained between all three
phases accounted for by our model. If one renormalizes these
phase diagrams to the respective GI critical-point location
one sees from Fig. 4(b) that the curves shown in Fig. 4(a)
can be superimposed in the GI near-critical regime, that is,
in the temperature and density ranges 0.975 � T/Tc � 1.000
and 0.75 � ρ/ρc � 1.25, respectively. In this so defined near-
critical regime, the law of corresponding states is approxi-
mately satisfied. Very much the same holds for a related model
of an amphiphilic fluid where, however, the topology of the
phase diagram is completely different [34] (see also Sec. VI).

As one moves out of the near-critical regime, plots in
Fig. 4(b) reveal that the law of corresponding states is less well
observed. Physically, this makes sense because one anticipates
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FIG. 4. (Color online) (a) As Fig. 1, but for ε1 = 0.04 and (from
bottom to top) ε2 = 0.00, ε2 = 0.08, ε2 = 0.16, ε2 = 0.32. Symbols
refer to GN (�), GI (•), and IN (�) phase coexistence. (b) As (a),
but normalized to the respective critical temperature Tc and critical
density ρc deduced from the plots in part (a) of the figure. Inset is an
enlargement of a part of the G phase boundary.

details of the intermolecular interactions to become relevant
as one moves away from the near-critical regime. The plots in
Fig. 4(b) show that the part of the phase diagrams where the
law of corresponding states is violated the most is the branch
corresponding to IN phase coexistence. This observation is
consistent with the fact that the IN phase transition is always
first order and does not end in a critical point. Again, this
feature is different for the related amphiphilic fluid where one
observes a line of critical points separating isotropic from polar
liquid phases very similar to the Curie line in ferroelectrics
[34].

At this stage, it seems interesting to compare the MMF DFT
phase diagram obtained in this work with the pseudo-phase
diagrams presented earlier by Hess and Su [28] (see Fig. 5).
We refer to the latter as “pseudo”-phase diagram because it has
been determined such that for densities ρ < 0.4 “coexisting”
states are actually loci of the spinodal, that is, thermodynamic
states for which the isothermal compressibility becomes infi-
nite. For densities ρ > 0.4, the phase boundary is determined
through the condition P (T ,ρ) = 0 which marks the limit of
mechanical stability of the liquid phase.

However, it needs to be stressed that this determination of
phase boundaries between G and I or N phases is an invalid
procedure in principle. Not unexpectedly an inspection of
Fig. 5 clearly reveals that the pseudo-phase diagram of Hess
and Su [28] and the one determined here [which is based on
the correct conditions for phase equilibria, see Eqs. (3.9) and
(3.10)] are in complete disagreement.

In particular, one notices a discontinuity in the slope of the
“phase boundary” of the I phase in the pseudo-phase diagram.
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FIG. 5. (Color online) As Fig. 1, but for ε1 = 0.04 and ε2 =
−0.08. Also shown is the pseudo-phase diagram (see text) presented
in Fig. 6 of Ref. [28]. In the latter case, ( , ), ( , ), and ( ,

) refer to almost coexisting G and N, G and I, and I and N phases,
respectively; (↓, ) demarcate the limiting density beyond which
mechanical stability of liquid phases is used to determine the phase
boundary (see text).

This is an artifact that has to be attributed to the change in the
criterion to determine the “phase boundary” at ρ = 0.4 (see
above). Another peculiar and unrealistic feature of the pseudo-
phase diagram is that the IN phase transition is predicted
to occur without any change in density. The MMF DFT
phase diagram, on the contrary, exhibits such a discontinuous
density change along the IN phase boundary, albeit this
change is always small and decreases even further as T

increases.
The vanishing density difference between I and N phases

predicted by Hess and Su [28] is, however, easy to explain. To
estimate loci of the IN phase transition, Hess and Su employ a
Landau expansion of the alignment free energy in terms of the
nematic order parameter. In this phenomenological approach,
one usually assumes the leading term to change sign at the
onset of the IN phase transition. The constant of proportionality
A governing this leading term is usually assumed to exhibit
a linear dependence on the thermodynamic field driving the
transition (i.e., T or P ). Hence, within Landau theory the
vanishing of A determines the value of the thermodynamic
field at the onset of the IN phase transition. In the Landau
expansion of Hess and Su, A is independent of ρ such that
coexisting I and N phases cannot be discriminated with respect
to ρ.

