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Temperature-dependent orientational ordering on a spherical
surface modeled with a lattice spin model
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We study the orientational ordering on the surface of a sphere using Monte Carlo and Brownian dynamics
simulations of rods interacting with an anisotropic potential. We restrict the orientations to the local tangent
plane of the spherical surface and fix the position of each rod to be at a discrete point on the spherical surface.
On the surface of a sphere, orientational ordering cannot be perfectly nematic due to the inevitable presence of
defects. We find that the ground state of four +1/2 point defects is stable across a broad range of temperatures.
We investigate the transition from disordered to ordered phase by decreasing the temperature and find a very
smooth transition. We use fluctuations of the local directors to estimate the Frank elastic constant on the surface
of a sphere and compare it to the planar case. We observe subdiffusive behavior in the mean square displacement
of the defect cores and estimate their diffusion constants.
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I. INTRODUCTION

Nematic liquid crystals are classical examples of soft matter
systems exhibiting broken symmetries [1]. The question how
nematic order forms in confined geometries and on curved
surfaces is not only of fundamental interest but also relevant for
applications [2–4]. For the special case of spherical surfaces,
the Poincaré theorem (colloquially known as the “hairy ball”
theorem) excludes perfect nematic order. Lubensky and Prost
predicted that four point defects of strength +1/2 arranged
at the vertices of a regular tetrahedron minimize the defect
energy [5]. The theoretically expected defect structures are
indeed observed in experiments [6] and simulations [7]. Be-
sides the tetrahedral arrangement, other defect structures have
been observed experimentally [6,8,9] and in simulations [10],
which have been attributed to the finite thickness of the nematic
shells [11] or to vastly different values of the splay and bend
elastic constants [7].

Starting with the work of Lubensky and Prost [5], the
theoretical and simulation studies have so far mostly concen-
trated on the low-temperature regime and identified the defect
structures of the ground or low-energy states. Here we focus on
the temperature dependence of various physical quantities that
have so far received relatively little attention. In particular, we
investigate the growing local and global orientational ordering
upon lowering the temperature as well as the elastic and
dynamic properties.

In order to study these quantities, we employ Monte Carlo
and Brownian dynamics computer simulations to study our
model, which is an adapted Lebwohl-Lasher model [12,13]
confined to a spherical surface. The original Lebwohl-Lasher
model can be considered as the simplest non-mean-field model
for the isotropic-to-nematic (IN) transition for bulk liquid
crystals, where rigid rotators are arranged on a regular lattice
with nearest neighbor interactions. There is some debate in the
literature about the nature of this transition in two dimensions,
whether it is weakly first order or continuous [14,15]. Here
we are interested in the case when the location of the
rotators are confined to the surface of a sphere and their
orientation vector is confined to the local tangent plane of the

sphere, meaning we deal exclusively with a two-dimensional
model.

However, since the related case of the planar model (with
rotator position and orientation confined to a flat surface)
is hardly considered in the literature, we treat this simpler
model first. Our results are in agreement with an earlier study
that found a continuous transition of planar rotators on a
triangular lattice [16]. We note that defects in the planar
model were also studied by annealing from a state with
random orientations or by using suitable boundary conditions
to create topological frustration [17]. On the spherical surface,
we find a very smooth increase of local nematic order with
decreasing temperature, independent of the particular lattice
type employed. We observe that the nematic ordering is
characterized by four point defects of strength +1/2 in a
tetrahedral arrangement not only at very low temperatures
but within a broad range in the nematic regime. In addition,
we determine the effective elastic constant on the spherical
surface and study the thermal diffusive motion of the point
defects. The diffusive motion is particularly important given
the interest in using functionalized defects in thin nematic
shells as directional bonds to mimic atomic bonding [4].

The paper is organized into two main sections, the first,
Sec. II deals with the planar model when the rod positions
and spins are confined to a plane. We investigate orientational
ordering and the elastic constant of this system. We introduce
the spherical model and our simulation technique in Sec. III.
We further discuss in the subsections orientational ordering on
a sphere, defect mobility, and the behavior of the Frank elastic
constant. Concluding remarks are made in Sec. IV.

II. PLANAR MODEL

We consider a simple lattice model of a nematic system,
where rigid rotators (“spins”) uj are arranged on a regular
lattice. Nearest neighbor attractions favor parallel spin orien-
tation, described by the Hamiltonian

H = −ε

2

∑
〈i,j〉

T2(ui · uj ), (1)
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where the sum runs over the nearest neighbor pairs i and j on a
given lattice and ε is the interaction strength between spins (or
can be interpreted as the energy of a bond between two spins).
The factor of 1/2 avoids double counting the bond energies. We
choose T2(x) = 2x2 − 1 as the second Chebyshev polynomial
so that the energy of the isotropic state is zero [18]. The
orientations of the spins are normalized u2

j = 1.
We note that in most previous studies of the so-called

planar Lebwohl-Lasher model, the spins uj are arranged on
a two-dimensional planar lattice and are allowed to rotate
in three dimensions, and T2(x) is instead chosen as the
second Legendre polynomial P2(x) = (3x2 − 1)/2 [14,15].
This particular model displays a continuous transition from
an isotropic phase at high temperatures to a nematic state
below a critical temperature, which according to recent finite-
size scaling studies is around kBTc/ε ≈ 0.56 on a square
lattice [15].

