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Generation of vector beams with liquid crystal disclination lines
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We report that light beams, guided along liquid crystal defect lines, can be transformed into vector beams
with various polarization profiles. Using finite-difference time-domain numerical solving of Maxwell equations,
we confirm that the defect in the orientational order of the liquid crystal induces a defect in the light field with
twice the winding number of the liquid crystal defect, coupling the topological invariants of both fields. For
example, it is possible to transform uniformly polarized light into light with a radial polarization profile. Our
approach also correctly yields a zero-intensity region near the defect core, which is always present in areas of
discontinuous light polarization or phase. Using circularly polarized incident light, we show that defects with
noninteger winding numbers can be obtained, where topological constants are preserved by phase vortices,
demonstrating coupling between the light’s spin, orbital angular momentum, and polarization profile. Further,
we find that an ultrafast femtosecond laser pulse traveling along a defect line splits into multiple intensity
regions, again depending on the defect’s winding number, allowing applications in beam steering and filtering.
Finally, our approach describing the generation of complex optical fields via coupling with topological defect
lines in optically birefringent nematic fluids can be easily extended to high-intensity beams that affect nematic
ordering.
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I. INTRODUCTION

Vector light beams are distinct optical fields characterized
by complex spatial modulation of both the intensity profile and
the polarization [1]. Theoretically, they are solutions of the
vector paraxial wave equation with a nonuniform polarization
profile [2,3]. Especially interesting are cylindrical vector
beams (CVBs) with an axially symmetric intensity profile,
which can be focused to a smaller spot size [4] and are useful in
optical particle trapping [5,6]. Furthermore, cylindrical vector
beams have applications in optical microscopy [7] and in laser
cutting [8]. They can be generated from linearly polarized
scalar beams, such as those emitted by most lasers, by using
conical Brewster prisms [9], few-mode fibers [10], or—today
most commonly—by phase modulators [11].

Liquid crystals are fundamental materials in modern display
optics and photonics due to their birefringence and their
susceptibility to external control by electric, magnetic, and
optical fields. The birefringence in nematics stems from the
orientational order of molecules that align along a distinct
direction, called the director, corresponding to the optical
axis [12,13]. The optical axis can spatially vary over multiple
spatial scales, from 10 nm to 10 μm, notably also including the
visible wavelength range, which makes nematics attractive for
complex optic and photonic devices [14,15]. Of special interest
for photonics are topological defects in the orientational order,
where the director field is discontinuous, and the material
becomes locally optically isotropic [16]. These nematic defects
can be in the form of points or lines, and each defect is
characterized by distinct spatial variation of the optical axis
around the defect. Line defects, also called disclinations, are
characterized by the topological invariant called the winding
number (also known as topological charge or strength), which
specifies how many turns the optical axis (director) makes
when following a loop around the disclination. The director
is a headless vector, so opposite directions are equivalent,

allowing for disclination lines with half-integer and integer
winding numbers. Disclinations carry a high free-energy cost,
so their presence has to be enforced by topological constraints,
boundary conditions, or strong external fields [13,17,18].

There is a fundamental connection between the liquid
crystal director and the light field if the two get coupled,
for example by shining a light field on a structure in
the nematic director field. It has been shown that nematic
disclinations can induce singularities in the light field [19],
and sufficiently strong light fields can imprint defects in
liquid crystals [20,21]. Generation of scalar and vector vortex
beams on disclination lines in nematic films was also recently
demonstrated experimentally [22]. Manipulation of vector
beam polarization patterns can be achieved by using a liquid
crystal device called a “q-plate” [23]. It has been used
for imprinting polarization singularities into light beams,
with either zero-intensity regions or points with circular
polarization at the core [24]. The q-plate consists of a liquid
crystal disclination line with a certain winding number and
a fixed length, where the director structure is enforced by
treating the surface. A disclination line with winding number
s can transform a linearly polarized scalar beam into a beam
with a polarization defect with winding number 2s, as can be
shown using a single-photon state formalism [25] or using the
Jones formalism [26]. A light beam carries spin, manifesting
itself in the classical picture as cylindrical polarization of
light, as well as orbital angular momentum (OAM) if a phase
vortex is present at the beam axis [27]. Transfer of angular
momentum between spin and orbital degrees of freedom can
be achieved in certain photonic devices [22,28], including
the q-plate [23]. Angular momentum transfer can also be
calculated analytically in the paraxial approximation and
assuming low material birefringence [29], but moving beyond
these approximations requires numerical methods.