B. Grand canonical ensemble Monte Carlo

We now compare the predictions of the MMF DFT with
GCEMC data. A careful selection of thermodynamic states is
advisable based upon the following criteria:

(i) Selected isotherms should be removed sufficiently from
the GI critical point to avoid the simulation to be hampered by
critical slowing down.

(ii) Selected temperatures should be sufficiently high such
that the density of the N phase at coexistence with either a
G or an I phase is not too high (ρ � 0.9) and therefore the
acceptance ratio for creation and deletion attempts remains
significantly above 10−4.
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FIG. 6. (Color online) Plots of ω (left ordinate) for G ( ) and I
and/or N phases ( ) and λ+ ( , ) (right ordinate) as functions of μ.
(a) T = 0.85. The inset is an enhancement showing that G states are
mechanically stable because of ω < 0. (b) T = 0.90 where L = 10
(�) and L = 16 ( ), respectively. Data for ω are shown for L = 16
only. Results are obtained for ε1 = −ε2/2 = 0.04 (see Fig. 5).

Based upon these selection criteria, we chose three
isotherms at temperatures T = 0.85, 0.90, and 1.00 where
for the latter Greschek and Schoen [30] already analyzed the
IN phase transition in detail.

From the plots in Fig. 6(a) one sees that ω consists of two
branches characterized by markedly different slope. According
to Eq. (4.4), the one of smaller slope corresponds to a G phase
whereas the one exhibiting a larger slope is indicative of an I
or N phase. One also sees that over a certain range of chemical
potentials, ω is a double-valued “function” of μ. The existence
of this regime signals that on account of the small and finite size
of the simulation cell, long-lived metastable states exist besides
the thermodynamically stable states at the same μ. Obviously,
for a given μ in the range where ω is double valued, the larger
value of ω corresponds to the metastable state whereas the
smaller one represents the thermodynamically stable state.

Both branches end at some μ where the respective
metastable phase reaches its limit of stability and becomes
unstable. These values of μ depend on system size. The two
branches in the plot of ω intersect at the chemical potential
μx at which G and I or N phases coexist. Notice also that in
both parts of Fig. 6, ω for the metastable liquid phase becomes
positive at a sufficiently low μ indicating that at this value the
liquid phase turns out to be mechanically unstable.

At sufficiently high values of μ one also notices from
Fig. 6(a) that the noise in the plot of ω increases which
reveals an increasing statistical error of our data because of the
decreasing acceptance ratio for deletion and creation attempts
at high densities (i.e., μ). This conclusion is corroborated by
the corresponding plot in Fig. 6(b) which turns out to be much
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smoother because the densities of the condensed I or N phase
are lower at T = 0.90 as compared with T = 0.85.

In addition to the grand potential density we are also
plotting the nematic order parameter λ+ as a function of μ

in Fig. 6. The plot in Fig. 6(a) shows that 0.60 � λ+ � 0.70
is relatively large throughout the regime in which the N
phase is thermodynamically stable but decreases slightly with
decreasing μ. Hence, the isotherm T = 0.85 is below Ttr as a
comparison with Fig. 5 suggests.

By contrast, the corresponding plots in Fig. 6(b) suggest
that at the slightly higher T = 0.90 an intermittent I phase
exists. This is inferred from the strong decrease of λ+ over a
narrow range of chemical potentials as μ decreases. As μ is
lowered, the condensed liquidlike phase loses its nematic order
before the newly formed I phase reaches its phase boundary
at which it coexists with the G phase. Hence, these results
are consistent with the MMF DFT phase diagram presented
in Fig. 5 if one assumes the isotherm T = 0.90 to be slightly
above Ttr.

One also notices from Fig. 6(b) that there is a distinct
system size dependence visible in the plots of λ+. Whereas
both data sets agree nicely in the N phase, the plot of λ+ for
L = 10 exceeds its counterpart for L = 16 significantly in the
I phase. In addition, one sees from Fig. 6(b) that in the vicinity
of the transition from the N to the I phase the variation of
λ+ with μ for L = 10 is significantly more rounded than the
corresponding curve for L = 16. The origin of the apparent
system-size effect has already been explained in Sec. IV B.

