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Effect of cohesion on shear banding in quasistatic granular materials
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Cohesive powders have widely different bulk behavior due to their peculiar interactions. We use discrete
element simulations to investigate the effect of contact cohesion on the steady state flow of dense powders in
a slowly sheared split-bottom Couette cell, which imposes a wide stable shear band. The intensity of cohesive
forces can be quantified by the granular Bond number (Bo), namely the ratio between maximum attractive force
and average force due to external compression. We find that the shear banding phenomenon is almost independent
of cohesion for Bond numbers Bo < 1, however for Bo > 1 cohesive forces start to play an important role, as
both width and center position of the band increase. Inside the shear band, the mean normal contact force is
independent of cohesion and depends only on the confining stress. In contrast, when the behavior is analyzed
focusing on the eigendirections of the local strain rate tensor, a dependence on cohesion shows up. Forces
carried by contacts along the compressive and tensile directions are symmetric about the mean force (larger and
smaller respectively), while the force along the third, neutral direction follows the mean force. This anisotropy
of the force network increases with cohesion, just like the heterogeneity in all (compressive, tensile and neutral)

directions.
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I. INTRODUCTION

Granular materials such as sand and limestone behave
neither like elastic solids nor like normal fluids, which makes
their motion difficult to predict. When they yield under
slow shear, the relative motion is confined to narrow regions
(between large solidlike parts) called shear bands [1-3]. Shear
bands are observed in many complex materials, which range
from foams [4] and emulsions [5,6] to colloids [7] and granular
matter [1,2,8—17]. There has been tremendous effort aimed
towards understanding shear bands in flow of noncohesive
grains [1,2,8—19]. However, real granular materials often
experience interparticle attractive forces due to many physical
phenomena: van der Waals due to atomic forces for small
grains [20-22], capillary forces due to presence of humid-
ity [23], solid bridges [24,25], coagulation of particles [26],
and many more.

The question arises regarding how the presence of attractive
forces affects shear banding. So far, only a few attempts
have been made to answer this question concerning dense
metallic glasses [27,28], adhesive emulsions [29,30], attractive
colloids [31-33], cemented granular media [34], wet granular
media [35,36], and clayey soils [37]. Recently, rheological
studies on adhesive emulsions and colloids [29-31,33] showed
that the presence of attractive forces at contact affects shear
banding by affecting flow heterogeneity and wall slip.

Another unique yet not completely understood feature of
granular materials is their highly heterogeneous contact force
distribution, as observed in both experimental and numerical
studies [2,38-46]. While huge effort has been made to under-
stand the force distribution of noncohesive particles [2,38—
44,47], only limited studies have aimed to understand the
same for assemblies with attractive interactions [21,48-52].
Richefeu et al. [49] studied the stress transmission in a wet
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granular system subjected to isotropic compression. Gilabert
et al. [50] focused on a two-dimensional packing made of
particles with short-range interactions (cohesive powders)
under weak compaction. Yang ef al. [51] studied the effect
of cohesion on force structures in a static granular packing
by changing the particle size. In a previous study [53],
the effect of dry cohesion at contact on the critical state
yield stress was studied. The critical-state yield stress shows
a peculiar nonlinear dependence on the confining pressure
related to cohesion. But the microscopic origin has not been
studied.

In this paper, we report the effect of varying the strength of
attractive forces at contact on the steady-state flow behavior
and the force structure in slowly sheared dry cohesive powders.
Discrete element method (DEM) simulations are used to
investigate the system at the micro (partial) and macro levels.
In order to quantify the intensity of cohesion, a variation of
the granular Bond number (Bo) [50,54,55] is introduced. We
find that this dimensionless number very well captures the
transition from a gravity- and shear-dominated regime to a
cohesion-dominated regime. To understand this further we
look at the effect of cohesion on the mean force and anisotropy
by investigating the forces along the eigendirections of the
local strain rate tensor. Intuitively, one would expect only
the tensile direction to be affected by cohesion, but the real
behavior is more complex. We also discuss the probability
distributions and heterogeneities of the forces in different
directions for a complete picture.

The paper is organized in four main parts. Section II
describes the model system in detail specifying the geometry,
details of particle properties, and the interaction laws. In
Sec. III, the velocity profiles and shear band from samples
with different contact cohesion are presented. In the same
section, the force anisotropy and probabilities are studied, too.
Finally, Sec. IV is dedicated to the discussion of the results,
conclusions and an outlook.
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FIG. 1. Schematic graph of the piecewise linear, hysteretic, and
adhesive force-displacement model in normal direction.

II. DISCRETE ELEMENT METHOD SIMULATION

In this section, we explain our DEM simulations. We
introduce a model of cohesive grains in Sec. II A and show our
numerical setup in Sec. II B. In Sec. II C, we propose a control
parameter, i.e., the global Bond number, which governs the
flow profiles and structure of the system.

A. Model

DEM provides numerical solutions of Newton’s equations
of motion based on the specification of particle properties
viz. stiffness, density, radius, and certain interaction laws like
Hertzian and Hookean [56,57]. Simulation methodology and
material parameters used in this study are the same as in
our previous work [53,58]. The adhesive elastoplastic contact
model [59] is used to simulate cohesive bulk flow, as briefly
explained below.

For fine, dry powders, adhesive properties due to van der
Waals forces and plasticity and irreversible deformation in
the vicinity of the contact have to be considered at the same
time [60,61]. This complex behavior is modeled using a piece-
wise linear hysteretic spring model [59] (Fig. 1). Few other
contact models in similar spirit were recently proposed [62,63].

