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First-order and tricritical wetting transitions in the two-dimensional Ising model
caused by interfacial pinning at a defect line
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We present a study of the critical behavior of the Blume-Capel model with three spin states (S = ±1,0)
confined between parallel walls separated by a distance L where competitive surface magnetic fields act. By
properly choosing the crystal field (D), which regulates the density of nonmagnetic species (S = 0), such that
those impurities are excluded from the bulk (where D = −∞) except in the middle of the sample [where
DM (L/2) �= −∞], we are able to control the presence of a defect line in the middle of the sample and study
its influence on the interface between domains of different spin orientations. So essentially we study an Ising
model with a defect line but, unlike previous work where defect lines in Ising models were defined via weakened
bonds, in the present case the defect line is due to mobile vacancies and hence involves additional entropy. In
this way, by drawing phase diagrams, i.e., plots of the wetting critical temperature (Tw) versus the magnitude of
the crystal field at the middle of the sample (DM ), we observe curves of (first-) second-order wetting transitions
for (small) high values of DM . Theses lines meet in tricritical wetting points, i.e., (T tc

w ,Dtc
M ), which also depend

on the magnitude of the surface magnetic fields. It is found that second-order wetting transitions satisfy the
scaling theory for short-range interactions, while first-order ones do not exhibit hysteresis, provided that small
samples are used, since fluctuations wash out hysteretic effects. Since hysteresis is observed in large samples,
we performed extensive thermodynamic integrations in order to accurately locate the first-order transition points,
and a rather good agreement is found by comparing such results with those obtained just by observing the jump
of the order parameter in small samples.
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I. INTRODUCTION

The study and characterization of surfaces and interfaces is
a relevant topic in many fields of physics, chemistry, material
science, etc. [1,2], and has undergone long-standing study.
In fact, considerable experimental and theoretical attention
has been addressed to understanding common features of
surfaces and interfaces at equilibrium [3–8] and far from it
[9,10]. This broad interest is motivated not only by numerous
and interesting technological applications but also by the
existence of many challenges at the basic level. Within this
broad context, the influence of the presence of an additional
phase at the interface between two phases has also been the
subject of experimental and theoretical studies. In particular,
the enhancement of the density of the additional phase
at the interface is known as “interfacial adsorption.” An
experimental realization of this physical situation is provided
by a two-component fluid system in equilibrium with its vapor
phase [11]. From the point of view of statistical physics,
which is the approach that will be developed in this paper,
interfacial adsorption can be studied with the aid of three-state
models, such as Potts and Blume-Capel (BC) models [12,13].
Focusing our attention on the BC model with three spin
states (S = ±1,0 where 0 corresponds to the vacancies or
nonmagnetic impurities) a straightforward way to observe

interfacial adsorption is by confining the sample between
two walls where competitive surface magnetic fields act. In
this way, an interface between domains of different signs of
the magnetization runs parallel to the confining walls, and
vacancies adsorb preferentially along such an interface leading
to interfacial adsorption, as reported by Selke [14]. It is also
known that, depending on the temperature and the magnitude
of the competitive surface fields, the interface between
domains undergoes localization-delocalization “transitions.”
Those “effective” transitions are the precursors of the wetting
transitions observed when the thermodynamic limit is properly
taken. Interfacial adsorption has been observed by studying the
localization-delocalization transition of the interface between
domains of different magnetization in the BC model [15].
Furthermore, very recently, Fytas and Selke [16] have reported
an extensive numerical study of wetting and interfacial
adsorption in the BC model. In order to study wetting behavior
in d = 2 dimensions, Fytas and Selke assumed that spins are
fixed at the boundaries with two different states, “+1” and
“−1.” Furthermore, reduced couplings (by a factor α) are taken
at one boundary. The adsorption of “0” spins at the interface
between “−1” and “+1” rich regions is mainly characterized
by measuring the interfacial adsorption W0, which accounts
for the surplus of “0” spins caused by the presence of the
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interface. It is reported that due to the strong meandering of
the interface, W0 grows rapidly when approaching the wetting
temperature. The existence of a singularity in the temperature
derivative of W0 at the wetting transition is conjectured.
Furthermore, it is worth mentioning that the results of Fytas
and Selke for the wetting transition of the BC model confined
between walls are in agreement with previous results [15] and
are found to obey the recently proposed anisotropic scaling
behavior for wetting transitions with short-range surface fields
[15,17].

In a related context, great interest has also been attracted by
the study of interfacial pinning induced by impurities. In fact,
experimental and theoretical evidence [18,19] has confirmed
that a magnetic interface can be pinned by nonmagnetic
impurities distributed uniformly. In particular, if the impurities
are grouped forming aligned triangles, it is found that pinning
is more efficient when the interface approaches the triangle
by its basis as compared to the case of approaching it by
one vertex. This preferential pinning causes an interesting
interfacial crossed-ratchets effect. Also, the influence of
nonmagnetic fixed impurities placed at the center of an Ising
ferromagnet confined between walls has been studied [20]. It is
found that for a low density of impurities the wetting transition
remains continuous (second order), while abrupt first-order
transitions are observed when such a density increases. In
view of the reported change in the nature of the wetting
transition caused by the presence of impurities in the case of
the Ising ferromagnet, it is surprising that interfacial adsorption
in the BC model does not affect the second-order nature of the
wetting transition [15,16].

