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Attenuation of excitation decay rate due to collective effect
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We study a series of N oscillators, each coupled to its nearest neighbors, and linearly to a phonon field through
the oscillator’s number operator. We show that the Hamiltonian of a pair of adjacent oscillators, or a dimer, within
the series of oscillators can be transformed into a form in which they are collectively coupled to the phonon field
as a composite unit. In the weak coupling and rotating-wave approximation, the system behaves effectively as
the trilinear boson model in the one excitation subspace of the dimer subsystem. The reduced dynamics of the
one excitation subspace of the dimer subsystem coupled weakly to a phonon bath is similar to that of a two-level
system, with a metastable state against the vacuum. The decay constant of the subsystem is proportional to the
dephasing rate of the individual oscillator in a phonon bath, attenuated by a factor that depends on site asymmetry,
intersite coupling, and the resonance frequency between the transformed oscillator modes, or excitons. As a result
of the collective effect, the excitation relaxation lifetime is prolonged over the dephasing lifetime of an individual
oscillator coupled to the same bath.
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I. INTRODUCTION

When the individual members of a group of oscillators,
assumed to be unrelated to each other, are coupled separately
to a common radiation field that is coherent, the field will drive
these oscillators to radiate in a coherent fashion, resulting
in an amplification of stimulated radiation. If this group of
oscillators is treated as a single unit, interesting collective
aspects such as superradiance will emerge [1], even if the field
is not coherent.

Collective effects can also be introduced explicitly to the
system by coupling the oscillators to each other, and in the
simplest case, to their nearest neighbors only [2,3]. The pair of
nearest neighbors, or a dimer, forms the smallest collective unit
within the group. When the coupling between the oscillator is
strong enough, the dimer can be regarded as a composite unit
collectively coupled to the field, and its simpler dynamics gives
us insights into the collective effects of the group of oscillators.

The system we consider is used to describe the transfer
of energy in the form of electronic excitations in the light-
harvesting complex in photosynthetic systems [4], the transfer
of vibrational energy of the amide-I bonds in peptide groups
along alpha-helix protein chains [5,6], and the formation and
transfer of polarons in deformable media [2,3,7]. In contrast
to the common practice of introducing the excitonic basis
from the outset to the coupled oscillators [4,8], we first carry
out a transformation on the field basis [7,9,10], and only after
that do we introduce the exciton basis. Apart from introducing
the reorganization energy, the transformation on the field
replaces the original oscillator-field interaction by a new one in
which the pair of adjacent oscillators are collectively coupled
to the field.

In the weak coupling and rotating-wave approximation
[11], the transformed system then reduces to the trilinear boson
model [12–14]. The quantum Markovian master equation
of this model can be solved analytically [15]. The reduced
dynamics of the dimer subsystem permits a set of metastable
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states, and possesses a longer relaxation lifetime than the
dephasing time of the individual oscillator coupled to the field
in a similar way.

The results give us interesting aspects behind the mecha-
nism of excitation energy transfer in photosynthetic systems
[16,17], and may play a role in the formation of solitons and
quantum thermal sound modes in molecular chains [5,6,18].
Closely related results were also found in the spin-boson model
applied to photosynthetic systems [19], double quantum dot
charge qubit systems [20], and by taking the coherent superpo-
sition of excitations and vibrational states into consideration
[21].

II. THE HAMILTONIAN

The Hamiltonian of the system is [2–7]

HN = Hosc +
∑

q

ωqb
†
qbq

+
∑

q

N∑
m=1

ωqχ
(m)
q a†

mam(b−q + b†q), (1)

Hosc =
N∑

m=1

ωma†
mam +

N−1∑
m=1

Jm,m+1(a†
mam+1 + a

†
m+1am), (2)

with units � = c = 1. This Hamiltonian describes the transfer
of excitations between the oscillators. The excitation at site m

is represented by an oscillator with creation and annihilation
operators, a

†
m and am, respectively, with frequency or site

energy ωm. The oscillators are coupled to their adjacent neigh-
bors with strength Jm,m+1. When the underlying molecules at
each site displace away from their equilibrium positions, they
give rise to phonon (field) modes, created and annihilated by
operators b

†
q and bq , respectively, where q = ωq/v is the wave

vector, and v is the speed of sound. The operators satisfy the
usual commutation relation [am,a

†
m′ ] = δm,m′ , and similarly

for bq,b
†
q , whereas am,a

†
m and bq,b

†
q mutually commute. The

excitations are coupled to the phonons linearly and modulated
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by the site energy ωqχ
(m)
q , with a q-dependent dimensionless

coupling constant χ (m)
q at site m. To ensure the hermiticity

of the Hamiltonian, χ (m)
q is required to satisfy the condition

χ (m)∗
q = χ

(m)
−q , where ∗ denotes complex conjugation.