The adhesive, plastic (hysteretic) force is introduced by al-
lowing the normal unloading stiffness to depend on the history
of deformation. During initial loading the force increases lin-
early with overlap § along &, until the maximum overlap 8p,x
isreached, which acts as a history parameter. During unloading
the force decreases along k,, the value of which depends on
the maximum overlap épm.x as given by Eq. (2). The overlap
when the unloading force reaches zero, 6o = (1 — k1/k2)0max»
resembles the permanent plastic deformation and depends
nonlinearly on the previous maximal force fiax = k18max- The
negative forces reached by further unloading are attractive,
cohesion forces, which also increase nonlinearly with the
previous maximum force experienced. The maximal cohesion
force that corresponds to the pull-off force, is given by

fm = _kcamins (1)

. ko—k
with Sy, = ﬁ&max.
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Three physical phenomena, elasticity, plasticity, and cohe-
sion, are quantified by three material parameters, k,, k;, and
k., respectively. Plasticity disappears for k; = k, and cohesion
vanishes for k. = 0. In the following we focus on the relative
importance of cohesion and thus do not provide measurable
force magnitudes. Furthermore, the contact model has to be
seen as a mesoscale model, where each particle represents an
ensemble of primary particles and the contact model represents
the respective bulk behavior, see Ref. [64], without a direct
match of the magnitude of forces in the model with the forces
between the primary particles. Qualitatively, the interpretation
of k. is that it describes the increased van der Waals type
adhesion due to plastic deformations (both of the particles and
the microstructure) under compression, which increases the
contact surface and thus the cohesion. Some considerations on
the magnitude and relative importance of the cohesion force
can be found in Appendix B.

In order to account for realistic load-dependent contact
behavior, the k, value is chosen to depend on the maximum
overlap dmax, 1.€., particles are more stiff for larger previous de-
formation and so the dissipation is dependent on deformation.
The dependence of k; on overlap 8.« is chosen empirically as
linear interpolation,

kp if Smax/Sthax > 1
ki + (kp — k)2 if Spax/Shax < 1

P
Smax

@)

k2(8max) = {

As discussed in Ref. [59], very large deformations will lead to
a quantitatively different contact behavior, a maximal force

overlap 8fux = kpk_”k] 3](1(227¢f is defined (with ¢, = 0.05).
Above this overlap k, no longer increases and is set to the
maximal value k, = k. This viscoelastic, reversible branch is
referred to as the limit branch.

The contact friction is set to u = 0.01, i.e., artificially
small, in order to be able to focus on the effect of contact
cohesion only. We analyzed the system for the following set

of adhesivity parameters k,:

k. € [0,5,10,25,33,50,75,100,200] Nm™", 3)

which has to be seen in relation to k; = 100 Nm~!. Other
parameters, such as the jump-in force f, = 0 [64] and ¢ =
0.05 [64], are not varied here. We also introduce damping
forces proportional to the normal and tangential relative
velocities, where the viscous coefficients are given by y, =
0.002 s~! and y, = 0.0005 s~!, respectively.

B. Split-bottom ring shear cell

Figure 2 is a sketch of our numerical setup (as introduced
in Refs. [15,65-68]). In this figure, the inner, split, and outer
radii are given by R;, R;, and R,, respectively, where the
concentric cylinders rotate relative to each other around the
symmetry axis (the dot-dashed line). The ring shaped split at
the bottom separates the moving and static parts of the system,
where a part of the bottom and the outer cylinder rotate at the
same rate. The system is filled with N &~ 3.7 x 10* spherical
particles with density p = 2000kg/m?* = 2 g/cm? up to height
H . The average size of particles is ap = 1.1 mm, and the width
of the homogeneous size distribution (with apin/dmax = 1/2)
is 1 —o =1— (a)?/(a*) =0.18922. The cylindrical walls
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FIG. 2. (Color online) A sketch of our numerical setup consisting
of a fixed inner part (light blue shade) and a rotating outer part
(white). The white part of the base and the outer cylinder rotate with
the same angular velocity €2 around the symmetry axis. The inner,
split, and outer radii are given by R; = 0.0147 m, R; = 0.085 m, and
R, = 0.11 m, respectively, where each radius is measured from the
symmetry axis. The gravity g points downwards as shown by arrow.

and the bottom are roughened due to some (about 3% of the
total number) attached and glued particles [66,67].

When there is a relative motion at the split, a shear band
propagates from the split position R; upwards and inwards,
remaining far from the cylinder walls and bottom in most
cases. The qualitative behavior is governed by the ratio H/ Ry
and three different regimes can be identified, as reported in
Refs. [68-71]. We keep H/R; < 0.5, such that the shear
band reaches the free surface and stays away from the inner
wall [69,70].

Translational invariance is assumed in the azimuthal 6 di-
rection, and the averaging is performed over toroidal volumes,
over many snapshots in time. This leads to fields Q(7,z) as
function of the radial and vertical positions.

Since we are interested in the quasistatic regime, the
rotation rate of the outer cylinder is chosen to be 0.01 s~
such that the inertial number I = 2L [72]1is I « 1, and the

. . Vrlp
simulation runs for more than 50 s.

C. Bond number

Intensity of cohesion can be quantified by the ratio of
the maximum attractive force to a typical force scale in the
system. For example, Nase et al. [54] introduced the granular
Bond number under gravity, which compares the maximum
attractive force at contact with the weight of a single grain. For
plane shear without gravity, other authors [50,55] used a ratio
between the maximum attractive force and the average force
due to the confining pressure. In our analysis, we introduce a
global Bond number as

0= & “)
(f)

where f, and (f) are the maximum allowed attractive
force reached at a contact (given by the contact model,
see Appendix A, using Smax = 8P.) and the mean force
per contact reached close to the bottom, respectively. For
the calculation of the mean force (f), a layer two particle
diameters from the bottom is chosen, as the shear band initiates
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FIG. 3. (Color online) Variants of granular Bond number plotted
against cohesive strength k., where the red circles represent the global
Bond number Bo, while the blue triangles and black squares represent
the average values of Bo;(p) and Boj(p), respectively.

from the bottom, we choose the mean force (f) close to the
bottom to understand the effect of cohesion on these shear
bands.