Within this broad context, the aim of the present paper is to
contribute to understanding the role played by nonmagnetic
impurities or vacancies forming a line of defects in the
wetting transition that occurs in the Ising ferromagnet confined
between walls where competitive surface magnetic fields act.
For this purpose we studied the confined BC model by means of
extensive Monte Carlo simulations. In particular, we assume
that the crystal field (D) that regulates the concentration of
nonmagnetic impurities is D = −∞ in the bulk, so impurities
are expelled and the BC model is mapped into the standard
Ising model. However, by taking D > −∞ at the center of the
stripped geometry, we are able to properly regulate the density
of nonmagnetic impurities in the central region where the
interface starts to be fully delocalized at the wetting transition
(the details of the BC Hamiltonian used are given below). By
using the approach discussed above, we are able to elucidate
the role played by a line of nonmagnetic impurities in the onset
of first-order and tricritical wetting transitions [4,6,21] in the
d = 2 dimensional BC model.

Here we would like to stress the relevance of the present
manuscript for the understanding of tricritical wetting in d = 2
dimensions, within the broad context of basic studies in the
field of statistical mechanics. In fact, it is worth mentioning that
the mean-field theory of wetting transitions with short-range
surface forces [4,6,7,21–23] shows that both first-order and
second-order wetting transitions may occur. However, in d = 2
dimensions, Ginzburg-Landau-type [22,23] theories are very
unreliable [24] since statistical fluctuations are neglected.
Also, the tricritical wetting behavior in d = 2 beyond the mean
field was only occasionally considered [25]. On the other hand,

the numerical studies of Cotes and Albano [20] have suggested
qualitatively the possible observation of tricritical wetting
when a certain fraction (Fv) of fixed vacancies or nomagnetic
impurities are equidistantly placed along a line at the center of
a confined Ising magnet. In fact, first-order wetting transitions
are located qualitatively by observing negative peaks of the
cumulant, as well as abrupt drops of the magnetization
of the system. In this way the accuracy in the location
of the transitions is largely affected by hysteretic effects.
Furthermore, second-order wetting transitions are also located
with large uncertainties due to the lack of a suitable scaling
theory, which was developed only later [15,17]. In contrast,
in the present work we provide unambiguous evidence of the
existence of tricritical wetting in d = 2 dimensions since crit-
ical wetting points are accurately determined by means of the
intersection method that follows from the proper scaling theory
[15,17], while first-order wetting transitions are carefully
located by means of the thermodynamic integration method
[26,27].

Furthermore, from the basic point of view, wetting be-
havior with fixed impurities of constant density [20], differs
markedly from the case of mobile impurities with temperature-
dependent density reported here. In fact, as discussed in
detail in Sec. IV, the location of the wetting transition
depends on the wall excess free-energy difference f (+)

s − f (−)
s

between semi-infinite systems with positive (+) and negative
(−) spontaneous magnetization, both exposed to a positive
boundary field, and the interfacial tension between bulk
coexisting phases [fint(T )], according to Young’s criterion
[3,4], namely f (+)

s − f (−)
s = fint(T ). While the presence of

vacancies at the center of the sample is expected to cause an
almost negligible effect on the wall excess energy, the nature
of these vacancies, i.e., mobile versus fixed, dramatically
affects the interfacial tension. For a fixed line of vacancies,
as considered in Ref. [20], ground-state considerations yield
f FV

int (T = 0)/J = 2(1 − Fv), exactly for Fv � 1/2, where J

is the coupling constant. In this way, the Onsager result [28]
f Ons

int (T = 0)/J = 2 is recovered in the absence of vacancies.
On the other hand, for the case of mobile vacancies treated
here, one also has that f MV

int (T = 0)/J = 2, since the density
of vacancies vanish for T → 0 and the values of the crystal
field considered. So, based on free-energy considerations
and the small difference between f FV

int (0 < T < Tcb) and
f Ons

int (0 < T < Tcb), where Tcb is the bulk critical temperature
of the system, the onset of complete wetting in the case of
mobile vacancies confined to the middle of the sample is quite
unexpected.

Within this latter context, it is also worth noting the
difference between standard interfacial adsorption that does
not change the order of the wetting transition [15,16] and
the interfacial pinning by mobile vacancies studied here. In
both cases vacancies are mobile: When they can follow the
displacements of the interface the wetting transition remains
second order, but, in contrast, when they are mobile but
constrained to a line of defects they can pin the interface
(provided that a certain threshold density is achieved). In this
way our simple model gives insight into the role played by
constrained mobile impurities in the stabilization of interfacial
fluctuations. Experimentally, this might correspond to the
pinning of domain walls by dislocations, for instance. On
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the other hand, a line of fixed and equidistant vacancies can
be thought of as a quenched perturbation, while, in contrast,
the case studied here the perturbation is more likely related
to the treatment of annealed disorder and, consequently,
merits further and independent consideration. Summing up,
we conclude that both interfacial adsorption [15,16] and
the system studied in Ref. [20] address completely different
physical situations, from many points of view, from that treated
here.

Furthermore, statistical mechanic studies of the effect of
vacancies confined along a line on the wetting behavior is
relevant not only for the understanding of the role played for a
line of defects but also for the case where weakened coupling
constants along a line is considered (recall that vacancies
effectively screen out the interactions between spins). In fact,
the effect caused by a line of weakened bonds in the wetting
behavior of the two-dimensional Ising ferromagnet [29,30]
and in related solid-on-solid (SOS) models [31–34] has been
considered by using different methods, such as analytical exact
solutions [29,30], transfer matrix calculations [31–35], random
walk arguments [36], renormalization group calculations [37],
numerical simulations [35], and so on.

Also, various geometries have been used: by taking a line
of weakened bonds along two slabs each of them with the
same coupling constant one has a critical wetting transition
when the line is close to the walls (i.e., the well-known result
worked out exactly by Abraham [29]), but no wetting transition
is found if the line is far away from the wall since a line of
weakened bonds in the interior of a planar Ising ferromagnetic
lattice always binds a domain wall [30]. That exact result has
also been recovered by using random walk arguments [36]
and by considering SOS models [33,34]. However, transfer
matrix calculations in a SOS model show that a critical wetting
transition occurs whenever the couplings on the two sides of
the defect differ [34]. So the occurrence of tricritical wetting
reported here reflects the subtle effect due to mobile vacancies
that involves additional entropy as compared to the previously
considered cases of weakened bonds.