A. Orientational ordering and the isotropic-nematic transition

Since no exact solution is known to date for our two-
dimensional model, we study the transition theoretically by
several approaches: using a mean-field approximation, using
the Landau-de Gennes free energy, and using computer
simulations. Begin with the mean-field approximation so that
the Hamiltonian is simplified to [19]

H MF = −2εzQ
∑

i

[T2(ui · n) − Q], (2)

where z is the coordination number of the lattice and Q is
defined as the greatest eigenvalue of the orientation tensor Q
with corresponding eigenvector n

Q = 1

N

N∑
i

(
uiui − 1

2
1
)

. (3)

The eigenvector n is called the director and it represents the
direction of preferred alignment of the spins while Q measures
the degree of alignment of the spins; it varies between 0 and
1/2 for isotropic and perfectly ordered states, respectively.
The mean-field free energy implies a self-consistency relation
for the order parameter that can be expanded for small Q to
give the mean-field prediction for the transition temperature
kBT MF

c /ε = z/2. Further details are given in Appendix A.
An alternative approach has been recently employed by

two of the authors to systematically obtain the macroscopic
Landau-de Gennes free energy starting from a microscopic
model [20]. The ideal orientational entropy for noninteract-
ing planar rotators was found to be given by S ideal(Q) =
NkB(−4Q2 − 4Q4) + O(Q6) for weak ordering. Following
earlier work [21], we obtain the Landau-de Gennes free energy
by adding the mean interaction energy EMF = 〈H MF〉 =
−2NεzQ2 of the Lebwohl-Lasher model, F LG = EMF −
T S ideal, to obtain

F LG(Q) = NkBT [(4 − 2βεz)Q2 + 4Q4] + O(Q6). (4)

Due to the absence of a cubic invariant, the Landau-de
Gennes free energy (4) predicts a continuous transition at the
same reduced temperature kBT LG

c /ε = z/2 as the mean-field
prediction.
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FIG. 1. (Color online) Two-dimensional order parameter S2 as
function of the reduced temperature kBT/zε for our planar model on
a square (z = 4) and triangular (z = 6) grid for different system sizes.
The solid black line indicates the mean-field prediction. Our results
are in agreement with those shown in Fig. 4 of Ref. [16].

We study the exact model with the help of Monte Carlo
(MC) simulations on two-dimensional square (z = 4) and
triangular (z = 6) lattices. We use a standard Metropolis
algorithm, where the individual attempt moves are rotations
of randomly selected single spins. The maximal rotation was
adapted so that, on average, roughly half of the attempted
moves are accepted. Different lattice sizes ranging from
20 × 20 (N = 400) up to 80 × 80 (N = 6400) spins are
considered in order to estimate finite-size effects. Typically,
2 × 106 MC steps are used for equilibration, followed by
another 6 × 106 MC steps for data collection, where one
MC step consists of N attempted moves. Statistical errors
are estimated from block averages.

Figure 1 shows the results for the two-dimensional order
parameter S2 = 2Q obtained from MC simulations on a
square and triangular lattice together with the mean-field
prediction. As suggested theoretically, the simulation data
approximately collapse onto a master curve when plotted as a
function of reduced temperature kBT/(zε). It has already been
noted in [16] that the mean-field prediction for the transition
temperature kBT MF

c /(zε) = 1/2 is in poor agreement with the
numerical results. On a triangular lattice, MC simulations
showed a continuous transition at kBTc/ε = 1.8 ± 0.1 [16],
corresponding to kBTc/(zε) = 0.30 ± 0.02, in agreement with
our data.

B. Frank elastic constant

We now consider the elastic properties of the planar model.
In a two-dimensional nematic phase, there are, in general,
two Frank elastic constants K1,K3 due to bend and splay
distortions of the director field [22]. In the Lebwohl-Lasher
model and its two-dimensional variant considered here, the
one-constant approximation K = K1 ≈ K3 holds, and the
Frank elastic energy in d dimensions is given by [22]

Fel = 1

2
K

∫
ddx(∇αnβ)(∇αnβ). (5)
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For planar rotators, the director can be expressed as n =
(sin θ, cos θ ) and Fel simplifies to Fel = 1

2K
∫
d2x|∇θ |2. From

the Fourier representation of the director angle fluctuations,

δθ (x) = 1

L2

∑
q

δθ̃ (q)eiq·x, (6)

we obtain

Fel = K

2L2

∑
q

q2|δθ̃(q)|2. (7)

Following common practice [23], we employ the equipartition
theorem to relate the elastic constant K to the long-wavelength
mean-square fluctuations of the director angle

〈|δθ̃ (q)|2〉 = lim
q→0

kBT L2

Kq2
. (8)

Equation (8) is the analog of the well-known relation for
three-dimensional rotators. Adapting a simple argument [24]
to the present model gives the theoretical prediction for the
planar square lattice Ksq = 4εS2

2 . Details of the calculation
are provided in Appendix C.

