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Influence of particle size distribution on random close packing of spheres
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The densest amorphous packing of rigid particles is known as random close packing. It has long been
appreciated that higher densities are achieved by using collections of particles with a variety of sizes. For spheres,
the variety of sizes is often quantified by the polydispersity of the particle size distribution: the standard deviation
of the radius divided by the mean radius. Several prior studies quantified the increase of the packing density
as a function of polydispersity. A particle size distribution is also characterized by its skewness, kurtosis, and
higher moments, but the influence of these parameters has not been carefully quantified before. In this work, we
numerically generate many sphere packings with different particle radii distributions, varying polydispersity and
skewness independently of one another. We find that the packing density can increase significantly with increasing
skewness and in some cases skewness can have a larger effect than polydispersity. However, the packing fraction
is relatively insensitive to the higher moment value of the kurtosis. We present a simple empirical formula for
the value of the random close packing density as a function of polydispersity and skewness.
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I. INTRODUCTION

Understanding various aspects of random close packing
(RCP) has great scientific and industrial importance [1] as
it has been linked to a wide range of problems such as
the structure of living cells [2], liquids [3,4], granular me-
dia [5–8], emulsions [9], glasses [10], amorphous solids [11],
jamming [12,13], the viscosity of suspensions [14,15], and the
processing of ceramic materials [16]. Random close packing
is typically defined as a collection of particles packed into
the densest possible amorphous configuration, although more
rigorous definitions are available [17]. Experiments found that
the densest random packing of monodisperse spheres typically
occurs close to φ0,RCP ∼ 0.64 [4], where the density φ (or
packing fraction) is defined as the ratio of the total volume
occupied by spheres to the volume of the container.

Formally, a packing consists of particles with a distribution
in radii P (R). The polydispersity is defined as

δ =
√

〈�R2〉/〈R〉. (1)

Here, �R = R − 〈R〉 and the moments of R (and
�R) are defined as 〈Rn〉 = ∫

RnP (R)dR [and 〈�Rn〉 =∫
�RnP (R)dR]. It has long been appreciated that pack-

ings of spheres can have larger RCP densities when δ > 0
[18–23]. Prior experiments [24–28] and simulations [29–
33] have nicely shown that as the polydispersity increases,
the particles pack to higher-volume fractions because the
smaller particles pack more efficiently by either layering
against larger particles or by fitting into the voids created
between neighboring large particles [21,25,34,35]. In practice,
depending on the degree of the polydispersity, the packing
fraction can increase from 0.64 for monodisperse packings to
nearly ∼0.75 for packings with 0.65 polydispersity [25]. For
the extreme case of two different particle sizes with a size ratio
approaching infinity, the voids between the large particles can
be packed randomly with small particles and so φ can be as
large as φ0,RCP + (1 − φ0,RCP)φ0,RCP ≈ 0.88 [35,36].

While it is intuitive that the polydispersity can affect φRCP,
it is also reasonable that the shape, not just the spread, of the
distribution P (R) may also influence φRCP [1,25]. For instance,

an infinite number of distributions can have the same value of
δ but yet differ in their form. One can characterize the shape
using the skewness

S = 〈�R3〉/〈�R2〉3/2, (2)

kurtosis

K = 〈�R4〉/〈�R2〉2, (3)

and higher moments. There have been prior studies that
have investigated the influence of distribution shape on the
density of tightly packed particles [16,25,35,37–41]. Similar
to the studies on polydispersity, they find that the shape of
the particle distribution can have a profound influence on the
packing density. However, these prior studies either did not
independently vary δ and S but rather conflated the influences
of both, or else used other metrics besides δ and S to quantify
P (R). Of the prior studies, Tickell et al. [42] is the only
one to report on the effects of skewness and kurtosis for
experiments carried out with sand, finding that over a narrow
range in skewness the packing density can increase by 0.04
with no dependence on kurtosis. However, they did not control
for polydispersity, leaving unclear the relative importance of
polydispersity and skewness. The key unanswered question by
the prior work is how the skewness of a distribution influences
φRCP, and how large this effect is relative to the effects of
polydispersity.

In this paper, we address this question by numerically gen-
erating packings with a variety of particle-size distributions.
We find that both polydispersity δ and skewness S influence the
maximum random close packing volume fraction. In particular,
increasing δ increases φRCP, and for a given δ, φRCP increases
linearly with increasing S. As S can be negative, a negatively
skewed P (R) can decrease φRCP as compared to a symmetric
distribution. We find no universal influence of the kurtosis on
our results.