It is important to mention that the mean force (at
the bottom) corresponds to the weight of the material
above, whereas the maximum attractive force corresponds
to the pull-off force, which is directly related to the
surface energy of the particles. These two material and
particle properties are easily accessible experimentally,
see Appendix B.

The Bond number is a measure of the relative importance
of adhesive forces compared to external (compressive) force.
A low Bond number indicates that the system is relatively
unaffected by attractive forces; a high number (typically larger
than 1) indicates that attractive forces dominate. Intermediate
numbers indicate a nontrivial competition between the two
effects.

In parallel with the global Bond number, we also define two
local variants of this quantity. A local simulation-based Bond
number Boj (p) = £ (p)/{f(p)) can be defined by comparing
the maximum attractive force reached at a given pressure
(which can be less than or equal to the maximum allowed
attractive force given by the contact model) with the mean
force at that pressure (subscript / represents the local quantity,
while superscript s denotes that this definition takes input from
simulation data). Another variant of this Boj(p) is defined in
Appendix A, which compares the analytical prediction for
the maximum attractive force with the mean force at that
pressure and does not use the gravitational Bond number, see
Appendix B, since it is only relevant close to the free surface
and for single particles in contact with a wall.

Figure 3 displays the global Bond number Bo and the
mean values of Boj(p) and Bo{(p) (averaged over differ-
ent pressure) as functions of the adhesivity parameter k.,
where the figure shows that local and global quantities are
comparable with slight differences for high cohesion k.. For
the sake of simplicity, in the rest of this paper, we use
the global Bond number Bo to quantify the intensity of
cohesion.
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FIG. 4. (Color online) Snapshots from simulations with different
cohesion strengths, but the same number of mobile particles N =
34518, seen from the top (top) and the front (bottom). The material
is (a) without cohesion Bo = 0 and (b) with strong cohesion Bo =
4.86. Blue, green, and orange denote the particles with displacements
in tangential direction per second r d¢ < 0.5 mm, rd¢ < 2 mm,
rd¢ < 4 mm, and r d¢ > 4 mm, respectively.

III. RESULTS

In this section, we present our results of DEM simulations.
In Sec. I A, we analyze the flow profiles and shear banding in
the system. In Sec. III B, we study distributions and structures
of force chain networks in shear bands. In Sec. III C, we explain
anisotropic features of the force chain networks.

A. Effect of cohesion on flow profiles

Figure 4 displays both top and front views of samples with
the same filling height, i.e., same number of particles, and
different global Bond numbers, Bo = (left) O and (right) 4.86,
respectively, where the color code represents the azimuthal
displacement rate of the particles. From the front view, we
observe that the shear band (green) moves inwards and gets
wider with increasing height and Bond number.

With the goal to extract quantitative data for the shear
band area, in Fig. 5 we plot the nondimensional angular
velocity profiles at the top surface against radial coordinate
normalized with the mean particle diameter (d), where we
assume translational invariance in the azimuthal direction and
take averages over the toroidal volumes as well as many
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FIG. 5. (Color online) Nondimensional angular velocity profile
w at the top surface plotted against the radial coordinate r scaled by
the mean diameter (d). Different symbols represent different values
of the global Bond number Bo given in the inset, where the solid lines
represent the corresponding fits to Eq. (5).

snapshots in time [13]. The angular velocity profile can be
well approximated by an error function,

r—R.
w = A] + AzCI'f( W ), (5)

as in the case of noncohesive materials [15,65-68], where
R, and W are the position and width of the shear band,
respectively. Here we use the dimensionless amplitudes, A} =
Ay & 0.5, for the whole range of the Bond numbers, while
we use A; = 0.6 and A, = 0.4 for the strong cohesion with
Bo = 4.86. The dimensionless amplitudes, A; and A, (along
with estimated errors), are summarized in Table I. Then we
extract the position of the shear band relative to the split at
the bottom R, — R, and the width of the shear band W (both
scaled by mean particle diameter) at the top surface and we
plot them in Fig. 6 against the Bond number. Within the error
bars, both the position and width are independent of cohesion
if Bo < 1. However, the shear band moves inside and becomes
wider with increasing Bond number for Bo > 1.

Both R; — R, and W also depend on the height (z) in
the system. Figure 7 displays the nondimensional position
and width of the shear band for different values of Bo as
functions of the height scaled by the filling height, i.e.,
z/H. The shear band moves closer to the inner cylinder

TABLE I. Table showing filling height of the system H and fitting range z/H for Egs. (6) and (7), together with the fit parameters A, A,
in Eq. (5), B in Eq. (6), Wiop, and y in Eq. (7) for different values of Bond number Bo.