Our interest will be in modeling the coupling between
the light field and nematic disclinations, and there exist
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multiple numerical methods for modeling the propagation of
light through anisotropic birefringent media. Jones calculus
describes light with two transversal components of the electric
field enforcing a fixed direction of propagation and neglecting
diffraction. It is suitable for uniform media or media with
spatial variations of refractive indices on a scale much larger
than the wavelength of light. For more complex anisotropic
media, the Berreman method can be used [30,31], which calcu-
lates the transversal components of both electric and magnetic
fields and can describe more rapid spatial variations. However,
these simplified descriptions fail when the diffraction and re-
fraction cause the propagation of light in the x and y directions
to be significant, such as in the presence of discontinuities
of the permittivity tensor [32,33]. In these cases, a method
that considers all six components of light fields must be used.
The finite-difference time-domain (FDTD) method has proven
to be a powerful tool for modeling light propagation through
arbitrarily complex optically anisotropic media, computing the
time evolution of the electric and magnetic field by explicitly
solving Maxwell’s equations [34,35]. Indeed, along with the
finite-element method [36], it is often used especially in the
study of liquid crystal optics and photonics [37–39].

In this paper, we present numerical modeling of the flow of
light along liquid crystal disclination lines, showing that this
approach allows for controllable design of both polarization
and intensity of cylindrical vector light beams. Using a
custom-developed FDTD-based numerical approach, we find
that a +1/2 disclination line can transform a scalar beam
into a beam with radial or azimuthal polarization, depending
on the polarization of incident light. By employing ne-
matic disclination lines with different winding numbers (−1,

−1/2,+1/2,+1), we find vector beams with additional
polarization profiles. Our results confirm the defect winding
numbers predicted by the Jones formalism, while additionally
demonstrating the necessary zero-intensity region at the defect
core. Due to the sensitivity of liquid crystals, the polarization
conversion can be tuned by direct system parameters, including
temperature, birefringence, and the length of the disclination.
We show that light polarization always forms a defect with
twice the winding number of the liquid crystal disclination,
and we provide a simple analytical derivation that explains
this relation. Unlike derivations based on photon states or
the Jones formalism, our FDTD method correctly shows a
zero-intensity region, which ensures that electric and magnetic
fields are continuous near the defect core. By using circularly
polarized incident light, we observe that it is possible to induce
polarization defects with half-integer winding numbers, which
is seemingly counterintuitive and should have been prevented
by the vector symmetry of the light polarization. However, this
incompatibility is resolved by a phase singularity at the beam
axis, demonstrating coupling between spin, orbital angular
momentum, and polarization. In addition to continuous light
beams, we present light-field modulation of femtosecond laser
pulses by nematic disclinations. We assume low light intensity
and neglect any effects that light has on the orientation or tem-
perature of the liquid crystal. The light pulses undergo a similar
transformation of their polarization state, but interestingly they
also split into multiple intensity regions. The number of these
intensity regions is found to be equal to 2|s|, where s is the
disclination line’s winding number.

II. METHODS

There is a mutual interaction between a nematic liquid crys-
tal and light. Nematic birefringence affects the polarization of
light, while the liquid crystal molecules generally tend to orient
parallel to the electric field. However, in this paper, we assume
that light fields are too weak to reorient the nematic, and only
model the flow of light through a fixed nematic director field.
We develop and implement a custom-written finite-difference
time-domain (FDTD) approach, which allows for modeling of
the flow of light in general optically anisotropic materials, with
a notably spatially varying optical axis, such as liquid crystals.
The method computes the values of all six components of
electromagnetic fields at every time step by following the time
derivatives of two dynamical Maxwell equation [35]. Using
dimensionless quantities (c = μ0 = ε0 = 1) and assuming no
free charges and currents in the material, these equations are

∂H
∂t

= −∇ × E,
∂E
∂t

= ε−1(∇ × H), (1)

where E and H are the electric and magnetic field, respectively.
The two equations contain one material field, i.e., the dielectric
permittivity tensor ε, and it is the design and spatial variation
of the ε = ε(r) tensor that is at the center of this paper, driving
the polarization and intensity modulation of the vector light
beams.