II. PROTOCOL

Packings of arbitrary size distributions P (R) are generated
using a numerical protocol, with a goal of controlling δ and
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S independently. Our method for generating these packings
was previously developed in Ref. [43]. Briefly, infinitesimal
particles are placed randomly in a periodic container, gradually
expanded, and moved at each step to prevent particles from
overlapping. At the beginning of the simulation, particles are
assigned radii with a specific distribution and as the particles
expand they do so by a multiplicative factor such that the
shape of the radii distribution is fixed. The value of φRCP

is known to be sensitive to protocol [44,45], and it is not
known if this algorithm or any other algorithm produces
rigorously defined random close packed states [13,17,43,46].
Our goal is not to determine the precise value of φRCP for a
given P (R) but rather to empirically understand the trend in
φRCP with polydispersity and skewness. Happily, our algorithm
when applied to a monodisperse packing gives φ0,RCP ∼ 0.64,
close to the experimentally found value and in agreement
with prior simulation work. In practice, the simulation has
three adjustable parameters that determine how quickly the
simulation converges to a RCP state. These parameters are the
initial packing fraction, the rate of expansion and contraction,
and a threshold on the minimum energy (see Ref. [47] for more
details). We use the same values as in Ref. [47], and we find
that our algorithm produces reproducible results and φRCP is
not sensitive to slight changes in these values.

To efficiently determine φRCP for a chosen particle-size
distribution, we exploit the known finite-size dependence
φRCP(h) = φ∞

RCP − C/h, where h is the system size, φ∞
RCP is

the random close packing fraction in the limit h → ∞, and C

is a fitting constant [47]. By generating many packings with
different periodic box sizes h, we fit φRCP(h) to determine
φ∞

RCP for each distribution. We generate packings with box
sizes of ∼10, 14, 18, and 23 mean particle diameters in length
to determine φ∞

RCP. For the rest of the paper, φRCP will be used
to indicate φ∞

RCP.
To control for both δ and S independently, we study

packings using four different distributions: binary, linear,
Gaussian, and lognormal. The binary and linear distributions
are determined by two control parameters, allowing for us
to control δ and S independently, while the Gaussian and
lognormal distributions are determined by only one parameter,
and therefore δ and S cannot be controlled independently.
By generating many packings with different δ and S using
these four distributions, we can compare the results to see how
sensitive φRCP is to polydispersity and skewness, but we can
also compare different distributions with the same δ and S to
see how sensitive φRCP is to other subtle differences in the
distribution shape. For all distributions, we impose 〈R〉 = 1.

More specifically, the binary distribution consists of par-
ticles with two distinct radii. The shape of the distribution
is determined by the size ratio and number ratio of these
two particle types. The linear distribution is a continuous
distribution of the form P (R) = AR + B, where the distri-
bution in particle size exists over a finite range a � R � b.
Our choice of 〈R〉 = 1 and the requirement of normalization
[
∫ b

a
P (R)dR = 1] imposes two constraints on the parameters

(a,b,A,B). For the two remaining degrees of freedom, we
define η = b/a and ρ = P (b)/[P (a) + P (b)]. We compute S

and δ for a grid of η and ρ values and then interpolate to
find the parameters for P (R) for the desired S and δ values,
allowing us to vary them systematically. The third distribution

is a Gaussian of the form P (R) = AG exp[−(R − 1)2/2σ 2],
where σ is the standard deviation and AG = 1/(

√
2πσ 2).

For larger σ , some of the particle radii could be negative,
which is unphysical, or very close to zero, which may
prevent generating packings within a reasonable time frame.
To avoid these issues, we truncate the Gaussian distribution
such that the smallest particle radius is no smaller than 0.1.
The Gaussian distribution has a fixed skewness S = 0 except
for the truncated Gaussians, which have a slight positive
skewness. The last distribution we consider is the lognor-
mal distribution P (R) = AL exp{−0.5[ln(R)/σ + 0.5σ ]2}/R,
where AL = 1/(

√
2πσ 2). Similar to the Gaussian distribution,

the skewness of the lognormal distribution is not adjustable but
is always positive and becomes larger as σ becomes larger. We
provide a summary of the distributions in Table I.