Bo A Ay H B % range Wiop y

0 0.50 £ 0.0005 0.500 4= 0.0005 0.0365 2.52 0.1-1 0.0117 0.507
0.17 0.50 £ 0.0005 0.499 £ 0.0005 0.0365 2.52 0.1-1 0.0118 0.523
0.33 0.49 £ 0.0007 0.500 £ 0.0007 0.0365 2.512 0.1-1 0.0118 0.555
0.81 0.49 +0.0008 0.500 4 0.0008 0.0361 2.494 0.1-1 0.0119 0.583
1.05 0.49 £0.001 0.501 +0.001 0.0359 2.510 0.1-1 0.0120 0.582
1.50 0.49 £0.002 0.501 +0.002 0.0364 2.453 0.1-0.8 0.0126 0.613
2.22 0.49 +0.003 0.501 £0.003 0.0368 2.367 0.1-0.6 0.0138 0.667
2.85 0.49 £0.005 0.502 +0.005 0.0369 2.259 0.1-0.6 0.0160 0.713
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FIG. 6. (Color online) (a) Position and (b) width (both scaled by
mean particle diameter) of the shear band at the top surface plotted
against the global Bond number Bo. Symbols with error bars are the
data, while the lines are only a guide to eye.

and gets wider while approaching the top layer, which is
consistent with previous studies [15,53,65-68,71] on cohesive
and noncohesive assemblies. In Fig. 7(a), the lines are the
prediction by Unger et al. [69],

R, H\FT1 VA
z:H—Rc{l—F‘[l—(R—> “ , (6)

where the exponent is given by B = 2.5 for noncohesive
particles. If the Bond number is less than 1, the data collapse
on a unique curve, very well predicted by Eq. (6), with fixed
exponent 8. On the other hand, above Bo = 1, the exponent
B decreases with the global Bond number (values reported in
Table I). Note that Eq. (6) slightly deviates from the results
near the top surface if the cohesion is strong (Bo = 2.22 and
2.85).InFig. 7(b), the lines are the prediction by Ries et al. [71]
for a noncohesive system,

W) = Wep [1 -(1- %)z]y, )

where W, is the width at the top surface and the exponent
is given by y = 0.5 for noncohesive particles. If Bo < 1,

PHYSICAL REVIEW E 90, 022202 (2014)
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FIG. 7. (Color online) (a) Position and (b) width (both scaled by
mean particle diameter) of shear band in the cell plotted against
height z scaled by the filling height H. Different symbols correspond
to values of the global Bond number Bo given in the inset. The lines
in (a) and (b) are the predictions, Egs. (6) and (7), respectively.

Eq. (7) with Wi, = 0.012 and y = 0.5 £ 0.1 well agrees with
our results. However, for Bo > 1, both the width W, and
exponent y increase with the global Bond number as in Table 1.
In addition, Eq. (7) deviates from the results near the top layer
if the cohesion is strong (Bo = 2.22 and 2.85), where W seems
to saturate above z/H =~ 0.6. Hence for Bo > 1, we choose
the width at that height to be Wy, and use y = 0.66 and 0.7
for Bo = 2.22 and 2.85, respectively.

From the above results, we conclude that the cohesive
forces between particles drastically affect the flow profiles.
Equations (6) and (7) predict the position and width of the
shear bands for Bo < 1 very well. For large Bo these equations
deviate from observed behavior at large heights since the
shear band interferes with the inner cylinder. The shear band,
which is the region with a large velocity gradient, is caused by
sliding motions of particles. However, strong cohesive forces
keep particles in contact (in other words, the cohesive forces
promote collective motions of particles) and prevent them from
sliding. As a result, the velocity gradient is smoothened and
the width of the shear band is broadened. This observation is
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consistent with previous studies on adhesive dense emul-
sions [73]. Interestingly, such an effect of cohesion is sup-
pressed if the global Bond number is less than 1, where our
numerical data agrees well with previous theoretical/numerical
studies on noncohesive particles [69,71]. Hence, the global
Bond number, Bo, captures the transition between essentially
noncohesive free-flowing granular assemblies (Bo < 1) to
cohesive ones (Bo > 1).

B. Structure and distribution of forces in shear bands

To understand the microscopic origin of the anomalous flow
profiles of cohesive aggregates, we study the force network
and the statistics of the Interparticle normal contact forces.
Recently Wang et al. [74] reported the shape of the probability
distribution function (PDF) as an indicator for the transition
from quasistatic to inertial flows for noncohesive particles. In
this section, we use a similar philosophy and study the change
in the shape of PDFs as the cohesive strength is increased.

Figure 8 shows force chains of positive [Figs. 8(a) and 8(b)]
and negative [Figs. 8(c) and 8(d)] normal forces in the systems
with low cohesion [Figs. 8(a) and 8(c)] and strong cohesion
[Figs. 8(b) and 8(d)]. Gray shows the weak forces, while
red and blue show the strong positive and negative forces,
respectively. The strong or weak positive forces are forces
larger or smaller than the mean positive force fpos. A similar
approach is adopted to identify the strong and weak negative
forces. In this figure, we observe that both positive and negative

7

<y [Y)
[ 2 'S
\le ;(:L ;

FIG. 8. (Color online) Force chain networks of positive normal
forces for Bo = 0.33 (a) and 2.85 (b), and negative normal forces
for Bo=0.33 (c¢) and 2.85 (d) at height 0.02 < z < 0.025 m,
respectively. In (a) and (b) positive normal force smaller than 0.002 N
is represented by grey, while larger than 0.002 N is represented by red
color. In (c) and (d) negative normal force smaller than —0.0005 N is
represented by gray, while larger than —0.0005 N is represented by
blue color.
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forces are fully developed in the cohesive system [Figs. 8(b)
and 8(d)], with the intensity of the force inside the shear band
being stronger than outside. In addition, the strong (positive or
negative) force chains are percolated through the shear band
region.