Finally, we would like to mention that the case of mobile
vacancies could be relevant for the study of wetting upon
adsorption on layered materials, e.g., when two bulky layers
(of a single or different compound) are separated by a very
thin layer of an additional species, as used in many micro-
and nanodevices. Another realization would be a binary
surfactant mixture at the air-water interface undergoing phase
separation: A defect line with mobile particles then could
be created by colloidal particles bound also to the interface
but trapped in a cylindrical potential well at the interface,
created by suitable laser fields. This system would be a direct
(qualitative) realization of the situation envisaged in our simple
model.

The manuscript is organized as follows: in Sec. II we
describe the main features of the BC Hamiltonian used together
with a brief discussion of the simulation method. Section III is
devoted to the presentation and discussion of our results within
the framework of the finite-size scaling approach for wetting
transitions with short-range surface fields [17]. In Sec. IV we
describe and apply the thermodynamic integration method for
the location of first-order wetting transitions, and, finally, our
conclusions are stated in Sec. V.

II. THE BLUME-CAPEL MODEL IN A CONFINED
GEOMETRY AND DETAILS OF THE SIMULATION

METHOD

A. The model

We consider the Hamiltonian of the three-state Blume-
Capel model [12,13] where each lattice site of coordinates
(i,j ) carries a spin Sij that can take on the values Sij = ±1,0.
We take a square lattice in an L×M geometry with 1 � i � L,
and 1 � j � M , where periodic boundary conditions act in
the j direction (where the lattice is M rows long), while free
boundary conditions are used in the i direction, where we
apply boundary fields H1, HL acting on the first and last rows,
respectively. Thus, the BC Hamiltonian is given by

H = −J
∑

〈ij,i ′j ′〉
SijSi ′j ′ +

∑
i

D(i)
∑

j

S2
ij

−H1

∑
i∈row1,j

Sij − HL

∑
i∈rowL,j

Sij , (1)

where J > 0 is the coupling constant between spins placed
at nearest-neighbor sites, which we take as homogeneous
throughout the system, and the symbol 〈ij,i ′j ′〉 indicates that
the summation is restricted to nearest-neighbor spins only.
D(i) denotes the strength of the crystal field, measured in
units of J , which regulates the concentration of nonmagnetic
impurities. Specifically, we assume (note we always take L to
be even)

D(i) =
{
DM for i = L/2,L/2 + 1
−∞, otherwise. (2)

For the study of wetting transitions or, more rigorously,
localization-delocalization “effective” transitions occurring in
finite samples, it is convenient to adopt the antisymmetric sit-
uation H1 = −HL < 0 and then consider the thermodynamic
limit (L → ∞,M → ∞) in order to observe a true wetting
transition.

It is well known that, in the two-dimensional Blume Capel
model, in the absence of magnetic fields and with a constant
crystal field D, which leads to a homogeneous distribution
of nonmagnetic impurities, one has a nontrivial bulk phase
diagram with a tricritical point [38]. For the square lattice, this
tricritical point occurs at Dt/J = 1.965 and kBTt/J = 0.609
[38,39]. For D > Dt the transition at Tc(D) is of first order,
while for D < Dt the transition becomes of second order.

In our case, with an inhomogeneous density of nonmagnetic
impurities, competitive surface fields, and for D < Dt , the
system undergoes two types of phase transition: For tem-
peratures Tcb(D), phase transitions occur from the disordered
“paramagnetic” phase to the ordered “ferromagnetic” phase,
where we have used the terminology of the Ising model. In
fact, for D = −∞ the BC model maps into the Ising model
since vacancies are excluded, and for the particular choice
of the crystal field used here [see Eq. (2)] we expect that
Tcb(D) = Tcb, with exp(2J/kBTcb) = √

2 + 1, where Tcb 

2.27J/kB is the bulk critical temperature of the d = 2 Ising
model. However, a second type of phase transition (i.e., wetting
transitions) occurs at lower temperatures Tw(H1) � Tcb(D) for
small-enough absolute values |H1| of the surface field. Thus,
below Tw(H1) the surface field stabilizes a macroscopically
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thick layer of negative magnetization near the boundary
where H1 < 0 acts, separated by an interface from the bulk,
where the magnetization is positive. At Tw(H1), a transition
occurs where this interface gets delocalized. This localization-
delocalization “transition” is the precursor of a true wetting
transition occurring in the thermodynamic limit [15,17]. In
the Ising model, which results from Eq. (1) as the limiting
case DM → −∞, this wetting transition is of second order
throughout the regime 0 < |H1| < J .

B. Simulation method and numerical details

We performed Monte Carlo simulations by using the
standard Metropolis algorithm, and we measured the time in
units of Monte Carlo steps per spin (MCS), i.e., during each
MCS all the L×M spins of the sample have the chance of
reversing their orientations (flipping) at least once, on average.
Typical runs are performed over 4×106 MCS, discarding the
first 1×106 MCS to allow for equilibration.

According to the finite-size scaling theory for wetting
transitions with short-range interactions [15,17], all simu-
lations are performed for the choice c = L2/M = 9/8 of
the generalized aspect ratio, which allows for a set of
integer solutions of L and M , i.e., values such as (L,M) =
(12,128),(18,288),(24,512),(36,1152), and (48,2048), which
are commonly used in our calculations.