When using Eqs. (1) on a discrete lattice in the FDTD
approach, it is possible to improve accuracy without sacrificing
performance by defining field components at different points
in space and time. The standard approach is to use the Yee
lattice [34,40] [Fig. 1(a)], where each field component is
known at a different site. This way, all space derivatives are
of the central-difference type, giving the method second-order
accuracy. However, this is true only if the components of the
electric fields are uncoupled, i.e., if the permittivity tensor ε

is diagonal, which can be achieved in a uniform birefringent
material by choosing a suitable frame of reference. In liquid
crystals, where the dielectric tensor and birefringent axes
inherently vary in space, such a choice cannot be made, so
the inherent symmetry of the Yee lattice is lost. It is possible
to use the Yee lattice with arbitrary permittivity tensors, but this
causes the loss of the central-difference property, reducing the
accuracy and giving rise rise to numerical stability concerns
[41]. To alleviate these shortcomings, we use our own lattice,
where notably all three components of each of the two fields

FIG. 1. (Color online) (a) The Yee lattice, where each field
component is computed at a different site. (b) The lattice we used,
with electric field known at cube vertices and magnetic field at cube
centers. In both cases, the electric and magnetic fields are computed
at different times.
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(i.e., electric and magnetic) are computed at the same point [see
Fig. 1(b)]. The introduced lattice has the same second-order
accuracy as the Yee lattice and is unconditionally stable [41],
at the cost of slightly decreased computational performance.
To ensure all differences are central, each space derivative has
to be computed as an average of four finite differences, as
opposed to one as with the Yee lattice. This larger number of
operations is offset by adapting the method to support parallel
computing on a CPU or a GPU, resulting in major performance
gains. For example, a fully three-dimensional (3D) simulation
run with 2000 time steps (corresponding to approximately
300 fs) on ∼ 5 × 107 lattice points only takes a few minutes
on a single Nvidia GTX Titan GPU. External light sources are
modeled by partitioning the simulation cell with a boundary
and empty space around the cell with an absorbing perfectly
matched layer (PML) [42]. By setting the absorbing layer’s
thickness to 30 simulation points, reflection is reduced by five
orders of magnitude, as commonly seen in FDTD modeling
[34,35].

The liquid crystalline birefringent profile is introduced into
the FDTD simulations via a spatially varying permittivity
tensor [12]

εij = εδij + εa
ij = εδij + 2

3εmol
a Qij , (2)

where ε is the average permittivity, εmol
a = εmol

‖ − εmol
⊥ is the

molecular dielectric anisotropy, and Qij = S
2 (3ninj − δij ) is

the uniaxial nematic order parameter tensor. A fixed uniaxial
nematic order parameter tensor is assumed here with the
optical axis (corresponding to the extraordinary refractive
index) equivalent to the nematic director ni . In our calculations,
we computed Qij , εij and its inverse from the director n(r),
and the nematic degree of order S, which corresponded to
the nematic disclinations. The director field around nematic
disclination lines can be written as n(r,φ,z) = cos sφ êx +
sin sφ êy , where s is the disclination line’s winding number
and can be of integer or half-integer value. Energetically, the
energy of disclinations per unit length is proportional to s2

[13]; therefore, typically only disclinations with low winding
numbers emerge in experiments [12], so we focused only
on systems with |s| < 2. The defect cores are modeled by
reducing the nematic degree of order S smoothly to zero within
the core radius of a few 10 nm [12], effectively causing the
material to become optically isotropic. Indeed, the core region
being much smaller than the wavelength of light, we find that
its exact structure has little effect on the propagation of light.
Because Q, ε, and ε−1 are all related symmetric tensors, only
six values of ε−1 are stored in calculations, saving on computer
memory.