We determine the left hand side of Eq. (8) from nu-
merical simulations, where we analyze the fluctuations of
the orientations relative to the instantaneous director using
two-dimensional Fourier transformations. We observe that
〈|δθ̃(q)|2〉−1 indeed scales as q2 for low q values as shown
in the inset of Fig. 2. From fits of the simulation results to
Eq. (8), we obtain the value of the elastic constant K . For low
temperatures, the simulation results are in good agreement
with the theoretical prediction Ksq = 4εS2

2 , when we use
the simulation result for S2(T ). Note, however, that at high
temperatures, the slope 1/〈θ̃ (δq)2〉 decreases and becomes
very small, meaning we could not reliably extract values for
the elastic constant beyond kBT = 0.5. Figure 2 shows the
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FIG. 2. (Color online) The Frank elastic constant on a square
lattice plotted against the reduced temperature. The dashed black
line is the theoretical prediction. (Inset) Mean square fluctuation of
the director angle plotted against wave number, showing the 1/q2

dependence. Symbols are simulation results, whereas lines indicate
fits to Eq. (8).

Frank constant plotted against temperature for a square lattice
of size 41 × 41.

III. SPHERICAL MODEL

Consider now the same system of spins interacting with
the same Hamiltonian of Eq. (1) where the lattice is not in
the Euclidean plane but covers the surface of a sphere. The
spins themselves are constrained to rotate in their local tangent
plane. The related model of hard spherocylinders confined to a
spherical surface was used in Ref. [7] to discuss experimental
results [6].

While the static properties can again be obtained by MC
simulations, we here employ Brownian dynamics of the model
to study not only the orientational ordering but also the Frank
elastic constant and defect dynamics. We present the numerical
implementation here, which is an extension of the Brownian
dynamics of Ref. [18]. Begin by considering the torque balance
on spin i in the overdamped limit

Tfric
i + Tpot

i + TB
i = 0, (9)

where TB
i is the Brownian contribution to the torque and the

torques due to rotational friction Tfric
i and interaction potential

Tpot
i are defined, respectively, as

Tfric
i = −ξui × u̇i , (10a)

Tpot
i = ∂H

∂ui

× ui , (10b)

where ξ is the rotational friction coefficient. The first order
Euler-Maruyama integration scheme then reads

	ui(t) = 	ωi(t) × ui(t), (11)

with

	ωi(t) = 1

ξ
Tpot

i (t)	t +
√

2D	t Wi(t), (12)

where D = kBT/ξ is the rotational diffusion coefficient of an
isolated spin, Wi(t) is a three-dimensional Wiener process,
and 	t is the time step. For the numerical implementation, we
make Eq. (11) dimensionless and write it out explicitly

	ui(t) =
⎡
⎣ ∑

j (nn i)

3 U (ui · uj )(ui × uj )	tD

+
√

2	tD Wi(t)

⎤
⎦ × ui , (13)

where U = ε/kBT is the reduced energy, 	tD = D	t is the
time step measured in terms of the inverse diffusion coefficient
and the sum runs over the nearest neighbors j of spin i (not
including spin i). Finally, the new orientation of spin i is
obtained by projecting back to the local tangent plane at spin
i and normalizing

ui(t + 	t) = Pi · [ ui(t) + 	ui(t) ]

|Pi · [ ui(t) + 	ui(t) ]| , (14)

where Pi = 1 − eiei is the projector onto the local tangent
plane of spin i and ei is the normal vector to the spherical
surface at spin i. In addition to the global order parameter Q,
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we define a local order parameter Qi , given by the greater
eigenvalue of the (two-dimensional) orientation tensor,

Qi = 1

Ni

∑
j (nn i)

[
(Pi · uj )(Pi · uj )

|Pi · uj |2 − 1

2
1
]
, (15)

Note that for Eq. (15), the neighbors of spin i can be nearest
neighbors, or next nearest, etc. We further define the local
two-dimensional order parameter as S2i = 2Qi , which varies
from zero to one in the isotropic and perfectly ordered phases
respectively. We typically used 2–5 × 106 Brownian dynamics
steps for equilibration and 4 × 106 steps for collection of
averages, with a time step 	tD = 10−3; the bare dimensionless
rotational diffusion coefficient is D = 1/2.

A. Choice of spherical lattice

There are many different methods to construct a regular
lattice on the surface of a sphere. Here we want to use a lattice
that is as uniform as possible. We therefore try a geodesic
grid, Kurihara’s grid [25], and a so-called repulsive particle
(RP) grid [26] formed by initially randomly distributing the
lattice points; one point is fixed and the rest are free to move
on the spherical surface. Each lattice point has a repulsive 1/r

interaction potential and the final grid is formed by minimizing
the energy of the system and fixing the remaining lattice points.
Each of the lattice points on the three grids has on average six
well-defined nearest neighbors. The grids we use all have a
mean coordination number of z = 6 ± 0.05. To show that the
choice of grid has, at most, a negligible impact on our results
we present data for the mean local order parameter 〈S2i〉 and
total energy E plotted against the reduced temperature kBT/ε.
The mean local order parameter is defined as the mean of S2i

over all the N lattice sites. We find the geodesic and RP grids
to be indistinguishable within the statistical uncertainty and
the Kurihara grid (which has the least isotropically distributed
lattice sites) to be very close to the other two.