During the simulations, we evaluated the total average
absolute magnetization of the film, 〈|m|〉, obtained from the
magnetization m per lattice site,

m = 1

N

N∑
k=1

Sk, (3)

which involves the summation over the total number of spins
(N = L×M) in the sample, and 〈〉 indicates thermal averages
over different configurations obtained after disregarding a
suitable number of MCS in order to allow for equilibration.
We also computed the square value of magnetization 〈m2〉, and
the fourth-order cumulant, which is given by

U = 1 − 〈m4〉
3〈m2〉2

. (4)

Also, magnetization and impurity density profiles across the
film m(i) and ζ (i) with 1 � i � L are evaluated, respectively.

III. RESULTS AND DISCUSSION

In order to gain insight into the role of mobile and noncon-
served impurities located along the center of the strip, we per-
formed extensive Monte Carlo simulations scanning a broad
interval of each relevant parameter, namely −3 � DM/J � 0,
0.6 � H1/J � 0.80, and 0.4 � T/Tcb � 1.0, where Tcb is the
bulk critical temperature of the Ising model. The analysis of
the data reveals two distinct scenarios: on the one hand, the
occurrence of second-order wetting transitions for smaller
values of DM and, on the other hand, the observation of
sharp first-order wetting transitions for large values of DM .
In fact, Fig. 1 shows plots of 〈|m|〉, 〈m2〉 and the cumulant
U versus T/Tcb obtained for DM/J = −2 and H1/J = 0.60.
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FIG. 1. (Color online) Plots of (a) the average absolute value
of the magnetization(〈|m|〉), (b) the average square magnetization
(〈m2〉), and (c) the cumulant (U ) versus the temperature relative to
the bulk critical point, obtained for samples of different sizes (as
indicated). Data corresponding to DM/J = −2.0 and H1/J = 0.60.
All sample sizes have the same generalized aspect ratio c = L2/M =
9/8. The common intersection point at Tw/Tcb = 0.735 ± 0.015
allows us to locate the critical wetting temperature [15]. The insets in
these figures show the corresponding scaling plots of the observable
already shown in the main panel [15]. Further details are given in the
text.

The data corresponding to four different lattice sizes show
smooth variations of the observables that are consistent with a
second-order wetting transition.

It is well known that the critical properties of the transition
are governed by two correlation lengths, in the directions
parallel (ξ‖) and perpendicular (ξ⊥) to the interface between
domains of different magnetization, which diverge at criticality
according to

ξ‖ ∼ ε−ν‖ , (5)
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with ε = (T − Tw), and

ξ⊥ ∼ ε−ν⊥ , (6)

respectively. Here Tw is the critical point of the wetting
transition, while ν‖ = 2 and ν⊥ = 1 are the correlation length
exponents in the parallel and perpendicular directions to
the interface, respectively. Due to the anisotropic physical
situation, the data must be analyzed by using anisotropic
scaling, of course. Very recently, we have shown, using finite
systems with antisymmetric short-range surface fields as in
the present study, that wetting transitions can be rationalized
in terms of a bulk transition, 〈|m|〉 being the proper order
parameter [15]. But in this case the order parameter critical
exponent is β = 0. In general, the scaling behavior of the
order parameter and its moments are given by

〈|m|〉 = ξ
−β/ν‖
‖ m̃

(
Lν‖/ν⊥

M
,
M

ξ‖

)
(7)

and

〈m2k〉 = ξ
−2kβ/ν‖
‖ m̃2k

(
Lν‖/ν⊥

M
,
M

ξ‖

)
, (8)

respectively. Here m̃ and m̃2k are suitable scaling functions
that do not need to be specified. Due to the fact that β = 0,
one has that the prefactors of the scaling functions become
constant in both Eqs. (7) and (8). Furthermore, plots of 〈|m|〉
and all its moments would exhibit a common intersection
point at criticality, as already observed in Fig. 1. Of course,
the above statement holds if the generalized aspect ratio
c = Lν‖/ν⊥/M = L2/M is kept constant, as follows from
the first scaling argument in Eqs. (7) and (8). Since the
prefactor of the cumulant is already independent of the lattice
site, the intersection point in curves of U versus T/Tcb

obtained for samples of different sizes also coincides with the
previously discussed ones (see Fig. 1), namely the intersection
points observed for 〈|m|〉 and 〈m2〉. In this way, the critical
point of the corresponding wetting transition is given by
Tw/Tcb = 0.735 ± 0.015 for DM/J = −2 and H1/J = 0.60.
We advanced one further step by testing the scaling behavior
[15] given by Eqs. (7) and (8) [see the insets of Figs. 1(a)–1(c)]
that is nicely verified by the quality of the observed data
collapse.

On the other hand, when considering larger values of DM ,
one observes abrupt first-order wetting transitions as, e.g., is
shown in Fig. 2 for DM = −1. In fact, plots of 〈|m|〉 versus
T/Tcb obtained for H1/J = 0.8 and relatively small lattices
(L � 30, with c = L2/M = 9/8) show an abrupt transition
at the wetting temperature Tw/Tcb = 0.511 ± 0.005 that is
almost independent of the lattice size. Furthermore, we do not
observe hysteretic effects for those sample sizes. However, a
hysteresis loop is already observed for bigger samples [see the
inset of Fig. 2(a) for L = 48]. So, presumably, fluctuations
of spacial size of the order of the smaller lattice sizes
prevent the occurrence of hysteresis, and, consequently, the
latter is observed only in larger systems. Additional evidence
supporting the existence of first-order behavior is provided by
the cumulant [see Fig. 2(b)] that exhibits sharp negative peaks
at the transition point [40].
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FIG. 2. (Color online) (a) Plots of the average absolute value
of the magnetization (〈|m|〉) versus T/Tcb obtained for samples of
different sizes (as indicated). Data corresponding to DM/J = −1.0,
H1/J = 0.80. The main panel shows the absence of hysteresis in
small samples, while the inset shows that hysteretic effects become
appreciable by using larger samples where the initial conditions are
with all spins pointing up and down, respectively. (b) Plot of the
cumulant (U ) versus T/Tcb as obtained for samples of sizes L = 36,

M = 1152, DM/J = −1.0, H1/J = 0.60. The sharp negative peak
of U is a signature of a first-order wetting transition [40] as already
evidenced in part (a). Further details are given in the text.