III. RESULTS AND DISCUSSION

In Fig. 1(a), we compare three different distributions with
polydispersity δ = 0.25 and nearly the same positive skewness
S ≈ 0.75. We see that the distributions are quite different, in
particular in their tails. For example, the linear distribution
has more small particles than the other two distributions.
The lognormal distribution has tails that include both smaller
and larger particles than the other two distributions. It’s not
necessarily obvious how the values of φRCP will be ranked for
these cases. In Fig. 1(b), we show two different distributions
with polydispersity δ = 0.25 and skewness S ≈ −0.5. As
these distributions have negative skewness, both distributions
have more larger particles than smaller particles. Once again,
it’s not necessarily clear how φRCP should differ between the
two packings.

After generating nearly 10 000 packings with different
particle radii distributions, we plot φRCP as a function of
skewness S for all our data in Fig. 2, with the different
groups of data (different colors) corresponding to different
polydispersity values δ. Each data point in the figure has a one
to one correspondence to the distribution type, δ, and S. The
symbol or line type of the data indicates the P (R) distribution
type. Remarkably, the figure shows that regardless of the type
of particle radii distribution, φRCP is nearly the same for the
same pairing of polydispersity and skewness. It also shows
that φRCP increases with both increasing δ and S. Strikingly,
the skewness can have an equally important effect as the
polydispersity. For example, for δ = 0.40 and S = 0, φRCP is
shifted upward by ≈0.02. Fixing that value of δ, changing S to
±1 shifts φRCP by ≈ ±0.02. For highly polydisperse samples,
one cannot accurately know φRCP without also knowing the
skewness of the radius distribution. For the binary samples
(solid lines in Fig. 2), S can be even larger in magnitude and
have an even larger influence on φRCP than δ has.

The increase in φRCP with skewness is not uniform. For
negative skewness (more big particles), the polydispersity
δ does not seem to influence φRCP as much as when the
skewness is positive. This is not too surprising since the
volume of each particle grows with R3. When the total
number of bigger particles is greater than the total number
of smaller particles (negative skewness), the volume occupied
by all the large particles is significantly greater than the
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TABLE I. Summary of the distributions P (R) tested. The func-
tional form of P (R) is shown in the first row. The free parameters
governing the shape of P (R) are shown in the next set of rows.
Each distribution is constrained such that 〈R〉 = 1 and the probability
distribution is normalized to unity, which constrains some of the
coefficients in P (R) to fixed values, listed as “Constrained” in the
table. The last rows list the polydispersity, skewness, and kurtosis
for each distribution. For the binary distribution, δ(R) is the Dirac
delta function. For the linear distribution, analytic solutions are
complicated for δ, S, and K and so are computed numerically. For
the Gaussian and lognormal distributions, a truncation was applied
to ensure that no particle radii were below 0.1. This affects the
shape slightly, and the δ, S, and K were computed numerically when
truncation was applied.

Binary
Function P (R) = (1 − ρ)δ(R − a) + ρδ(R − b)
Parameters Number fraction ρ = P (b)/[P (a) + P (b)]

Size ratio η = b/a

Constrained a = 1/(1 − ρ + ηρ)
b = η/(1 − ρ + ηρ)

Polydispersity δ = [(1 − ρ)(a − 1)2 + ρ(b − 1)2]1/2

Skewness S = [(1 − ρ)(a − 1)3 + ρ(b − 1)3]/δ3

Kurtosis K = [(1 − ρ)(a − 1)4 + ρ(b − 1)4]/δ4

Linear
Function P (R) = AR + B, a � R � b

Parameters Number ratio ε = P (b)/P (a)
η = b/a

Definitions c = 2(ε − 1)/[(η − 1)2(ε + 1)]
d = 2/[(η − 1)(ε + 1)] − c

e = [c(η3 − 1)/3 + d(η2 − 1)/2]
Constrained a = 1/e, b = η/e, A = ce2, B = de

Polydispersity Solved numerically
Skewness Solved numerically
Kurtosis Solved numerically
Gaussian
Function P (R) = Ae−(R−1)2/2σ 2

Parameters Standard deviation σ

Constrained A = 1/
√

2πσ 2

Polydispersity δ = σ

Skewness S = 0
Kurtosis K = 0
Lognormal
Function P (R) = A

R
e[(ln R)/σ+0.5σ ]2/2

Parameters Scale parameter σ

Constrained A = 1/
√

2πσ 2

Polydispersity δ =
√

eσ 2 − 1

Skewness S = (eσ 2 + 2)
√

eσ 2 − 1
Kurtosis K = e4σ 2 + 2e3σ 2 + 3e2σ 2 − 3

volume occupied by all the small particles. In effect, the big
particles pack like a low-polydispersity sample and occupy the
majority of the container, while the small spheres occupy an
insignificant portion, and φRCP approaches φ0,RCP ≈ 0.64 for
a monodisperse sample. For positive skewness (more smaller
particles), φRCP has a fairly strong dependence on δ and
S, where φRCP increases with increasing number of small
particles. The reason for this increase in φRCP is likely due to the
small particles fitting into the spaces between larger particles.
As discussed in prior work [21,25,35], the local porosity is