To locate the IN phase transition despite the system-
size dependent rounding of plots of λ+, an analysis of the
second-order cumulants defined in Eq. (4.9) is particularly
useful. Plots of g

+,0
2 [see Sec. IV B and Eq. (4.9)] in Fig. 7

illustrate their characteristic variation in the vicinity of the
IN phase transition. As demonstrated elsewhere [30], one
expects g0

2 ∝ N in the isotropic phase and sufficiently far away
from the phase transition whereas g+

2 should be system-size
independent in this regime. Plots in Figs. 7(a) and 7(b) confirm
this expectation (for a more detailed analysis of the scaling
behavior of second-order cumulants, see Ref. [30]). As one
increases μ, g0

2 decreases monotonically irrespective of L.
However, as the plots in Fig. 7(a) indicate, the magnitude of
the slope of g0

2 is the larger the larger L is in the vicinity of
the IN phase transition such that all curves plotted in Fig. 7(a)
intersect in a unique point at μIN

x � −10.89 demarcating the IN
phase transition at T = 0.90. Hence, rounding in the vicinity
of the IN phase transition diminishes with increasing L as
expected.

The same unique intersection is found in plots of g+
2 in

Fig. 7(b). However, this quantity is more difficult to analyze
because it passes through a maximum immediately before
declining rapidly. The maximum turns out to be the more
pronounced the larger the size of the system is. Characteristic
features of both g0

2 and g+
2 are in qualitative agreement

with observations made in Ref. [30] where, however, the
thermodynamic field driving the transition is P rather than
μ and a broader range of system sizes has been considered.

Comparing now plots in Fig. 7 with the one in Fig. 6(b),
we realize that at μIN

x the plot of ω does not exhibit a clear
change in slope. Thus, according to Eq. (4.4) this implies that
the IN phase transition is accompanied at best by a very minute
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FIG. 7. (Color online) Semilogarithmic plots of g0
2 (a) and g+

2 (b)
as functions chemical potential μ for L = 10 ( ), L = 13 ( ), and
L = 16 ( ), and T = 0.90. Solid lines are intended to guide the eye.

change in density that is impossible to resolve on the basis of
plots as in Fig. 6(b) [see also Eq. (4.4)].

That this is, in fact, so is shown in Fig. 8 where a plot
of ρ versus μ at T = 0.90 does not exhibit any discontinuous
change across the IN phase transition but appears to be rounded
and continuous instead. However, two distinct branches of
almost equal slope can be seen in the plot in Fig. 8. The
apparent linear dependence of ρ on μ can be understood
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FIG. 8. (Color online) Plots of ρ ( ) and of −ρ2κT ( ) as
functions of chemical potential μ for T = 0.90. The vertical line
( ) corresponds to μIN

x � −10.89 (see Fig. 7) whereas the red and
green lines are linear fits to data points in the one-phase region of the
I and N phases, respectively (see text).
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if one considers the isothermal compressibility κT. To that
end, one notices from elementary thermodynamic reasoning
that (

∂ρ

∂μ

)
T ,V

= −ρ2κT = − β

V
(〈N2〉 − 〈N〉2) (5.2)

such that a linear dependence of ρ on μ implies that the right
side of Eq. (5.2) is constant. Because β and V are maintained
and because 〈N2〉 − 〈N〉2 is a measure of density fluctuations
in the grand canonical ensemble, these must be very similar in
the I and N phases. Indeed, our data confirm this expectation
for states sufficiently deep in the I and in the N phase as one
can see from the plot in Fig. 8. One also notices from the plot in
Fig. 8 that apparently density fluctuations increase markedly
but only in the immediate vicinity of the IN phase transition
as signaled by the sharp decline of −ρ2κT with increasing μ

near μIN
x . Assuming that in the thermodynamic limit this linear

variation of ρ with μ on the isotropic and on the nematic branch
holds up to μ = μIN

x we estimate a density difference of the
I phase at coexistence with the G phase and at coexistence
with the N phase of about �ρ � 0.071 from the plot in
Fig. 8. This is the typical order of magnitude one anticipates
from plots in Fig. 5 for states just above Ttr. Increasing the
temperature to T = 1.00, �ρ � 0.189 between the I phase at
the GI relative to the IN phase coexistence indicating that
the width of the one-phase region of the I phase widens
considerably as T increases. Again, this observation is in very
good agreement with the MMF DFT phase diagram plotted in
Fig. 5.

VI. DISCUSSION AND CONCLUSIONS

In this work, we investigate the phase behavior of a
model liquid crystal by means of MMF DFT and GCEMC
simulations. The interaction potential between a pair of
mesogens consists of an isotropic Lennard-Jones core and
a superimposed orientation dependent attractive contribu-
tion decaying as r−6 where r is the center-of-mass dis-
tance between a pair of mesogens. Hence, the interac-
tion potential is short range corresponding to dispersion
interactions.