Figure 3 shows a comparison of the magnetization profiles
measured along the direction perpendicular to the interface.
Figure 3 also shows the impurity density profiles that exhibit
a peak just at the center of the sample where DM > −∞
and, consequently, the presence of impurities becomes en-
hanced. The profiles shown in Fig. 3(a) were obtained at the
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, ς
 (i

)

0 9 18 27 36
i

0 9 18 27 36
i

(a) (b) (c)

FIG. 3. (Color online) Plots of magnetization profiles [m(i) ver-
sus i] and impurity density profiles [ζ (i) versus i] shown by means
of solid circles and squares, respectively. Panels (a) and (b) show
data obtained close to second-order wetting transitions, while (c)
corresponds to data obtained close to a first-order wetting transition.
Measurements performed for (a) Tw/Tcb = 0.73, H1c/J = 0.70, and
DM = −∞, i.e., at the wetting critical point that follows from
Abraham’s exact solution for the d = 2 Ising model [29]. (b) T/Tcb =
0.6875, H1/J = 0.70, and DM/J = −3.0 and (c) T/Tcb = 0.55,
H1/J = 0.70, and DM/J = −0.50.
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FIG. 4. (Color online) Typical snapshot configurations showing
the localization-delocalization transition of the interface for the
case of second- and first-order wetting transitions. Data obtained
by using samples of size L = 36, M = 1152, and for H1/J =
0.70. (a) DM/J = −3.0, T � Tw; (b) DM/J = −3.0, T ≈ Tw;
(c) DM/J = −1.75, T � Tw; (d) DM/J = −1.75, T ≈ Tw; (e)
DM/J = −0.5, T � Tw; and (f) DM/J = −0.5, T ≈ Tw . Spins-up
(-down) are shown as circles (left in white), while the impurities are
denoted by squares.

critical wetting temperature predicted by the exact solution
of Abraham for the Ising model (i.e., DM = −∞) [29]. In
this case, due to the absence of impurities, the observation
of a linear profile of the form m(i) = mb(1 − 2i/L), where
mb is the bulk spontaneous magnetization of the Ising model
at T = Tw, is observed, as expected from SOS calculations
that have already been tested numerically [41]. However, for
DM/J = −3 we also have a second-order wetting transition,
and such a linear profile becomes largely distorted by the
presence of a small amount of impurities but still retains its
smooth variation from mb to −mb. Although the two lines at
i = L/2 and i = L/2 + 1 in the center of the strips where we
allow the impurities to be present are a quasi-one-dimensional
perturbation of the system only, a dramatic effect on the
behavior of the system in the thermodynamic limit L → ∞
still remains.

The snapshot configurations shown in Figs. 4(a) and 4(b)
are also in full qualitative agreement with the above-discussed
profiles since they show the localization-delocalization tran-
sition of a rather rough interface. This interface performs
large excursions in the perpendicular direction of the strips,
arriving occasionally at the walls [see Fig. 4(b)]. In contrast
to the previously discussed scenario, the profiles measured
close to first-order wetting transitions differ substantially [see
Fig. 3(c)]. In fact, in this case, on the one hand, one observes
a larger density of impurities at the center of the sample
and, on the other hand, a distinctively sharp drop of the
magnetization from mb ≈ 1 to mb ≈ −1 that takes place just
at the center of the strip. According to this latter observation,
a typical set of snapshot configurations shows the dramatic
delocalization of the interface that is caused by a small change
in temperature [see Figs. 4(e) and 4(f)]. The sharp change
observed in the magnetization profile [Fig. 3(c)] is in full
agreement with the snapshot shown in Fig. 4(f), where a rather

smooth interface between domains of different orientations is
observed at the center of the strip, the vacancies being absorbed
along that interface. It is worth mentioning that in our study
the interfacial adsorption of impurities is observed only for
first-order wetting transitions and is caused by the specific
choice of the crystal field [see Eq. (1)], in contrast to the
spontaneous interfacial adsorption observed in second-order
wetting transitions of the Blume-Capel model [14,15]. The
snapshot configurations of Fig. 4(b) with DM/J = −3.0 and
Fig. 4(f) with DM/J = −0.50 correspond to well-defined
second- and first-order wetting transitions, respectively. On
the other hand, Figs. 4(c) and 4(d) with DM = −1.75 show
snapshot configurations where the wetting transition is still of
first order, but the interface is rougher as compared to the case
of Fig. 4(e) but still flatter as compared to the case of Fig. 4(b),
qualitatively showing the dependence of the interface width on
the strength of the crystal field. Summing up, the analysis of
the data shown in Figs. 3 and 4 reveals that a suitable density of
nonmagnetic (mobile) impurities randomly distributed along
a quasi-one-dimensional defect line can effectively pin the
interface between magnetic domains of different orientations.

So, by performing an extensive analysis of our numerical
data within the relevant range of parameters (not shown here
for the sake of space), we can draw a significant part of the
phase diagram that is shown in Fig. 5. Here we used solid-
triangle (solid-circle) symbols for second-order (first-order)
wetting transitions. The phase diagram shows the existence of
lines of second-order transitions that meet first-order lines at
tricritical points. Of course, the accuracy of our data is not
enough for a precise determination of those tricritical points
but suffices to identify the “tricritical neighborhood” that is
shown by means of solid-squares in Fig. 5.