Figure 9 displays scatter plots of the interparticle forces
against overlaps between the particles in contacts, where each
point corresponds to a contact and different colors represent
different heights, i.e., pressure levels in the system. The higher
the pressure p, the higher the average force (or overlap), as it
must sustain the weight of the particles. For almost all values
of Bo, the density of points towards the unloading branch
k, is higher inside the shear band compared to outside. We
also observe that with increasing Bo, most contacts (except
for small pressure) drift towards and collapse around the
limit branch. This implies that the cohesive forces are more
pronounced in shear bands rather than outside.

1. Mean force and overlap in shear bands

Figure 10 displays the mean normal forces, (f), in the
shear band plotted against pressure for different values of the
global Bond number, where the solid line is the prediction by
Shaebani et al. [75] for noncohesive granular systems,

4 (a®)
 ¢Cg

with the second moment of the size distribution (a?), coor-
dination number C, volume fraction ¢, and mean pressure
(p). Notably, the mean normal force is almost independent of
cohesion and linearly increases with pressure as in the cases of
static noncohesive [39,45] and cohesive systems [51]. We also
observe that for low pressure, Eq. (8) slightly overpredicts
the value of the mean force, while for higher pressure the
prediction well captures the data. While the mean value
is insensitive to cohesion, the mean positive and negative
normal forces, (fpos) and (fneg), as can be seen in Fig. 11,
where we plot them against pressure for different values
of Bo. Furthermore, the intensities of both negative and
positive forces increase with increasing cohesion, which is in
accordance with Fig. 8. Note that the mean positive (negative)
force is linear with pressure and independent of cohesion
below Bo = 1, while its dependence on pressure becomes
nonlinear above Bo = 1. Though the origin of this nonlinearity
is not clear, it is readily understood that cohesion enhances the
collective motion of the particles, i.e., the particles rearrange
less and the system is in a mechanically constrained state.
Such constrain leads to increase in the magnitude of negative
forces. As a consequence, positive forces also increase, in order
to balance the negative ones. It is noteworthy that in Fig. 9, the
increase of Bo increases the density of points in both positive
and negative extremes, inside the shear band, in accordance
with the previous considerations.

Similarly to what was observed for the mean force,
cohesion seems not to affect the average number of contacts,
as reported in Ref. [58], where we observed that cohesion
had practically no effect on the contact number density
(volumetric fabric). Figure 12 shows the fractions of repulsive
and attractive contacts against pressure for different Bond
numbers, normalized by the total number of contacts. An

(f) ®)

022202-6



EFFECT OF COHESION ON SHEAR BANDING IN ...

0.015

0.01

0.005

JN)

-0.005

0.015

0.01

0.005

J(N)

-0.005

PHYSICAL REVIEW E 90, 022202 (2014)

J(N)

0.015 T

0.01

0.005

J(N)

-0.005

FIG. 9. (Color online) Scatter plots of overlaps and forces between all contacts inside (left) and outside (right) of the shear bands for
different Bo = 0.33 and 2.85. The different symbols represent a zoom into the vertical ranges z = 8 mm #1 mm (green stars), 15 mm 1 mm
(blue circles), 22 mm £1 mm (magenta dots), and 29 mm 1 mm (cyan squares), with approximate pressure as given in the inset. Note
that the points do not collapse on the line k,(§ — &) due to the finite width of the size distribution: Pairs of larger than average particles fall
outside the indicated triangle. Radial range 0.075 m < r < 0.085 m (left) signifies data points inside the shear band, while the radial range
0.055 m < r < 0.065 m (right) signifies the data points outside the shear band.

increase in cohesion generates more attractive contacts while
the number of repulsive contacts decrease. Interestingly, the
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FIG. 10. (Color online) The mean normal force (f) inside the
shear band plotted against pressure p, where different symbols
represent the global Bond number (as given in the inset) and the
solid line is given by Eq. (8).

overall average coordination number remains independent
of cohesion and contacts simply redistribute between the
repulsive and attractive directions.

In contrast to the mean force, the mean overlap between
particles in contact nonlinearly depends on cohesion, as shown
in Fig. 13. In our model of cohesive particles [59], overlaps are
always positive for both positive and negative forces. It is worth
mentioning that for low Bo, (§(¢)) saturates quickly, while for
Bo = 1.5,2.22,2.85 it takes longer to reach the steady state
due to the average plastic increase of the overlap [53].

2. PDFs of forces and structures of strong force chains
in shear bands

The PDF of forces is also strongly affected by cohesion.
Figure 14 shows the PDFs of normal forces in shear bands for
different pressures and cohesion, where the forces are scaled by
the mean normal force, i.e., f* = f/(f). As can be seen, the
PDF of noncohesive particles (Bo = 0) is almost independent
of pressure [Fig. 14(a)], while it depends on pressure if
the cohesive forces are very strong [Fig. 14(b)]. Figure 15
displays the variations of the PDFs for different intensities of
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FIG. 11. (Color online) The mean (a) positive force (fyos) and
(b) negative force ( f,,) inside the shear band plotted against pressure

p, where different symbols represent the global Bond number (as
given in the inset).

-0.0016

cohesion, where we find that the PDF becomes broad with
increasing cohesion and Bo > 1. Therefore, strong cohesion,
which leads the system to a mechanically constrained state
induces larger fluctuations of positive and negative forces.
We note that Yang et al. [51] also found similar trends in a
static three-dimensional packing of small sized particles. They
reported that the PDF gets broader with a decrease in particle
size, i.e., with increasing cohesion. Broadening of the PDFs
was also observed by Luding et al. [76] during cooling down
of a sintered system.