FIG. 1. (Color online) (a) Examples of three different particle
radii distributions with the same polydispersity of 0.25 and nearly
the positive same skewness. The binary distribution has S = 0.78,
the linear distribution has S = 0.56, and the lognormal distribution
has S = 0.78. (b) Examples of two different particle radii distribu-
tions with the same polydispersity of 0.25 and negative skewness
S = −0.5.

smaller around two neighboring particles of different sizes than
around two neighboring particles of the same size. This effect
is greater for larger differences in the size of two neighbors.
As skewness and polydispersity increase, both the number
of small particles present and the average size discrepancy
between neighboring particles increase, resulting in a larger
φRCP.

To provide a qualitative sense of the behavior, Fig. 3 shows
a 2D slice through four different 3D packings. Figures 3(a)
and 3(b) are lognormal packings, where Fig. 3(a) is a packing
at low polydispersity and skewness and Fig. 3(b) is a denser
packing at a higher polydispersity and skewness. Packings in
Figs. 3(c) and 3(d) are two binary packings with polydispersity
0.4, where Fig. 3(c) has a large negative skewness and Fig. 3(d)
is denser and has a large positive skewness. As discussed
above, at large δ and S, small particles can either layer around
larger particles and/or fit in the voids between bigger particles.
In Figs. 3(b) and 3(d) we see evidence of small particles sitting
in the void areas between big particles. In Figs. 3(a) and 3(c),

FIG. 2. (Color online) This figure shows how φRCP depends on
particle-size distribution, polydispersity δ, and skewness S. The solid
lines represent φRCP for binary packings and the symbols represent
φRCP for packings with either linear, Gaussian, or lognormal particle
distributions as indicated by the legend. The colors represent different
polydispersities of either 0.1, 0.15, 0.25, or 0.4. The dashed lines are a
fit to the data using φRCP = φ∗

RCP + c1δ + c2Sδ2, where φ∗
RCP = 0.634,

c1 = 0.0658, and c2 = 0.0857.
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FIG. 3. (Color online) Each image represents a 2D slice through
a 3D packing, and the dashed box is the boundary of the periodic
packing. The volume fraction for each packing shown is close to
the extrapolated φRCP. Also, the area fraction of each 2D slice is
the same as the volume fraction of the 3D packing they represent.
For each packing, the particle radii are randomly selected from a
specified distribution with an exact δ and S. However, when choosing
a finite number of particle sizes from one of these distributions, the
particle-size distribution of the finite packing may be slightly different
resulting in a slightly different δ and S. In this figure, we report δ, S,
and φ for the finite packing shown, not the values used to randomly
select the particle sizes.

where the skewness is lower, we see less evidence of this.
These observations are consistent with the results described in
the legend of Fig. 2.

Since φRCP is nearly determined by the two parameters δ

and S, we fit all the data to a simple equation,

φRCP = φ∗
RCP + c1δ + c2Sδ2, (4)

where φ∗
RCP = 0.634 is the packing fraction for a monodisperse

packing of spheres (δ = 0 and S = 0) and c1 = 0.0658 and
c2 = 0.0857 are empirical constants. These fit lines are shown
as dashed lines in Fig. 2 and agree reasonably well with the
data. Our fitted value of φ∗

RCP is close to the experimentally
accepted value of 0.637 [1,48]. We also tried fits with higher-
order terms in S and δ, but we found first order in S and second
order in δ reasonably fit all the data well.

There are slight differences in the φRCP values for different
distribution types for the same δ and S values, seen in Fig. 2.
Thus far we have focused on δ and S to characterize our

RC
P

RC
P

FIG. 4. The difference between φRCP and the fitted values φFIT
RCP in

Eq. (4) are plotted as a function of kurtosis.

distributions, and of course the distributions differ in their
higher moments. The next quantity to consider is the kurtosis
K defined above [Eq. (3)], and it might be a potential additional
parameter to explain the variations in Fig. 2. To check this, we
subtract the computationally found values of φRCP from the
empirical fit [Eq. (4)] and plot these differences as a function
of K in Fig. 4, which shows no systematic dependence on K .
That is, K seems not to be a useful fit parameter for φRCP.
This agrees with the 1933 qualitative observations of Tickell
et al. [42]. We also note that Fig. 4 demonstrates the quality of
Eq. (4) to capture the actual value of φRCP. The figure shows
that the fit typically is within 0.002 of the actual φRCP for
nearly all the values of δ and S tested. The average absolute
difference between the actual φRCP and the fitted φRCP is 0.001.