The orientation dependent attractive term is derived by
expanding it in terms of rotational invariants as a complete
orthogonal set of basis functions. In addition, symmetry
properties of the mesogens are exploited. In this work, we
retain only the first three rotational invariants in our expansion
which guarantees that aside from the G and the I phases, an
N phase may also form. The final form of the orientation
dependent contribution to the overall interaction potentials
agrees with the one derived earlier by Hess and Su [28] who
used an expansion in terms of irreducible Cartesian tensors
instead of the (equivalent) expansion in rotational invariants
used here.

The MMF DFT approach suggests two topologically
different types of phase diagrams depending on the magni-
tude of the coupling constants of the orientation dependent
terms in the interaction potential. In the first of these and
for intermediate values of the coupling constants we have
coexisting G and N phases at low temperatures. At higher T ,
we find separately coexistence between G and I and between

I and N phases. This topology of the phase diagram seems
generic.

We arrive at this conclusion by comparison with the bulk
phase diagrams presented by Jungblut et al. [19]. Because
in this latter work the interactions between all constituents
are infinitely repulsive and of vanishing range, the IN phase
transition is completely entropy driven. By contrast, it is a
combination of entropic and energetic features that drive the
IN phase transition in the present model. To compare with
the work of Jungblut et al., one needs to realize that the
fugacity of the hard spheres in their model system plays
the role of an inverse temperature in the present one such
that the phase diagrams presented in the insets of Figs. 3
and 4 of Jungblut et al. appear to be turned upside down
with respect to the ones shown here. Because the form of
the potential used in their free-volume theory is the same
as that employed in the corresponding MC simulations,
Jungblut et al. [19] can also comment on the performance
of the former. Perhaps not surprisingly they observe that
the free-volume theory works well far away from the gas-
liquid critical point but breaks down quantitatively in its
vicinity.

As far as the density difference at the IN phase transition in
the present model is concerned, this turns out to be very small
and becomes almost negligible at temperatures only slightly
above that of the triple point. Nevertheless, phase boundaries
between I and N phases never seem to merge. In other words,
a critical point between I and N phases does not seem to exist
as expected. At higher coupling constants, the coexistence
between G and I phases is suppressed entirely.

These general features of the phase behavior of the current
model are distinctly different for a related model of an
amphiphilic fluid recently studied by us [33,34]. Because of
the polar nature of the amphiphiles an ordered polar (P) phase
forms similar to the N phase in the present model. However,
the phase behavior of the amphiphilic model is richer. For
example, the P phase may coexist with an I phase or be
separated from it along a line of critical points. Depending
on details of the interaction potential, this critical line may
either terminate in a critical end point or in a tricritical point.

To test the predictions of the MMF DFT, we employ
GCEMC simulations. We focus on the topologically richest
phase diagram and consider three isotherms. At the lowest T ,
we observe coexistence between a very dilute G and an N
phase. At somewhat higher T , the G coexists with an I phase
which undergoes a transition to an N phase only at even higher
μ. The one-phase region of the I phase is narrow indicating
that these first two isotherms are framing a triple point at which
G, I, and N phases coexist. With increasing T , the one-phase
region of the I phase widens considerably. All these features
are consistent with the MMF DFT calculations.

It is particularly noteworthy that in this model the transition
between I and N phases in GCEMC is severely rounded on
account of the finite-system size. The transition is therefore
not accompanied by a distinct discontinuous change in density.
Instead, one observes only a continuous change in density as
one goes from the I to the N phase.

These findings are again supported by the MMF DFT
approach and also by a recent earlier computer simulation
study by one of us [30]. In this earlier work, as in this one,
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it turns out that second-order cumulants intersect in a unique
point as one would expect if the IN phase transition were truly
continuous. However, all other features such as the scaling
of the maximum of the isobaric heat capacity, the variation
of the order-parameter distribution across the transition, and a
molecular-scale correlation length of orientational correlations
pointed to the IN phase transition as a discontinuous rather
than a continuous phase transition. This conclusion is now
supported on the basis of the present more detailed MMF DFT
calculations and the more extensive GCEMC simulations of
this work.

It is perhaps also worth stressing that a difference between
MMF DFT and GCEMC consists of the way in which
short-range repulsive interactions are treated. In GCEMC,
these are solely accounted for by ϕrep [see Eq. (2.3)] wheras
in MMF DFT a “hard” repulsive core is used at rij = σ .
To replace this “hard” core by a more realistic “soft” one
is possible in principle by invoking perturbation approaches
discussed in Chap. 5.3 of the book by Hansen and McDonald
[50]. In essence, one replaces the hard-sphere diameter by an
“effective” one that depends on the thermodynamic state under
consideration. Whereas this might improve the quantitative
agreement between MMF DFT and GCEMC, no attempts have
been made here along these lines as we were more interested
in qualitative generic features of the phase behavior of our
liquid crystal.