We see from Fig. 3 that for all the lattices, the system
undergoes a smooth transition from nematic to isotropic phase
upon increasing the temperature. We also see that the mean
local ordering is always lower for the spherical lattice than for
the planar case. We further note that both planar and spherical
lattices tend to the expected value Epot → −εzN/2 for perfect
nematic ordering. Clearly, the presence of four topological
defects on the spherical grids reduces the average orientational
order, thereby increasing the potential energy in the nematic
phase.

It is worth noting that even at high temperatures, 〈S2i〉 has
a rather large finite value. This is due to a peculiarity of local
ordering, where we average over a relatively small sample,
e.g., nearest neighbors. This means that even uncorrelated
orientations lead to a nonzero local order parameter. This
effect decreases as the sample size increases, which is seen
in Fig. 3. Furthermore, we calculate the theoretical mean local
order parameter in the isotropic state and find that it scales as
〈S2i〉 = 1/

√
Ni , where Ni is the number of spins over which

we average to find S2i ; see Appendix B . For nearest neighbors,
Ni = 6 and we predict 〈S2i〉 ≈ 0.41 for the high-temperature
disordered regime, which is in agreement with the simulation
data shown in Fig. 3. For further studies, particularly regarding
finite-size effects on the ordering, we use the RP grid since
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FIG. 3. (Color online) (Left panel) The mean local order param-
eter 〈S2i〉 plotted as a function of temperature for the three spherical
lattices and triangular planar lattice. For the spherical lattices, the
upper (middle, lowest) curve represents taking the sum in Eq. (15) to
be over the nearest (next-nearest, next-next-nearest) neighbors, while
for the planar grid, the sum is only over nearest neighbors. (Right
panel) The total energy per spin plotted as a function of temperature.
The planar grid contains N = 45 × 45 points, whereas the spherical
grids contain N ≈ 2500 points. Errors are smaller than the symbol
size and lines are guides for the eye.

the number of lattice points on such a grid can be chosen
arbitrarily.

B. System size effects on orientational ordering

Applications involving larger colloidal liquid crystal for-
mers adsorbed on a closed curved surface like a droplet,
so-called colloidosomes, are undoubtedly affected by the finite
size of the bubble and the number of attached particles.
Therefore, we study the effect of finite size on nematic
ordering on the surface of a sphere. We perform Brownian
dynamics simulations with the scheme described above using
the RP grid with N = 250,500,1000,2000,4000,8000,16 000
for a range of temperatures. Each RP grid has an average
coordination number of 6 ± 0.01. The mean local order
parameter 〈S2i〉 plotted against the reduced temperature is
shown in Fig. 4, where we see a considerable difference of
〈S2i〉 between the different grid sizes in the ordered phase
below N = 2000. Note, however, there is no sharpening of
the transition for larger system sizes, as one would expect for
critical phenomena.

Ideally, nematic defects on a spherical surface are point
defects; however, since we have a finite density of spins and
include thermal fluctuations, the local order parameter varies
smoothly from its value far from the defect to its minimum
within the defect. Therefore, the defects occupy some finite
area, which we call the defect core. Since there is no observable
finite-size effect on local ordering in the isotropic state, we
propose that the defect cores occupy roughly the same number
of lattice sites Nc irrespective of the total number of points. For
smaller grids, the mean local order parameter is lower because
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FIG. 4. (Color online) The mean local order parameter 〈S2i〉
plotted as a function of temperature for various RP grid sizes; see
legend. (Inset) Estimate of the number of spins in the defect core Nc

plotted against temperature. Errors are smaller than the symbol size
unless otherwise shown, and lines are guides for the eye.

the proportion of sites covered by the core Nc/N is greater
than for grids with more points.

We estimate the defect core size by finding the center of each
defect and counting the number of spins with S2i < 0.75〈S2i〉
within solid angles with apex angle π/6 whose centers
coincide with the defect centers. We restrict the counting
to be within the aforementioned solid angles to reduce the
contribution to our estimate of Nc from thermal fluctuations of
S2i . The criteria S2i < 0.75〈S2i〉 we use to estimate whether a
spin is in the defect core or not is admittedly arbitrary, but this
gives more consistent results than other values we have tried.