It is worth noting that our results apply to randomly packed
objects, and one can consider other amorphous packings that
are perhaps less random. For example, an important class of
these are random Apollonian packings (RAP) [49,50]. To
generate a RAP, one first places the largest spheres, then
smaller particles are inserted into the voids between the
spheres. For example, one can fill the voids with the largest
possible spheres [49], which leads to a packing with a volume
fraction approaching arbitrarily close to 1.0. In such situations,
P (R) is a power law, P (R) ∼ R−α for R > R0, where R0 is a
cutoff. As R0 approaches 0 (an infinite amount of iterations of
the RAP protocol), the volume fraction approaches 1.0. Using
our equations, you can see that if R0 = 0, 〈Rn〉 is infinite for
n � α − 1. For finite but small R0, 〈rn〉 can be quite large,
and thus the packing can have large values for δ, S, and
K . Clearly in such limits the volume fraction nonetheless is
1.0 or smaller, so our empirical formula Eq. (4) must break
down. On the other hand, the RAP protocols all ensure large
volume fractions by construction—that is, the small particles
are precisely chosen to fit into the voids between the large ones,
and P (R) is determined after the fact through the algorithm.
Our computational algorithm will generally find less optimal
packings for the same P (R), and so it is to be expected that
Eq. (4) should not apply to RAP.

For that matter, our algorithm converges unacceptably
slowly for distributions with particle sizes varying by more
than a factor of ten between the smallest and largest sizes,
preventing us from directly testing power law packings. We
work around this by using the numerical algorithm proposed
by Farr and Groot [36], which rapidly predicts φRCP based on
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any P (R) as input. The predictions of their algorithm agree
well with the results from our computed 3D packings for
the distributions listed in Table I. We use their algorithm to
determine φRCP for a variety of power law distributions over
the same range of δ and S tested for our other distributions,
and we find excellent agreement with our empirical expression,
Eq. (4).

IV. CONCLUSIONS

Our data have two significant conclusions. First, the
skewness S has a significant influence on φRCP for distributions
with a large polydispersity δ. Second, Eq. (4) allows one to
determine φRCP to within approximately ±0.002 from knowing
δ and S, without taking into account any other details of the
shape of P (R). We note that a very recent paper argues that
φRCP is a simple function of 〈R〉〈R3〉/〈R2〉2, using an inferred
equation of state of hard sphere mixtures [51]. One could
express their result in terms of δ and S, which gives a quite
different expression from our results. Their function predicts
φRCP to within ±0.02. Our formula [Eq. (4)] yields a more
accurate prediction, but is from an empirical approach rather
than a physical approach.

This collapse of φRCP values for a given δ and S but different
distribution shapes is intriguing, as presumably the structures

within the packings are different for different P (R). For that
matter, one can have the same φRCP value for different δ and S,
see for example Figs. 3(a) and 3(c), and clearly these will have
different microstructures. This might be useful for studying
aspects of the jamming transition of spherical particles. Many
prior results show that various properties of these systems
depend on the distance to the jamming point [52–56], where the
jamming point is thought to be the same as φRCP [12,13,17,46].
One can imagine conducting experiments or simulations to
compare the properties of packings near the jamming transition
with different microstructures but the same jamming point.
These could be equally useful for studying the colloidal glass
transition, which may be influenced by φRCP [54,57–61]. Such
experiments may provide further insight into the universal
nature of the jamming transition and glass transition, but may
also highlight subtle dependencies on the microstructure.
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[8] M. Jerkins, M. Schröter, H. L. Swinney, T. J. Senden, M.

Saadatfar, and T. Aste, Phys. Rev. Lett. 101, 018301 (2008).
[9] R. Pal, Polym. Eng. Sci. 48, 1250 (2008).

[10] G. Lois, J. Blawzdziewicz, and C. S. O’Hern, Phys. Rev. Lett.
102, 015702 (2009).

[11] R. Zallen, Physics of Amorphous Solids (Wiley, New York,
1983).

[12] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys.
Rev. E 68, 011306 (2003).

[13] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys.
Rev. E 70, 043302 (2004).

[14] I. M. Krieger and T. J. Dougherty, Trans. Soc. Rheol. 3, 137
(1959).
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