The cohesive forces modify not only the shapes of the PDFs,
but also their asymptotic behavior, i.e., the structure of strong
force chains. The tails can be fitted by a stretched exponential
function [77],

P(f*) ~ e—(f*/fo)"’ 9)

with a characteristic force fy and a fitting exponent «.
Figure 16 displays the characteristic force and the exponent
against the global Bond number Bo. If Bo < 1, we obtain
fo=14+£0.1and @ = 1.6 £ 0.1, which is very close to that
predicted by Eerd et al. [77] for three-dimensional noncohesive

PHYSICAL REVIEW E 90, 022202 (2014)

Bo=0.17 —*—
Bo=0.33 ——
Bo=0.81——
0.6 F Bo=1.05—=— B
Bo=1.50 ——
Bo=2.22 —=—
0.5 Bo=2.85—e—

0 100 2IOO 3I00 4I00
2

p (Nm”)

(a)

0.5 M=o 17—

Bo=0.33 ——
Bo=0.81 ——
0.4 - Bo=1.05—*— b
Bo=1.50 ——
Bo=2.22 —=—
Bo=2.85—e—

FIG. 12. (Color online) The fractions of (a) positive and (b)
negative contacts inside the shear band plotted against pressure p,
where different symbols represent the global Bond number (as given
in the inset).

ensemble generated by MD simulations. However, for Bo > 1,
both characteristic force and fitting exponent decrease with
increasing cohesion. The decreasing fitting exponent hints at

1

Bo=0.00

Bo=0.17 —*—
Bo=0.33 ——
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;,f) inside the
shear band plotted against pressure p, where different symbols

represent the global Bond number (as given in the inset).

FIG. 13. (Color online) Normalized mean overlap
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FIG. 14. (Color online) Probability distribution of the normal-
ized force f* for (a) noncohesive Bo = 0 and (b) highly cohesive
Bo = 2.85 systems at different pressures p in the system. Different
symbols represent value of local pressure (as given in the inset).

stronger fluctuations in the force distribution. A Gaussian
tail of the probability distribution would indicate a more
homogeneous random spatial distribution of forces. The
deviation towards an exponential distribution can be linked to
an increase in heterogeneity in the spatial force distribution
as mentioned in previous studies [78-80]. Therefore, we
conclude that the tail of the PDF becomes a wider exponential
with increasing cohesion, which implies a more heterogeneous
spatial distribution, especially of the strong forces.

Finally, we observe that the fitting exponent decreases with
increasing pressure, which implies that at high pressure where
cohesion is more active due to the contact model the spatial
distribution is more heterogeneous compared to low pressure.

C. Anisotropy of force chain networks in shear bands

In the case of simple shear as developed in the split-bottom
shear cell, there are two nonzero eigenvalues of the strain
rate tensor, which are equal in magnitude but opposite in
sign, while the third eigenvalue is zero. The plane containing
the eigenvectors associated to nonzero eigenvalues is called
the shear plane, and the eigenvector with zero eigenvalue is
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FIG. 15. (Color online) Probability distribution of normalized
force f* for (a) low pressure p =50 Nm~2 (close to top) and
(b) high pressure p = 400 Nm~2 (close to bottom) in the system
for data inside the shear band. Different symbols represent the global
Bond number Bo (as given in the inset).

perpendicular to this plane (tangent to the shear band). In
the following we will refer to the eigendirections associated
to positive, negative, and zero eigenvalues as compressive,
tensile, and neutral directions, respectively.

Note that the shear band here is not vertical, and, instead,
its orientation changes with depth as shown by the schematic
in Fig. 17. In this figure, the eigendirection of the neutral
(zero) eigenvalue (green arrow) changes with height, along
with the shear band. The neutral eigendirection defines the
orientation of the shear plane (which is shown by the yellow
regions). To extract the contacts aligned along these directions
at a given pressure in the system, we first calculate the local
tensor at a given strain rate and extract the three eigendirections
n; (with i being compressive, neutral, and tensile). Next we
search for contacts with the unit contact vector n. which,
satisfy the condition |n, - ng, | = 0.9. The contacts which satisfy
the condition for the compressive eigendirection are termed
compressive; tensile and neutral contacts are defined in a
similar fashion. The forces carried by compressive, tensile,
and neutral contacts are denoted by fiom, fien, and freus
respectively.
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FIG. 16. (Color online) Fit parameters (a) « and (b) f, plotted
against Bond number Bo. Different symbols represent value of local
pressure (as given in the inset).

Since compressive and tensile directions are associated with
loading and unloading of contacts, respectively, it is intuitive
that in the absence of any external force other than shear, the
mean force would be positive in the compressive direction,
negative in the tensile direction, and almost zero in the neutral
direction.

In our system, an external load—gravity—coexists with
(external) shear. The neutral direction gets a contribution from
the additional load only, while the two principal (compressive
and tensile) directions get contributions from both shear and
gravity. Because the cohesive force is activated by unloading,
we expect that it affects the forces along the tensile direction.

Figure 18 shows the mean compressive, tensile, and
neutral forces relative to the local mean force, (. en/neu
( feom/ten/neu) — {f), plotted against pressure for different val-
ues of Bo. We find that f/  (>0) and f,, (<0) are symmetric
about zero and f,., >~ 0. The mean force along the neutral
direction is independent of Bo, as the cohesion does not affect
Jfaeu due to the absence of shear (tension) in this direction.
However, the direction-dependence increases with pressure
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Symmetry axis

Neutral direction

Tensile direction

s

Compressive\‘
direction *,

.