Our estimate of defect size is shown in the inset of Fig. 4,
which indicates that the defect size is roughly constant across
the range of temperatures studied; however, we still see a
contribution from thermal fluctuations of S2i that occur within
the solid angles, especially for the larger systems, which have a
greater density of lattice sites and therefore more sites located
within the solid angles. Our upper estimate of Nc does increase
for larger system sizes, but it scales far more slowly than with
N . We also note that our above argument explaining the system
size dependency of 〈S2i〉 leads to the following relationship:
〈S2i〉 = 1 − Nc/N , which should be valid for low temperatures
when thermal fluctuations are negligible. As an example, we
look at the N = 250 case. Here the defect cores contain
about 52 lattice sites. From the above formula we would
estimate 〈S2i〉 ≈ 0.79, which is very close to the observed
value. Similarly for the N = 4000 case, we predict from the
defect core size that for low temperatures 〈S2i〉 ≈ 0.97, again,
with very good accuracy.

C. Frank elastic constant

An important material parameter is the Frank elastic
constant K that measures the free energy cost associated with
distortions of the director field [22]. It is a common practice
to assume a value of Ks for nematic ordering on a spherical
surface to be identical to the corresponding value on a flat plane
K . To the best of our knowledge, an independent determination

of Ks has not yet been reported. On a spherical surface, the
Frank elastic energy takes the form [5]

F = 1

2
Ks

∫
d2x [

√
g(Din

j )(Dinj )], (16)

where g is the determinant of the metric tensor, Din
j = ∂in

j +
�

j

ikn
k is the covariant derivative, and �

j

ik is the Cristoffel
symbol. The usual method to obtain an expression relating
fluctuations of the director to the Frank elastic constant rely
on expressing the Frank free energy in terms of the Fourier
modes of the director field and using equipartition to relate the
long-wavelength fluctuations of n to the elastic constant (see
Sec. II B and Refs. [27,28]). This method does not work for a
spherical surface since Eq. (16) is not diagonalized so plane
waves are not independent and equipartition cannot be easily
applied.

On the other hand, Refs. [27,28] provide an expression
relating the mean square difference of the local director angle
θ (t) with elastic constant K ,

σ 2(t) = 〈|θ (t) − θ (0)|2〉 = kBT

2πK
ln

(
1 + K

να
t

)
, (17)

where ν is the rotational viscosity and α is the area over which
the director is measured. Although Eq. (17) was derived for
planar geometries, we nevertheless use it to fit our data to
obtain Ks for different system sizes and temperatures. Since
the Frank elastic energy due to director distortions is only
valid in the ordered phase, we limit our investigation to the
low-temperature regime.

The time step we use is 	tD = 10−4 since we are looking
at relatively rapid fluctuations. We use the same number of
Brownian dynamics steps for equilibration and averaging as
before. The autocorrelation function σ 2(t) is calculated using
a moving window over the time series of the director angle
θ (t) to obtain better statistics.

Although the derivation of Eq. (17) is technically only valid
for a planar system, we find that our data shown in the inset
of Fig. 5 has a very good match to the form of Eq. (17).
We note that in contrast to Eq. (8), Eq. (17) is a purely local
relation that can be applied to the present case. From the fit
we extract a value of Ks as a function of temperature for
various system sizes, shown in Fig. 5. Despite the uncertainty
in fitting parameters, we find that at lower temperatures, the
elastic constant Ks is slightly higher for larger system sizes.
Similar to the previously noted system size effect in Sec. III B,
we expect the finite size of the defect cores to play a greater
role in reducing the elastic constant in smaller systems. We plot
Ks in terms of the order parameter squared in Fig. 6 in order
to compare to the theoretical prediction (see Appendix C) of

Ktri = 6 ε S2
2 . (18)

We find that a fit of the form

Ks = A〈S2i〉2 + B, (19)

where for our particular data A = 97 and B (which depends on
system size N ) is chosen to yield Ks = 0 in the isotropic phase;
note again that in our case, isotropic corresponds to a nonzero
value of the local order parameter 〈S2i〉. It is unsurprising
that the theoretical estimate is far from correct since in
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FIG. 5. (Color online) The Frank elastic constant Ks obtained
from Eq. (17) plotted against the temperature using the same
symbol and color convention as Fig. 4. (Inset) Solid lines
are the fit of Eq. (17) to the N = 4000 system for kBT/ε =
0.05,0.07,0.10,0.12,0.15,0.17,0.20.

the derivation (Appendix C) we took the long-wavelength
limit to obtain A = 6 and this limit is problematic for a
spherical surface. On the other hand, there is a clear quadratic
dependence on 〈S2i〉, which is reassuring since this part of the
derivation depends only on a mean-field approximation, which
does not distinguish between planar or curved surfaces.

The elastic constant K for the 45 × 45 planar triangular
case is also shown in Fig. 6 with its fit to Eq. (19). We
find that K = 6.75 ε 〈S2i〉2 yields a good fit, which is not far
from the theoretical prediction of Eq. (18). However, it is
clear that the planar triangular result differs both qualitatively
and quantitatively from the spherical case, and we note that
the spherical Frank constant has a noticeable system-size
dependency due to the presence of defects.
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FIG. 6. (Color online) The Frank elastic constant Ks plotted
against 〈S2i〉2 for different system sizes showing a quadratic depen-
dence. We include the 45 × 45 planar triangular case. Solid black
lines are fits to Eq. (19).