-3 -2.5 -2 -1.5 -1 -0.5 0
DM/J

0.4

0.5

0.6

0.7

0.8

T w
  / 

T cb

2nd Order
1st  Order

0.818

0.723

0.599

H1/J=0.6

H1/J=0.7
H1/J=0.8

NONWET

WET

FIG. 5. (Color online) Phase diagram showing the dependence
of Tw/Tcb versus the crystal field in the center of the strip (DM )
obtained for three different values of the surface magnetic field H1/J ,
as indicated. Second- and first-order wetting transitions are denoted
by triangles and circles, respectively. The arrows on the left-hand side
of the figure show the exact values of Tw/Tcb from the analytic results
worked out by Abraham [29] and correspond to the Ising model for
DM = −∞. The squares show the estimated location of the tricritical
points where first- and second-order curves meet. Curves connecting
the points are only drawn to guide the eye. Further details are given
in the text.
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FIG. 6. (Color online) Plots of the densities of nonmagnetic
impurities at the center of the sample (L = 36, M = 1152) as a
function of DM/J . Data obtained at the wetting temperature for
different values of H1/J , as indicated. Curves have been drawn to
guide to the eye only.

On the other hand, our choice of the crystal field allows
us to compute the density of nonmagnetic impurities at the
center of the sample, as shown in Fig. 6. It is found that the
curves exhibit monotonically growth without any noticeable
deviation close to the tricritical point. Of course, the statistics
of our simulations does not allow for a more careful analysis,
e.g., in order to evaluate temperature derivatives as in recent
work [16].

As already mentioned, it is worth analyzing the dependence
of the interface width (w) on DM within the wet phase for
the case of first-order wetting transitions [see Fig. 7(a)]. In
fact, it is well known that w can be evaluated just by fitting

-2.0 -1.5 -1.0 -0.5
DM/J
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2w
/π

1/
2
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T/Tcb = 0.79
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i

-1.0

-0.5

0.0

0.5

1.0

m
(i)

(a) (b)

FIG. 7. (Color online) (a) Plots of the interface width (w) versus
DM/J , obtained for samples of size L = 36, M = 1152, and H1/J =
0.60. Solid circles are obtained along the first-order wetting curve
shown in the phase diagram of Fig. 5 for H1/J = 0.60 (upper curve).
Solid squares are obtained for T/Tcb = 0.79, i.e., within the wet phase
in the phase diagram of Fig. 5. Panel (b) shows a magnetization profile
obtained for a sample of size L = 36, M = 1152 and H1/J = 0.60,
Tw/Tcb = 0.68, and DM = −1.0. The dashed line corresponds to the
best fit of the data performed with the aid of Eq. (9).

magnetization profiles, as shown in Fig. 7(b), with the error
function, namely

m(i) = m(1)erf{π1/2(i − L/2)/2w}. (9)

In fact, Fig. 7(b) shows that the sharply varying magnetiza-
tion profile corresponding to a first-order wetting transition can
nicely be fitted with the aid of Eq. (9). So Fig. 7(a) shows that,
for both cases, at constant temperature within the wet phase
(T/Tcb = 0.79), as well as for temperatures corresponding to
the first-order wetting transitions, the interface width decreases
when the density of nonmagnetic species in the center of
the sample increases (just by increasing DM ). A somewhat
disturbing feature is that the data for w do not indicate the
expected vanishing of 1/w when DM approaches the tricritical
value; more work on this issue will require much larger
systems, unfortunately, and therefore is beyond the scope of
the present paper.

IV. THERMODYNAMIC INTEGRATION

In this section, we closely follow our previous presentation
in a different context [42]. For interface localization transitions
that are strongly first order, the application of finite-size scaling
methods (as already discussed in Sec. III [15,17]) offers little
advantage [43]. In order to overcome this shortcoming, we
conclude that the best way to proceed is to simulate very
large systems and locate first-order transitions by equating the
free energies of the appropriate phases. These free energies in
turn can be accurately obtained by thermodynamic integration
[26,27].

Since in the limit of very thick films (L → ∞), interface
localization transitions are predicted to converge toward
wetting transitions [44–46], we first discuss how the location
of the first-order wetting transitions can be estimated. We note
that the free energy of the model [Eqs. (1) and (2)] for large L

can be decomposed as [47,48]

f (T ,H,D,H1,HL,L) = fb(T ,H,D) + 1

L
fs(T ,H,D,H1)

+ 1

L
fs(T ,H,D,HL). (10)

Note that we included the bulk magnetic and crystal fields
H and D, respectively. Here fb(T ,H,D) is the free energy
(per spin) of a bulk system, which depends on neither H1

nor HL. fs(T ,H,D,H1) is the surface excess free energy of
the wall where the field H1 acts, while fs(T ,H,D,HL) refers
to the surface excess free energy of the wall where HL acts.
As expected, Eq. (10) holds only in the limit of very thick
films where the interaction between wetting layers associated
with both walls can be neglected. Wetting transitions show up
as singularities of the respective surface excess free energies
[3,4,7,46,49].

Assuming now H1 < 0, a wetting transition occurs at that
surface when H → 0+, so we have a positive spontaneous
magnetization mb(T ,H = 0+,D),

mb = −(∂fb(T ,H,D)/∂H )T , (11)

in the bulk. In the nonwet phase, f (+)
s (T ,0,D,H1) then is the

excess free energy of a surface where the region of positive
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magnetization in the film extends close to the wall where H1

acts. In the wet phase, however, we have a (macroscopically
thick) domain of the negative magnetization adjacent to that
wall, separated by an interface (i.e., a domain wall of the same
type as that between coexisting oppositely oriented domains
in the bulk) from the domain with positive magnetization that
takes the bulk of the film. Consequently, the surface excess
free energy of a wet surface is

f wet
s (T ,0,D,H1) = f (−)

s (T ,0,D,H1) + fint(T ,0,D). (12)