The FDTD method allows arbitrary incident light fields.
We choose a scalar TEM00 Gaussian beam with uniform
polarization, either linear or circular. In the case of a pulse
source, the field amplitude varies in time as

E0(t) ∝ exp

(
− (t − t0)2

2T 2

)
, (3)

where T is the characteristic pulse length T . Because there
is no light before t = 0, effectively cutting off one tail of the
Gaussian function, the peak-intensity time t0 is chosen much
larger than T , so that the full shape of the pulse was captured.

TABLE I. Used numerical parameters of the liquid crystal and
light.

Ordinary refractive index no = 1.54
Extraordinary refractive index ne = 1.69
Light wavelength λ = 480 nm
Lattice resolution 30 nm
Lattice size 224 × 224 × 640 voxels

6.7 × 6.7 × 19.2 mm
Beam waist w0 = 1600 nm
Pulse length T = 6 fs

A value of t0 ≈ 5 T appears sufficient to remove any artifacts
and produce well-formed Gaussian-shaped pulses.

Unless stated differently, numerical and modeling param-
eters in Table I are used, corresponding to standard nematic
liquid crystal (e.g., 5 CB) [43] and visible light. Free-standing
disclination lines are modeled without an external light-
guiding structure, so the beams diverge while traversing the
disclinations. However, the Rayleigh range in the medium—a
characteristic distance from the waist at which the cross section
area of the beam is doubled—is greater than the simulation
cell size, ensuring that while beam divergence is noticeable,
its effect on the polarization and phase profiles is negligible.

III. RESULTS

A. Linear incident polarization

Nematic disclination lines of various winding numbers are
used to transform the polarization profile of an incident linearly
polarized light beam. Figure 2 shows the transformation of a
linearly polarized light beam traveling along an s = +1/2
disclination line. The incident beam has a Gaussian intensity
profile [Fig. 2(a)] and linear uniform polarization. A zero-
intensity region quickly forms at the defect core, and periodic
wrinkles are seen in the intensity profile further along the line
[Figs. 2(b)–2(d) and 2(e)]. A slight shift of intensity in the
x direction is visible, caused by refraction toward the area
where the nematic director and light polarization are parallel
and the refractive index is higher. Intensity profiles at distinct
cross sections also show multiple rings, indicating the presence
of higher-order Laguerre-Gaussian modes in the transformed
beam. Changes in the polarization of light within the beam
are also apparent. Interestingly, the incident beam with linear
polarization develops a polarization defect at the center, while
polarization around the core alternates between two distinct
patterns, i.e., the linearly polarized [Figs. 2(f),2(j),2(l), and
2(n)] and the radially polarized profile [Figs. 2(h),2(k),2(m),
and 2(o)]. Note that at each point in space, the polarization of
light is linear (as opposed to circular), but the direction of the
linear polarization is radial with respect to the center of the
incident beam.

We repeat the simulations with disclinations of different
winding numbers, and we observe that a nematic disclination
line—of appropriate length—with winding number sLC pro-
duces a defect in the light polarization with winding number
s light = 2sLC, as shown in Fig. 3. Similarly to the +1/2
disclination shown in Fig. 2, we observe that the incident beam
with linear polarization develops a polarization defect at the
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FIG. 2. (Color online) Generation of radial vector light beam with +1/2 nematic disclination line. (a)–(d) Light intensity profiles at different
cross sections along the disclination line show a formation of a zero-intensity region at the axis. (e) Laser beam along the nematic disclination
line drawn as the isosurface of light intensity (green) at I/I0 = 0.15; the two-headed arrow denotes the polarization of incident light, and
vertical black lines correspond to the locations of the above cross section. (f)–(o) Polarization profiles of light after traversing a distance z

along the disclination, starting with linearly polarized light. Periodically exchanging patterns of linear and radial polarization are observed.
Intermediate states (g),(i) feature areas with elliptical or circular polarization (shown in yellow and green, respectively).

center, while polarization around the core alternates between
two distinct patterns, of either linear or 2sLC polarization. It
is important to notice that this exact 2sLC polarization profile
develops periodically as the light passes along the nematic
disclination line, with the intermediate states characterized by
partially linear (shown in red) and partially elliptical (in green)
polarization. More generally, this systematic study shows that
nematic disclination lines could be used as distinct micro-
objects for controllable generation of polarization profiles in
vector light beams, in good agreement with both theoretical
predictions and experimental results [22,23].