As a next step of this study, it would be interesting to
investigate the possible existence of smectic phases within the
framework of the Hess-Su model. Work along these lines is
currently under way.
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APPENDIX: DERIVATION OF EQ. (2.11a)

In this Appendix, we rationalize Eq. (2.12). Our point of
departure is the expression

�220(ωi,ωj ,ω) = 1√
5

1√
4π

[Y22(ωi)Y22(ωj )

−Y21(ωi)Y21(ωj ) + Y20(ωi)Y20(ωj )

−Y21(ωi)Y21(ωj ) + Y22(ωi)Y22(ωj )],

(A1)

which follows directly from Eq. (2.5) where the prefactor
1/

√
5 and the signs of individual terms are caused by the

relevant Clebsch-Gordan coefficients. The second prefactor
arises becauseY00 (ω) = 1/

√
4π . We follow standard notation

[31] in that the underscore of certain subscripts in Eq. (A1)
indicates the negative value of the respective integer m � 0.
Using

Ylm(ω) = (−1)mY∗
lm(ω), (A2)

Eq. (A1) can then be rewritten as

�220(ωi,ωj ,ω) = 1√
5

1√
4π

[Y22(ωi)Y∗
22(ωj )

+Y21(ωi)Y∗
21(ωj ) + Y20(ωi)Y20(ωj )

+Y∗
21(ωi)Y21(ωj ) + Y∗

22(ωi)Y22(ωj )]. (A3)

Let now

û(ωi) =
⎛⎝sin ϑi cos φi

sin ϑi sin φi

cos ϑi

⎞⎠ =
⎛⎝uxi

uyi

uzi

⎞⎠ (A4)

such that [see Eq. (A.62) of Ref. [31]]

Y20(ωi)Y20(ωj ) = 5

4π

1

4

(
u2

xiu
2
xj + u2

xiu
2
yj − 2u2

xiu
2
zj

+u2
yiu

2
xj + u2

yiu
2
yj − 2u2

yiu
2
zj

− 2u2
ziu

2
xj − 2u2

ziu
2
yj + 4u2

ziu
2
zj

)
, (A5)

where the normalization of ûi has also been utilized. Next,
employing the identity

eiφi e−iφj + e−iφi eiφj = 2(cos φi cos φj + sin φi sin φj ), (A6)

one obtains

Y21(ωi)Y∗
21(ωj ) + Y∗

21(ωi)Y21(ωj )

= 3
5

4π
(uxiuxjuziuzj + uyiuyjuziuzj ). (A7)

Finally, after some straightforward algebra, one finds

Y22(ωi)Y∗
22(ωj ) + Y∗

22(ωi)Y22(ωj )

= 5

4π

3

4

[
u2

xiu
2
xj − u2

yiu
2
xj − u2

xiu
2
yj + u2

yiu
2
yj

+ 4u2
xiu

1
yju

2
xju

2
yj

]
(A8)

which follows from the definition of Y22 [see Eq. (A.62) of
Ref. [31]], Eq. (A4), and the identity

e2iφi e−2iφj + e−2iφi e2iφj

= 2[cos2 φi cos2 φj − sin2 φi sin2 φj

− cos2 φi sin2 φj + sin2 φi sin2 φj

+ 4 cos φi sin φi cos φj sin φj ]. (A9)

From Eqs. (A5), (A7), and (A8), one eventually obtains

u2
xiu

2
xj + u2

yiu
2
yj + u2

ziu
2
zj − 1

2

[(
u2

yi + u2
zi

)
u2

xj

+(
u2

xi + u2
yi

)
u2

zj + (
u2

xi + u2
zi

)
u2

yj

]
+3[uxiuziuxjuzj + uxiuyiuxjuyj + uyiuziuyjuzj ]

= P2[̂u(ωi) · û(ωi)] (A10)

which follows directly if one also utilizes the fact that both
û(ωi) and û(ωj ) are normalized to one. The above derivation
goes through identically if one replaces either û(ωi) or û(ωj )
by û(ω) which is a unit vector specifying the orientation of r̂ .
However, in both cases, the Clebsch-Gordan coefficients are
all equal to one and therefore the prefactors in Eqs. (2.11b)
and (2.11c) differ from the one in Eq. (2.11a) by a factor of
5/

√
5.
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