Here f (−)
s (T ,0,D,H1) is the excess free energy of a surface

where both the bulk magnetization and the surface field H1

are negative, and fint(T ,0,D) is the interfacial free energy of
the model. It is worth mentioning that for the Ising model
fint(T ,0,−∞), i.e., by taking DM = −∞ in Eq. (2), this free
energy is known exactly since the work of Onsager [28].
However, as we will see below, the presence of two defect lines
at i = L/2 and i = L/2 + 1 in the center of the strips [see
Eq. (2)] that represent a quasi-one-dimensional perturbation
of the system causes a dramatic effect on the behavior of the
system in general and on fint(T ,0,D) in particular. So the
wetting transition occurs when

f (+)
s (T ,0,D,H1) = f (−)

s (T ,0,D,H1) + fint(T ,0,D). (13)

On the other hand, Eq. (13) can also be derived by using
Young ‘s equation for the contact angle 
, namely

fint(T ,0,D) cos 
 = f (+)
s (T ,0,D,H1) − f (−)

s (T ,0,D,H1),

(14)

and taking 
 = 0 [3,4,7,49] at the wetting transition.
In our system, it is convenient to make use of the symmetry

relation

f (−)
s (T ,0,D,H1) = f (+)

s (T ,0,D,−H1), (15)

where f (+)
s (T ,0,D,−H1) is the excess free energy of a surface

where the region of positive magnetization in the film extends
to a wall where a positive surface field (−H1) acts. Since we
are using a film with antisymmetric fields acting at the walls,
HL = −H1, we further conclude that

f (−)
s (T ,0,D,−H1) = f (+)

s (T ,0,D,HL), (16)

and hence the relevant free-energy difference needed to
locate the wetting transition simply becomes �f1L ≡
f (+)

s (T ,0,D,H1) − f (+)
s (T ,0,D,HL). Using now the relations

[47,48]

m1 = −(∂fs(T ,H,D,H1)/∂H1)T ,

mL = −(fs(T ,H,D,HL)/∂HL)T , (17)

we find [note that Eq. (13) of Ref. [42] contains a wrong
sign]

�f1L = f (+)
s (T ,0,D,H1) − f (−)

s (T ,0,D,H1)

=
∫ H1

0

(
m

(−)
1 (H

′
1) + m

(−)
L (H

′
1)

)
dH ′

1, (18)

by performing a calculation where the surface fields
H ′

1 < 0, H ′
L = −H ′

1 > 0 are varied for a film with positive
magnetization. This method for the location of a first-order
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T/Tcb = 0.833
T/Tcb = 0.625
T/Tcb = 0.400

FIG. 8. (Color online) Plots of �f1L/J versus H1/J obtained at
different temperatures (as indicated) and for the case of the Ising
model, namely DM = −∞. Horizontal (solid) lines correspond to
the interfacial free energy taken from the exact solution of Onsager
[28]. Vertical (dashed) lines correspond to the critical fields of the
wetting phase transitions given from the exact solution of Abraham
[29]. Intersection points are indicated by means of arrows.

wetting transition has previously been used successfully in the
case of symmetric polymer mixtures [50].

In order to evaluate the integral of Eq. (18) in practice, we
started at HL = −H1 = 0 with a system of size L = 48 and
M = 2048, and assumed an ordered initial configuration with
all spins pointing up [S(i,j ) = +1]. Also, we took averages
over 3×106 MCS, after discarding the first 2×106 MCS.

As a test of the accuracy of this procedure, we first applied
it to the case DM = −∞, i.e., the standard problem of wetting
in the d = 2 Ising model where the answer is known from
Abraham’s exact solution [29]. Figure 8 plots the results for
�f1L as a function of H1 obtained for DM = −∞ (i.e., for the
Ising model since vacancies are excluded and no defect line is
present). In practice, we found that Eq. (18) can be discretized
in steps of �H1 = 0.025 to make the numerical integration
error small enough for our purposes (note that fields are quoted
in units of J as well). Since for the case of the Ising model
(DM = −∞ in our model) the interfacial free energy is exactly
known according to Onsager [28],

σ = 2J − kBT ln

[
1 + exp(−2kBT /J )

1 − exp(−2kBT /J )

]
, (19)

in Fig. 8 we included the values of σ corresponding to the
temperature where the integration of Eq. (18) was performed
(horizontal lines). Additionally, in Fig. 8 we also included
the exact results of Abraham [29] for the critical wetting
fields (vertical lines), which intercept the integration curves
just when they start to become saturated and coincide (within
the statistical error) with the lines defining the interfacial free
energy. So Fig. 8 shows that by using numerical integration
[see Eq. (18)] and taking advantage of the existence of exact
results, the location of critical wetting transitions by numerical
integration is compatible with the exact results but clearly
not an accurate method in practice, since the point where
the merging to σ occurs cannot easily be located with high
precision.
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On the other hand, for values of DM within our range of
interest for the occurrence of first-order wetting transitions
(see Fig. 5) one expects that the curve �f1L will meet σ at
a finite nonzero angle. Unfortunately, in the case DM > −∞
we lack an exact solution for σ , so the interfacial free energy
also needs to be found by thermodynamic integration. We thus
use here two reference states at very low temperature: (i) a
state with all spins pointing up and (ii) a state with the spins
adjacent to the wall with +H1 (−H1) pointing up (down), so a
flat interface is initially placed along the center of the sample
where there is a defect line. The field H1 > J is fixed so the
system magnetization follows the boundary field.