FIG. 7. (Color online) Estimate of the Frank constant using
Eq. (20). Solid black lines are linear fits to the data extrapolated
back to T = 0.

We also attempted to estimate Ks using an alternative
method, which makes use of the relationship between defect
positions and free energy. The elastic constant is estimated by

Var(Epot) =
(

πKs

32

)2

Var

⎡
⎣∑

i �=j

ln(1 − cos βij )

⎤
⎦ , (20)

where Var(· · · ) denotes the variance of the quantity in brackets,
βij is the angle between defects i and j , and it should be
understood that Epot and βij fluctuate in time. We outline the
derivation of Eq. (20) in Appendix D. The main difficulty
with this method is that we cannot separate contributions
to Var(Epot) from random thermal fluctuations and from the
motion of defects. Therefore, we always overestimate the
elastic constant using this method, particularly for higher
temperatures, which is shown in Fig. 7. A better way is to
estimate Ks by extrapolating Var(Epot) as T → 0; the values
of Ks thus obtained are of the same order of magnitude as the
low-temperature portion of Fig. 5. In summary, this method
seems to be less accurate and less generally applicable than
the alternative method based on director fluctuations. We also
tried a third route to determining the Frank elastic constant by
using a relationship between the defect core size and the free
energy; see Eq. (2) in Ref. [5]. However, since it is difficult
to accurately define a defect core size, we found this method
yields rather inaccurate estimates.

D. Defect structure and mobility

According to the Poincaré-Hopf theorem, the net topolog-
ical charge of nematic defects on a spherical surface must be
2. Since the energy of a defect is proportional to the square
of its charge and like defects repel each other, Lubensky and
Prost predicted that the director field should be composed of
four point defects of strength +1/2 arranged at the edges of a
regular tetrahedron [5]. The theoretical predictions have been
confirmed in recent simulations [7] and experiments [6]. Our
simulations also reproduce this defect structure and extend
earlier simulations [7] to a broad range of temperatures in the
nematic regime.
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FIG. 8. (Color online) The single particle rotational diffusion
constant Di plotted against temperature. Uncertainties are estimated
from the 95% confidence intervals from the fit to Eq. (21).

There has been recent interest in making use of function-
alized defects in thin nematic shells on spherical colloidal
particles to serve as directional bonds [4]. With a tetrahedral
arrangement of defects, one can mimic sp3 hybridized atoms
such as carbon. It is therefore of great interest to study the
motion of defects on spherical surfaces.

We begin by examining the single particle rotational
diffusion constant Di , obtained from

Ci(t) = 〈ui(t) · ui(0)〉 ∼ exp(−2Dit). (21)

This is expected to be below the bare rotational diffusion
constant D, due to the interactions, which hinder rotation. We
see in Fig. 8 that this is indeed the case, and that D = 1/2
serves as an asymptotic high-temperature (noninteracting)
limit.

From visualizations of the Brownian dynamics simulations,
it is clear that the defects are not stationary but moving; see
Fig. 9. We also show in Fig. 9 agreement with theoretical
predictions [5]; we find four point defects of strength +1/2
on our sphere arranged on the vertices of a tetrahedron. In
order to characterize their motion, we first define the defect

FIG. 9. (Color online) Snapshots of the N = 4000, kBT/ε =
0.20 system showing the following. (a) The local order parameter
S2i ; darker circles indicate lattice sites with a lower value of S2i .
There is some transparency to allow all four defects to be seen
in a tetrahedral arrangement. (b) Position of each defect every 104

Brownian dynamics steps after a long time: 2 × 106 total steps with
	tD = 10−3. Each defect is denoted by black diamonds, green circles,
red triangles, and blue crosses, respectively. (c) The orientation of
spins in the vicinity of a defect consistent with a topological charge
of +1/2.
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FIG. 10. (Color online) The average mean square displacement
of the four defects for the N = 250 system for various temperatures.
From the top T = 0.30,0.20,0.10,0.05. Solid lines are fits to Eq. (23).

locations R = R r̂ with radial unit vector r̂ and R = 1 the
radius of the unit sphere. The defect locations are defined as
the positions where the local nematic order parameter obtained
from next-next-nearest neighbors attains a local minimum.
Averaging the local order parameter over next-next-nearest
neighbors has the effect of smoothing out thermal fluctuations,
allowing easier determination of the defect positions. We do
not restrict the defect position to be on a lattice site; rather
we take the values of S2i at the discrete lattice points and
use bicubic interpolation over a very finely spaced mesh in the
vicinity of a defect to locate its exact position. The mean square
defect displacement on the spherical surface is calculated using

〈(	σ )2〉 = 〈{R cos−1[r̂(t) · r̂(0)]}2〉, (22)

so that the defect diffusion constant Dd is obtained by fitting
to Eq. (22),

〈(	σ )2〉 = 2dDd tα, (23)

where d is the dimensionality of the system (in our case d = 2)
and α is a parameter that characterizes motion as subdiffusive
(α < 1), diffusive (α = 1), or superdiffusive (α > 1). Again,
we use a moving window over the time series of defect position
to obtain better statistics. Note that the size of the moving
window is limited to the time taken for a defect to diffuse a
distance π/6 in order to avoid periodicity effects due to the
spherical geometry.