Ri RO

FIG. 17. (Color online) A sketch showing the shear band, shear
plane, and three eigendirections of the strain rate tensor. Gray lines
show inner and outer cylinders, while the solid brown line shows the
split; the dashed black line shows the shear band which initiates at the
split at the bottom and moves towards the inner cylinder as it moves
towards the top. The green arrow represents the eigendirection for
the neutral eigenvalue of the strain rate tensor, which is tangential to
the shear band; perpendicular to this vector is the shear plane (yellow
region), which contains the eigendirections for the compression (red
arrow) and tensile (blue arrow) eigenvalues. R;, R, and R, show the
inner, split, and outer radii, respectively.

and cohesion. When f, decreases f, . increases in order
to keep the mean overall force independent of cohesion.
We point out here that the difference between forces carried
by compressive and tensile contacts, i.e., the anisotropy of
forces becomes more pronounced with increasing pressure
and cohesion. This is consistent with the visual observation
of force chains of negative and positive forces for different
intensity of cohesion, as shown in Fig. 8.

Next, we study the PDFs of forces in the compressive,
tensile, and neutral directions. Figure 19 displays the PDFs
along each direction for noncohesive Bo =0 and highly
cohesive Bo = 2.85 systems, where the forces along different
directions are normalized by the overall mean force. In a

T T T T
0.0015 ¢ Compressive contacts E
0.001 f |
= 0.0005 1
] —— f
= ok i Neutral contacts_1
3 = ———
£ 0.0005 [-Bo=0.00 .
< Bo=0.17 —%—
S~ Bo=0.33 ——
-0.001 FBo=031 —o— .
Bo=1.05 —o— Tensile contacts
Bo=1.50 —&—
-0.0015 FBo=2.22 —=— ]
Bo=2.85 —e—

0 100 200 300 400
-2
p (Nm”™)

FIG. 18. (Color online) Mean forces in different eigendirections
of the strain rate tensor, relative to the overall mean force plotted
against the local pressure p in the system. Different symbols represent
the global Bond number Bo (as given in the inset).
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FIG. 19. (Color online) Probability distributions of normalized
forces f* = f/(f) in the compressive, tensile, and neutral directions
inside the shear bands for high pressure in (a) noncohesive Bo = 0
and (b) highly cohesive Bo = 2.85 systems. The dashed-line curves
show the PDFs of the overall normalized forces, while the average
force is indicated by the vertical lines.

noncohesive system [Fig. 19(a)], we observe that for weak
forces, i.e., f* < 1, the PDF along the tensile direction is
higher compared to that for the compressive direction. This
is intuitive, as the majority of weak contacts will be aligned
along the tensile direction. However, for f* > 1the PDF along
the compressive direction becomes higher compared to that
along the tensile direction, as the majority of contacts along
the compressive direction should carry strong forces [81]. For
a highly cohesive system [Fig. 19(b)], a similar behavior is
observed for strong positive forces f* > 1. While for weak
positive and whole range of the negative forces, the PDF along
the tensile direction is higher in comparison to the compressive
direction. The PDFs of forces in the neutral direction lie be-
tween those in compressive and tensile directions, suggesting
a close-to-average distribution of forces. It is interesting to
note that both positive and negative forces are present in all
directions. However, the positive and negative forces dominate
in the compressive and tensile directions, respectively.

Figure 20 shows the variations of the PDFs along com-
pressive and tensile directions for different values of Bo. If
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FIG. 20. (Color online) Probability distributions of normalized
forces in (a) compressive (f* = f./(f)) and (b) tensile (f* =
f:/{f)) directions inside the shear bands for high pressure. Different
symbols represent different values of the global Bond number Bo as
given in the inset.

Bo < 1, the PDFs collapse on top of each other. However, the
PDFs get wider with increasing cohesion above Bo = 1. Such
widening is more prominent for positive and negative forces in
the compressive and tensile directions, respectively. Again, we
confirm that strong cohesion leads to an increase of positive
and negative forces in the compressive and tensile directions,
respectively. Therefore, as the force distributions along the
principal directions get more heterogeneous with increasing
cohesion for Bo > 1, the heterogeneity of the overall force
structure increases.

Results in this section suggest that for low Bo, external load
and shear dominate and govern the distribution of forces along
compressive and tensile directions. The forces can adapt to
external shear, and the particles rearrange and can avoid very
large forces. In contrast, for high Bo, cohesion dominates over
external forcing: The contact forces still respond to compres-
sion and tension, but their rearrangements are hampered by
cohesion. Due to the sticky nature of cohesive forces, rear-
rangements of the contact network become more difficult, so
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very large contact forces as well as strong sticking forces occur
together, leading to a more heterogeneous contact network.

IV. DISCUSSION AND CONCLUSION

In this paper, we have studied the effect of cohesion on
shear banding in dry cohesive powders. The global Bond
number, Bo, can be used to quantify how strong cohesive forces
are relative to the forces due to external compression, where
Bo =~ 1 very well predicts the transition from a free-flowing,
noncohesive system to a cohesive system. Interestingly, many
other features of the system also show a transition at Bo &~ 1.
Using local Bo has no big advantage in this system but is
recommended in general.

A. Shear band

Width and center position of the shear band are fairly
unaffected by cohesion for Bo < 1; only for Bo > 1 cohesion
affects the flow behavior. Since cohesive forces tend to keep
the particles in contact to stay connected for longer time; as
consequence, for Bo> 1, the velocity gradient decreases so that
the width of the shear band increases with increasing cohesion.
Cohesive forces assist the collective motion of particles, imply-
ing that attractive forces work against the localization of shear.

B. Forces and their direction dependence

The mean force (f)(p) (with p & H — z) is found to be
independent of cohesion, just like the number of contacts. With
increasing Bo, stronger attractive negative forces are possible
at contacts (which is intuitive). However, these negative forces
must be balanced by some stronger positive forces to maintain
the same overall mean force.