The idea behind the thermodynamic integration method can
easily be worked out by using the relationship for the internal
energy u per spin

u = (∂(βf )/∂β)H,D,H1,HL
, β = 1/T (20)

so [26,27]

βf (β) = β0f (β0) +
∫ β

β0

u(β ′)dβ ′, (21)

and one has to record the energy difference between the
reference states (which by construction is due to the interface
only). Since we are interested in T < Tcb, using the reference
state of infinite temperature (β0 = 0) is not convenient, and
we would rather use T = 0 as a reference state, where the
reference free energy f (β0) is trivially known (since the
entropy is zero). However, for the thermodynamic integration,
Eq. (21), a very large integration interval needs to be avoided,
of course, and hence β0 → ∞ cannot be used. It turns out,
however, that β0 = 20 is already large enough to neglect the
entropy.

Figure 9 shows plots of σ/J versus T/Tcb obtained for
different values of DM . For the test case DM = −∞, we found
that the error bars of the numerical integration are smaller
than the symbol size. On the other hand, for finite values of
DM the interfacial free energy becomes reduced (at a fixed
temperature) as compared to the Ising case due to the presence
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0.5

1.0

1.5
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σ/
J 

DM = - inf. (ISING)
DM = -1.5
DM = 0.0

FIG. 9. (Color online) Plots of the interfacial free energy σ/J

versus T/Tcb obtained at different values of DM , as indicated. Note
that our results for the Ising model (solid circles), namely DM = −∞,
are in agreement with the exact solution of Onsager [see Eq. (19)]
shown by a dashed line.
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FIG. 10. (Color online) Plots of �f1L versus H1/J obtained at
different temperatures (as indicated) and for the case DM = 0.
Horizontal lines correspond to the interfacial free energy obtained
by thermodynamic integration (see Fig. 9). The intersection points at
the first-order wetting transitions are shown by means of arrows.

of nonmagnetic impurities at the interface [see Fig. 4(f)],
as expected. It is worth mentioning that for the case of a
fixed line of vacancies placed equidistantly, as considered in
Ref. [20], ground-state considerations yield f int

FV(T = 0)/J =
2(1 − Fv), exactly for Fv � 1/2, where Fv is the fraction of
vacancies. Since in the present study the density of vacancies
vanish for T → 0 and the values of the crystal field considered,
the interfacial energy is close to the Onsager result [28]
f int

Ons(T = 0)/J = 2, and therefore differing from (in a factor
of the order of Fv%) the case of inmobile vacancies. On the
other hand, mobile vacancies introduces an additional entropy
contribution, e.g., as compared to the case of a line of weakened
bonds [30–34], leading to a richer physical behavior, as already
discussed in detail in the Introduction.

Focusing now our attention on first-order wetting transi-
tions, Fig. 10 shows plots of the integration results of �f1L

versus H1, obtained for DM = 0 and different temperature
values. In contrast to the case of critical wetting (see Fig. 8),
here we obtained well-defined intersection points that allow
us to accurately locate the first-order transition fields (H1c),
except for high temperatures (e.g., T/Tcb = 0.833 in Fig. 10).

Figure 11(a) shows plots of H1c/J versus T/Tcb corre-
sponding to first-order wetting transitions. Results obtained
by using both the thermodynamic integration method and
the location of the abrupt change of the magnetization (see
Fig. 2), which are in excellent agreement, are also included in
Fig. 11(a). In this way, we can address an additional problem
of great interest, namely the first-order wetting behavior near
bulk criticality. Note that for a second-order wetting transition
one has that

H1c ∝ (1 − T/Tcb)�1 , (22)

where �1 is a surface critical exponent [51]. The exact solution
of Abraham [29] for critical wetting yields �1 = 1/2 in two
dimensions. In contrast, our results for first-order wetting
transitions in d = 2 dimensions seem to be compatible with
a linear dependence (i.e., �1 = 1) as follows from a visual
inspection of Fig. 11(a) and the test performed in Fig. 11(b).
However, we note that deviation from linearity could be
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FIG. 11. (Color online) (a) Plots of H1c/J versus T/Tcb obtained
for the case DM = 0. Results obtained by means of thermodynanic
integration are shown in solid circles, while estimations of the location
of abrupt drops of the magnetization (see Fig. 2) are shown in solid
squares. (b) Plots of H1c/J versus (1 − T/Tcb)�1 , with �1 = 1. The
dashed line has been drawn to guide the eye.

expected close to criticality, but a careful study of this topic
lies beyond the scope of the present paper.

V. CONCLUSIONS

We studied the wetting behavior of the two-dimensional
Ising model confined in a strip with competing boundary fields
and a defect line (consisting of two rows adjacent to each other)
in the center, where mobile vacancies are allowed to occur
(controlled in terms of a suitable crystal field of the Blume-
Capel model). Our study on both the influence of a defect line
and the role of interfacial adsorption on wetting transitions
reveals that by enhancing the density of the inert third phase at

the center of the strip, the nature of the transition changes from
second to first order. In this way, tricritical wetting transition
points are identified. While interfacial adsorption in the bulk
has been studied with the BC model for a long time, in all
previous cases the occurrence of only critical wetting has
been reported. Our results show that by tuning the density
of nonmagnetic impurities adsorbed at the interface, one can
change the order of the wetting transition. This result is in
qualitative agreement with previous work showing that the
same effect is induced by fixed nonmagnetic impurities [20].
The abrupt change in the magnetization profiles from mb > 0
to mb < 0 observed at first-order wetting transitions, where mb

is the spontaneous magnetization at the considered tempera-
ture, as well as the flat interfaces characteristically observed in
those cases, reveals that suitable nonmagnetic impurities can
effectively pin a flat interface. These new features reported in
the present paper could be relevant for practical applications
aimed at assembling sets of nano- and micromagnetic domains
and patterns with sharp interfaces, e.g., for magnetic storage
devices. Therefore, we conclude that our paper not only reports
issues of theoretical interest, e.g., in the field of statistical
mechanics, scaling theory, etc., but also addresses topics of
potentially interesting technical applications.
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