The relation between the winding number of the nematic
disclination and the winding number of the generated vector
light beam, s light = 2sLC, can be qualitatively explained by
using the Jones formalism. A phase plate with a retardation of

δ can be described with a Jones matrix Mδ [23]:

Mδ(α) = R(−α) ·
(

1 0

0 eiδ

)
· R(α), (4)

where R(α) is the rotation matrix by angle α, which cor-
responds to the local orientation of the optical axis, i.e.,
the nematic director (n = cos α êx + sin α êy). For a distinct
disclination line with winding number s, the director angle
varies as α = sφ + α0, where α0 is a constant, which for
retardation δ = π (also known as the “q-plate”) gives the Jones
matrix:

Mπ (α) =
(

cos 2α sin 2α

sin 2α − cos 2α

)
. (5)
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FIG. 3. (Color online) Generation of complex vector light beams with arbitrary winding numbers via nematic disclinations. The top row
shows schematics of nematic disclination lines with different winding numbers (director in black and dark blue lines) and the (initial) incident
linear polarization (red two-headed arrows). Corresponding light polarization profiles generated by traversing nematic disclinations and with the
initial linear polarization shown above are displayed in the bottom row. All these profiles appear after traversing along the nematic disclination
a distance of zd = λ/2	n.

Applying M to a linear x-polarized incident beam, we obtain

Eout = MπE0

(
1

0

)
= E0

(
cos(2sφ + α0)

sin(2sφ + α0)

)
, (6)

which is a now a defect light field with a winding number of
2s generated by the defect field of nematic disclination with
winding number s. The distance of light traveled at which
the double-winding-number defect emerges in the light field z

is determined by the condition (2m + 1)π = δ = (ke − ko)z,
from which follows

z = (2m + 1)λ

2(ne − no)
= (2m + 1)

λ

2	n
, m ∈ Z,

where λ is the wavelength in vacuum and 	n = ne − no is the
material birefringence. At typical values for 5 CB and visible
light (see Table I), the first complete defect in the polarization
profile (m = 0) emerges at

zd = 480 nm

2 × 0.15
≈ 1.6 μm. (7)

We should stress that the above derivation is only qualitative,
as it is based on simple 2 × 2 Jones calculus, which fully
neglects refraction. For example, in the Jones view, exactly at
the disclination, the director angle α is discontinuous, and so
is the predicted electric field, which is a nonphysical solution
in reality effectively solved by refraction. Indeed, our full
FDTD numerical simulations clearly show that light refracts
away from the defect, creating a zero-intensity region at the
disclination. It is apparent that only methods that treat the
electric and magnetic field as full vector fields are suitable for
the study of defects in light. Away from the defect core (more
than half a wavelength from the axis), the simplified Jones
derivation closely matches our numerical results, and so does
the predicted value of zd.

B. Circular incident polarization

By varying the polarization of the incident light beam, it
is possible to generate a larger variety of polarization patterns
along the nematic disclinations. Figure 4 shows the polariza-
tion profiles of vector light beams obtained by shining incident
circularly polarized light along nematic disclinations. As in the
preceding section, a zero-intensity region is always observed
at the axis. The polarization profiles are shown at distinct
propagation lengths, where the polarization again becomes
locally linear across the whole cross section of the beam. In
this case, the defects in the polarization profile appear with the
same winding number as that of the disclination line. Notably,
we observe polarization defects with half-integer winding
numbers. This is significant because vector fields, such as the
electric or magnetic field, can only form defects with integer
winding numbers. The observed defects thus seemingly violate
the topological constraints enforced by the vector symmetry
of the light fields. However, in the case of light polarization,
there are multiple possibilities of rectifying this apparent