Due to the planar shear that is established in the steady
state, compressive and tensile contact forces are induced in
compressive and tensile eigendirections of the local strain rate
tensor, respectively, while along the third, neutral, direction
neither compression nor tension take place. The mean force
along the neutral direction remains unaffected by cohesion,
which implies that cohesive forces in the system are activated
by shear; more specifically, cohesive forces are activated by the
tension in the respective (eigen-)direction. In other words, only
about one-third of all contacts features considerable strain-
induced cohesion.

The mean force carried by contacts along compressive
and tensile directions is symmetric about the mean overall
force. For Bo < 1, this anisotropy of the force network is
independent of cohesion, while for Bo > 1 the anisotropy in
the force network increases with cohesion. Macroscopically,
this anisotropy in force is directly related to the shear stress;
the trend in force anisotropy is very similar to the trends found
in the shear stress in previous work [53].

C. Force probability distribution

Since granular systems are known to be heterogeneous
in nature, we also analyzed the effect of cohesion on the
force probability distributions. For noncohesive and weakly
cohesive systems, no prominent effect of pressure on force
distributions could be seen. For strong cohesion Bo > 1,
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pressure affects the distribution of forces by making the
tails wider, and more symmetric, as compared to the cases
with Bo < 1. Splitting up the force distributions along the
compressive and tensile directions reveals that, for higher
Bo, cohesion broadens the force distributions along the
tensile direction, which in turn affects the distribution along
the compressive direction, which also becomes wider. This
suggests an increase in heterogeneity in forces for Bo > 1
along all directions, compressive, tensile, and neutral. For low
Bo, the kinematics of shear helps the particles to rearrange and
avoid very strong forces. In contrast, for high Bo, cohesion
induces stickiness at the contacts so that rearrangements are
suppressed, increasing the heterogeneity of the system, as
evidenced by the wider tails of the probability distributions.

D. Main message

In conclusion, both the flow profiles (shear banding) and
the force structure are unaffected by cohesion for Bo < 1. In
contrast, for Bo > 1, cohesion strongly affects the flow behav-
ior, the anisotropy, and the internal force structure. Attractive
forces thus reduce shear localization for Bo > 1 and promote
heterogeneity of the force network. These two observations
are consistent with previous studies with attractive forces
concerning the rheology [30] and force structures for static
packings [51].

As speculation, for a wider view, our results can be
interpreted as follows: In the language of statistical mechanics,
the global Bo corresponds to a control parameter and Bo = 1
to a critical point. The changes in the characteristic force
and the fitting exponents show a weak pressure dependence,
which might be better captured using a pressure-dependent,
local Bond number. In our case, the macroscopic properties
(position and width of the shear bands), the anisotropy, and
the microstructural signatures (the tails of the PDFs) gradually
increase for Bo > 1. This continuous increase implies a
second-order transition; however, confirming this would need
a further detailed study. In addition, experiments performed
with controlled, pressure-dependent cohesive strength would
be exciting to confirm and validate our results. Finally, it would
be interesting to reproduce our findings with different contact
models, e.g., capillary bridges or simpler cohesive contact
models with no pressure dependence.
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APPENDIX A: MAXIMUM ATTRACTIVE FORCE

The extreme loading and unloading branches are reflected
by the outer triangle in Fig. 1. Starting from a realized
maximum overlap during loading, dmax < 8P ., the unloading

022202-12



EFFECT OF COHESION ON SHEAR BANDING IN ...

happens within the triangle, as can be characterized by a branch
with stiffness,

ky = ki + (kp — k1)Smax /3, (AL)

max

(as given in Ref. [58]). The elastic, reversible force along
this branch is given by k»(8 — &g) [59,64]. The intermediate
stiffness k, follows from a linear interpolation between k; and
k,, as explained in Refs. [59,64]. The corresponding maximal

attractive forceis f, = —k.0y = —kc%émax.

that the maximal overlap 8P . is realized under a given external
(compressive) pressure pma.x, then we can infer p:i.x = ?‘T“,
with pressure p being p = k16max/A, A being a represedn-
tative area. This leads to realized maximal attractive force
being

If we assume

(ko —ki) p ,
fon=— o T E) P L (A2)
Using Eq. (A1) in Eq. (A2), we get
Puax (_P_ )2
_ oG A3
m — c .
ke + ki + (kp — ki)

This definition can be used to define a local Bond number as
Boj(p) = fm(p)/{f(p)), where mean force at that pressure is
discussed in Sec. II C. This Bond number is compared with
various other definitions in Sec. I C.
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APPENDIX B: COHESIVE FORCE MAGNITUDE

In order to get a feeling for the magnitude of the adhesion
forces in experimental systems, we resort to Ref. [82] and
estimate the attractive force as

Hd -10 -9
Fuw=7—>~17x100"N or 17x107N,

2412

for SiO, particles with diameters d = 100 um or 10 um and
Hamaker constant H = 6.6 x 10729 J, minimal interparticle
distance [ = sd ~ 4 x 107*d (of the order of surface rough-
ness for 9-um particles of high quality is actually a factor 10
smaller [83], while realistic roughness can be even larger; the
value of s is just a rough estimate). Due to this assumed relative
magnitude of surface roughness, the adhesive force magnitude
increases linearly with the (primary) particle diameter, while
the gravitational force on the same particles,

F,=mg~10°N or 107''N,

decreases with the third power of the diameter, i.e., much faster.
So while 0.1-mm-size particles are dominated by gravity,
smaller 10-u-size particles are dominated by their adhesion
forces, as reflected by the respective (single-particle) gravity
Bond numbers,

H

2

Bo, = Faw/F, = =17x107% or
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