We find that the defect motion for short times is subdiffu-
sive, with α < 1. Fits to Eq. (23) for a selection of temperatures
for the N = 250 system are shown in Fig. 10. The index α is
found to depend on temperature; for higher temperatures the
defects become more and more diffusive, see Fig. 11.

The diffusion constants Dd extracted from these fits are
shown in Fig. 12. These increase with temperature in a roughly
linear fashion. There are also clear system size effects, with
the larger system sizes possessing a smaller diffusion constant.
In order to maintain the energetically favorable tetrahedral
arrangement of defects, it is necessary for the defects to move
in a correlated fashion. Furthermore, these defects are not true
“Brownian” particles; rather they move through a collective

022502-7



ALAN M. LUO, STEFAN WENK, AND PATRICK ILG PHYSICAL REVIEW E 90, 022502 (2014)

0 0.2 0.4 0.6 0.8
kBT / ε

0.2

0.3

0.4

0.5

0.6

0.7

0.8

α N = 250
N = 500
N = 1000
N = 2000
N = 4000
N = 8000
N = 16000

FIG. 11. (Color online) The index α characterizing diffusive
behavior as a function of temperature for different system sizes.

rearrangement of spin orientations. These considerations lead
to the following hypothesis: Any motion of the defects entails
a collective reorientation of all the spins. Indeed, the single
particle diffusion constant Di is at least an order of magnitude
greater than Dd for all the system sizes and temperatures
we studied. We point out that this type of motion is unlike
the motion of point defects (dislocations) in crystals, which
only requires a local rearrangement of particles to move the
dislocation.

We try a rather crude test of this explanation. Let the single
spin characteristic re-orientation time scale be set by τi =
1/Di , which is independent of system size (see Fig. 8). We
then assume that the time scale for reorientation of all the
spins on the sphere τ is approximately τ ∼ Nτi . With this
assumption, we would expect that 1 ∼ NDd/Di . We can (very
approximately) collapse the points onto a single curve using
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15
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30

D
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0.005
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0.035
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d

FIG. 12. (Color online) The defect diffusion constant Dd as a
function of temperature for various system sizes extracted from fits to
Eq. (23). (Inset) Same data with Dd scaled by system size; see main
text. Lines are guides for the eye.

the scaling D∗
d = NDd/Di ; see the inset in Fig. 12. Given the

crudeness of our assumptions, it should not come as a surprise
that D∗

d deviates from unity. However, the approximate data
collapse is, in our view, a hint that the above reasoning can
serve as a reasonable starting point for a more sophisticated
analysis.

IV. CONCLUDING REMARKS

This work represents a study of defect motion and ne-
matic ordering on a spherical surface using a variant of the
Lebwohl-Lasher model. We find a very smooth transition from
disordered to ordered phase upon decreasing the temperature
and that the presence of defects raises the potential energy
of the system compared to the planar case. The Frank elastic
constant was determined for the various system sizes. They
were found to vary considerably from the planar case, although
they retain the ∼S2

2i dependence, as predicted by a simple
mean-field approximation (Appendix C). The four +1/2
topological defects on the sphere surface exhibit subdiffusive
behavior, with a diffusion constant orders of magnitude lower
than the single spin diffusion constant.

Our strictly two-dimensional model could be extended with
out-of-plane fluctuations of the orientation, which may be
better suited to real systems of particle-stabilized droplets,
where ellipsoid-shaped colloids have been shown to protrude
into the surrounding solvent [29]. It would also be very
interesting to see whether off-lattice liquid crystal models also
exhibit similar behavior, in particular to see whether the defects
move through a global or local rearrangement of the liquid
crystal molecules. An analysis of the subdiffusive behavior
of defect motion from a statistical mechanics of collective
phenomena point of view would also be desirable.
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APPENDIX A: MEAN-FIELD APPROXIMATION

The mean-field approximation to the Lebwohl-Lasher
Hamiltonian H MF is given by Eq. (2). From the Boltzmann
distribution ψ ∼ e−βH MF

, we identify the single particle
potential and write the distribution function as

ψ(φ) = 1

Z
exp [2αQT2(cos φ) − 2αQ2], (A1)

with α = zβε, Z the partition function, and φ the angle
between ui and n. From the relation 2Q = 〈T2(u · n)〉, where
〈· · · 〉 is an average over the distribution function (A1), we
arrive at the self-consistency relation for the order parameter

Q = 1

2

∫ 2π

0 dφ T2(cos φ) exp [2αQT2(cos φ)]∫ 2π

0 dφ exp [2αQT2(cos φ)]

= 1

2

I1(2αQ)

I0(2αQ)
, (A2)
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where the terms exp (−2αQ2) have canceled. This expression
was obtained earlier in Ref. [16]. Expanding Eq. (A2) in the
limit αQ → 0, we obtain