s = +1/2; RHP s = +1/2; LHP s = −1/2; RHP s = −1/2; LHP

s = +1; RHP s = +1; LHP s = −1; RHP s = −1; LHP

FIG. 4. (Color online) Polarization profiles generated from inci-
dent circularly polarized light beams traversing along nematic discli-
nation lines with different winding numbers. Polarization profiles
show defects with the same winding number as the liquid crystal
disclination line, notably including also defects with half-integer
winding numbers.
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contradiction [44]. At the defect core, there can be an area
where light is unpolarized, such as in the polarization pattern
of sunlight. Alternatively, a point of circularly polarized light
(also known as a “C point”) could be present at the core [45].
Finally, as occurs in our case and is explained later in this sec-
tion, a half-integer strength phase vortex may be present [46].

Figure 4 also shows that the polarization profile is rotated
by 45◦ with respect to the nematic director, with the direction
of this rotation depending on the handedness of the circular
polarization. For right-handed circular incident polarization
(RHP), the polarization profile rotates by +45◦ relative to the
nematic disclination, whereas for left-handed incident light
(LHP), the profile is rotated by −45◦, as seen in Fig. 4. Note
that while the local polarization at each point is always rotated
by 45◦ with respect to the director, this rotation is equivalent
to a global rotation by 90◦ in defects with winding numbers
±1/2 because of the defect’s symmetry. This symmetry is
different in defects with higher winding numbers; in the case
of the s = −1 defect, the local rotation is equivalent to a global
rotation by 22.5◦, while the polarization profile in an s = +1
defect cannot be obtained with only global rotations.

Unlike in the case of linear incident polarization, for
circularly polarized incident beams the distinct defect structure
in the polarization profile appears at zd/2, where the phase
retardation is equal to δ = π/2. Using the Jones formalism
from Eq. (4), we can write

Mπ/2 = R(−α) ·
(

1 0

0 i

)
· R(α), (8)

Eout = Mπ/2 · E0√
2

(
1

i

)
= E0e

iα

(
cos(α − π/4)

sin(α − π/4)

)
. (9)

Inserting α = sφ + α0, we indeed obtain a defect in the
polarization profile with winding number s that is rotated
by π/4 with respect to the director profile of the liquid
crystal disclination line, exactly as found in full FDTD
numerical simulations. There are both polarization and phase
singularities at the axis, meaning that there the light intensity
must drop to zero, which we clearly observe in numerical
simulations, but it is again not accounted for in the Jones
formalism. As in the case with linear incident polarization, the
pattern is repeating with a period of 2zd, so these defects can
be seen at z = zd/2 + 2mzd for each integer m.

Interestingly, we observe polarization defects with half-
integer winding numbers which cannot be formed by electric
or magnetic fields and seemingly violate the vector symmetry
of the light polarization. For an s = +1/2 disclination line
with α0 = 0, we obtain α = φ/2, resulting in the light field of
the form

Eout = E0e
iφ/2

(
cos(φ/2 − π/4)

sin(φ/2 − π/4)

)
= E0e

iφ/2J(φ). (10)

Considering only the polarization term J, we see that J(2π ) =
−J(0), even though the two angles describe the same physical
point in space. The topological constraints are preserved by a
phase vortex at the axis, represented by the term eiφ/2, which
can be seen from electric field snapshots in Fig. 5. Along
a closed loop around an s = +1/2 disclination line, we see
a π rotation of the polarization and a π phase difference,

·
t = 0

·
t = t0/ 8

·
t = 2t0/ 8

·
t = 3t0/ 8

FIG. 5. (Color online) Snapshots of electric field in a beam
generated from an incident circularly polarized light beam traversing
along a nematic disclination line with a different number of s = +1/2.
The images are taken at different times over half a wave period
(t0 = 2π/ω), demonstrating the phase vortex at the axis (marked by
a white dot).

combining into a total 2π rotation consistent with the vector
nature of the electric field. We thus observe a conversion from
a vortexless beam with uniform circular polarization into a
beam with a polarization defect and a phase vortex. This result
clearly demonstrates that the nematic disclination line couples
in a complex manner the light’s spin, polarization, and orbital
angular momentum.