Q ≈ 1
2αQ − 1

4 (αQ)3 + · · · , (A3)

from which we find the mean-field prediction for the transition
temperature:

kBT MF
c /ε = z/2. (A4)

APPENDIX B: CALCULATION OF THE MEAN LOCAL
ORDER PARAMETER IN THE ISOTROPIC STATE

The local order parameter S2i is defined as two times the
positive eigenvalue of Qi . In two dimensions, the orientation
vector of a spin can be written uj = (cos θj , sin θj ), where
θj ∈ [−π,π ]. Therefore, we write the local order parameter as

S2i = 2 eig(Qi)

= 2

⎧⎨
⎩

1

Ni

Ni∑
j=1

[(cos2 θj − 1/2)2 + (sin θj cos θj )2]

⎫⎬
⎭

1/2

,

(B1)

where Ni is the number of spins we average over to determine
the local order parameter. The mean local order parameter is
then Eq. (B1) averaged over the distributions of θ1,θ2, . . . ,θNi

,
which are all flat and normalized by 1/(2π ) since we are in
the isotropic phase. Taking this into account we calculate the
integral

〈S2i〉 = 2

(2π )Ni

∫ π

−π

· · ·
∫ π

−π

⎧⎨
⎩

1

Ni

Ni∑
j=1

[(cos2 θj − 1/2)2

+ (sin θj cos θj )2]

⎫⎬
⎭

1/2

dθ1 · · · dθNi
(B2)

= 1√
Ni

. (B3)

APPENDIX C: CALCULATION OF ELASTIC CONSTANTS

In order to calculate the elastic constant K of the two-
dimensional Lebwohl-Lasher model we adapt the argument of
Priest [23,24] to the present case. Consider a distortion of the
director field n(r). The orientation of rotor i is distributed
around the local director n according to the distribution
function ψ(ui · n). Starting from the Hamiltonian (1), H =
1
2

∑
〈i,j〉 vij , we define the average interaction energy 〈vij 〉 of

two rotators,

〈v12〉(n,n′) = −ε

∫
dθ1

∫
dθ2ψ(n · u1)ψ(n′ · u2)T2(u1 · u2),

(C1)
where the integrals are over all possible orientations of the
rotators. The single particle distribution function ψ can be
expanded in Chebychev polynomials,

ψ(n · u1) =
∑

k

ck

2π
SkTk(n · u1), (C2)

where due to head-tail symmetry only even terms are included
in the sum. The order parameters are defined by Sk =∫ 2π

0 dθ Tk(cos θ )ψ(θ ) with ck = 1 for k = 0 and otherwise
ck = 2. With this expansion and the orthogonality of the
Chebychev polynomials we arrive at 〈v12〉(n,n′) = −εS2

2T2(n ·
n′). Therefore, the free energy increase of the pair interaction
due to director distortions is

	〈v12〉 = −εS2
2 [T2(n · n′) − 1] = 2εS2

2 sin2 α, (C3)

where α is the angle formed by the director field at two neigh-
boring lattice sites. The local free-energy density increase at
lattice point i follows from 	f (ri) = 1

2

∑
〈i,j〉 	〈vij 〉, where

the sum runs over nearest neighbors of site i.
Specializing to a square lattice with lattice constant a, let the

distortion field be represented by the Fourier series with wave
vector q oriented parallel to the x axis. Then the free-energy
density increase becomes

	f = 2εS2
2

a2
sin2(qa). (C4)

For small wave vectors, we recover from Eq. (C4) the
continuum limit 	f = 1

2Kq2 and read off the value of the
Frank elastic constant Ksq = 4εS2

2 . Repeating the argument
for the triangular lattice with lattice vectors a1 = ax̂ and
a2 = a(x̂ + √

3ŷ)/2, we arrive at the corresponding result
Khex = 6εS2

2 .

APPENDIX D: ALTERNATIVE ROUTE TO EXTRACTING
THE FRANK ELASTIC CONSTANT FROM

SIMULATION DATA

The free energy Fd in terms of the angle βij between
different defects i and j on a nematic spherical shell is given
by [3]

Fd = πKs

8

∑
i �=j

ninj ln(1 − cos βij ) + E
∑

j

n2
j , (D1)

where ni is the topological charge of defect i and E is
the phenomenologically added defect self-energy, which is
difficult to determine. From the simulation data we can obtain
a time series of the potential energy and of the angles βij .
Since the defect self-energy should be constant in time, we
can extract an estimate for the elastic constant using

Var(Fd) =
(

πK

32

)2

Var

⎡
⎣∑

i �=j

ln(1 − cos βij )

⎤
⎦ , (D2)

where Var(· · · ) denotes the variance of the quantity in brackets
and ni = 1/2. Using the variance eliminates any constant
contributions to the free energy such as the defect self-
energy. However, since the variance in free energy contains
a contribution from thermal fluctuations, this method leads to
an overestimate of Ks . To help remedy this, one can extrapolate
Ks to zero T to remove the effect of thermal fluctuations.
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