C. Femtosecond pulses along nematic disclinations

Nematic disclinations can also be used as interesting micro-
objects for micromodulation of laser light pulses, splitting
the pulses into multiple eigenmodes and shaping the pulse
intensity and polarization. Indeed, sending short pulses of light
through samples is a strong approach for finding waveguide
modes within the FDTD method [35].

In a birefringent medium without a surrounding waveguide,
such as the disclination lines we study here, the pulse is a sum
of two polarization modes. Each of the two modes travels with
a different propagation (group) velocity, interestingly causing
the pulse to split into two separate intensity regions with an in-
tensity minimum between them, as shown in Fig. 6. Addition-
ally, each mode may have multiple intensity regions, depend-
ing on the winding number of the nematic disclination. An inci-
dent femtosecond pulse traveling along a nematic disclination
with winding number s gradually splits into two eigenmodes,
each of which further divides into 2|s| intensity regions,
resulting in a total of 4|s| intensity regions. For the ±1/2
nematic disclinations, we observe effective splitting of the light
pulse into two intensity regions, whereas for the ±1 nematic
disclinations the pulse splits into four intensity regions.

Our simulations show that while the sign of the winding
number is important for the polarization modes, it has no
effect on the intensity profile. Both eigenpolarizations have the
same winding number as the director field; however, the vector
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FIG. 6. (Color online) Intensity regions of a short laser pulse
traveling along a nematic disclination line with a winding number (a)
s = ±1/2 and (b) s = ±1 at four different times. For each winding
number, images show the director field (i) and light polarization
profile in the last snapshot at three distinct cross sections: the two
eigenmodes (ii),(iv) and a plane between the main intensity regions
(iii). The last snapshot and all cross sections are positioned around
15 μm into the disclination.

nature of the electric field is incompatible with noninteger
defect lines. This incompatibility is solved as the director
symmetry is broken by the incident polarization. Wherever an
eigenmode would dictate that the polarization be perpendicular
to the incident, light intensity is zero, as this mode is not
present in the incident beam. Topologically more strictly,
the polarization of light thus only partially forms topological
defect structures, with the light field intensity dropping to zero
where the polarization cannot be defined continuously. In the
region between both propagation modes, the light intensity

is relatively low, but interesting polarization features are still
visible [Fig. 6, profile (iv)]. Here, both eigenmodes combine
to form a single defect with a double winding number and no
azimuthal intensity dependence. This defect structure is a com-
bination of both polarization modes and is very similar, both
in shape and in origin, to those that appear in continuous light.

IV. CONCLUSIONS

Nematic liquid crystal disclination lines are shown to act
as micro-objects that transform the polarization of light and
create topological defects in the light field. Complex vector
light beams of various beam strength are generated from simple
linearly and circularly polarized light fields. Using numerical
modeling based on the FDTD approach, we show that the
polarization of light obtains a defect with twice the winding
number of the disclination line after traversing a distinct-length
section of the line. Our results extend the prediction of the
Jones method by not only predicting the winding number of
light defects but also the corresponding intensity profiles. For
example, a linearly polarized light beam traveling along a
+1/2 disclination line can become radially polarized. Notably,
we show that it is possible to induce polarization defects with
half-integer winding numbers by using circularly polarized
incident light. The topological constraint of the electric field is
preserved by a phase vortex, coupling polarization handedness,
polarization defects, and orbital angular momentum of the
beam. We further demonstrate that guiding a short laser
pulse along a disclination causes it to split into multiple
intensity regions. These intensity regions are arranged into two
propagation eigenmodes, each of which is further divided into
2|s| regions, where s is the disclination line’s winding number.

The phenomena described here are interesting because of
the modulation of light polarization, phase, and intensity, as
well as for spin-orbital momentum transfer, creating light
beams with various polarization and phase profiles. Due
to the inherent susceptibility of liquid crystals to external
stimuli, such devices could be further tuned with electric,
magnetic, or optical fields, offering interesting applications
in information processing, possibly as electronic-photonic
couplers and as parts of all-photonic circuits. Finally, the
calculated polarization and intensity profiles will enable us
to model the mutual interaction between liquid crystals and
light fields in the future, giving a more complete model of
light propagation in soft matter.
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