There are two modes of excitation energy transfer in this
system [4], i.e., the incoherent hopping of excitations between
sites described by the Förster theory and the coherent wavelike
energy transfer over multiple sites in terms of excitons
described by the master equation. The latter description is
more appropriate when the intersite coupling J12 is strong.
This is the mode of energy transfer that we are interested in
when the collective effect between the oscillators becomes
more prominent due to strong intersite coupling.

A. Transformation in phonon basis

We first subject the Hamiltonian to the unitary transforma-
tion [7,9,10]

U = exp

[
−

∑
q

N∑
m=1

χ (m)
q a†

mam(b−q − b†q)

]
. (3)

By labeling the transformed operator as O ′ ≡ UOU †, we find
that

a′
m = am exp

[∑
q

χ (m)
q (b−q − b†q)

]
, (4)

b′
q = bq −

N∑
m=1

χ (m)
q a†

mam. (5)

The transformation is sometimes said to dress up the oscillator,
where the bare oscillator is now surrounded by a cloud of
phonons [7,22]. This process leads to a renormalization on the
oscillator’s bare frequency (14). As a result, we find that

a′†
ma′

m = a
†
mam, (6)

which implies that the site or number basis labeled by
|n1,n2, . . .〉 is not altered, though the site energies are renor-
malized, where nm is the occupation quantum number of the
oscillator at site m. On the other hand, the phonon basis is
altered. The number operator of phonon transforms as

b′†
q b′

q = b†qbq −
N∑

m=1

χ (m)
q a†

mam(b−q + b†q) +
N∑

m=1

∣∣χ (m)
q

∣∣2
a†

mam

+
N∑

m,m′=1,m�=m′
χ (m)

q χ (m′)∗
q a†

ma
†
m′amam′ . (7)

The intersite coupling terms between adjacent oscillators
transform into

a′†
ma′

m+1 + a
′†
m+1a

′
m

= a†
mam+1 exp

[∑
q

�(m)
q (b−q − b†q)

]

+a
†
m+1am exp

[
−

∑
q

�(m)
q (b−q − b†q)

]
, (8)

where

�(m)
q ≡ χ (m+1)

q − χ (m)
q ≡ ηmχ (m)

q (9)

denotes the site asymmetry between two adjacent sites. We
assume that the difference can be represented by a fraction of
χ (m)

q from a reference site. A small ηm can then be used as
a dimensionless expansion parameter. In general, ηm can be
complex.

Under the transformation, the oscillator-phonon interaction
becomes

a′†
ma′

m(b′
−q + b′†

q ) = a†
mam(b−q + b†q) − 2χm∗

q a†
mam

− 2
N∑

m′=1

χ (m′)∗
q a†

ma
†
m′amam′ . (10)

We will assume that �(m)
q is small enough so that the

coupling between adjacent oscillators can be approximated
by the leading terms in the expansion of the exponentials in
Eq. (8). As a result, we obtain the Hamiltonian

H ′
N = H ′

osc +
∑

q

ωqb
†
qbq

−
∑

q

N∑
m,m′=1

ωqχ
(m)
q χm′∗

q a†
ma

†
m′amam′

+
∑

q

N∑
m=1

ηmV (m)
q (a†

mam+1 − a
†
m+1am)(b−q − b†q),

(11)

H ′
osc =

N∑
m=1

ω′
ma†

mam+
N−1∑
m=1

Jm,m+1(a†
mam+1 + a

†
m+1am), (12)

where

V (m)
q ≡ Jm,m+1χ

(m)
q , (13)

and the site frequency becomes

ω′
m ≡ ωm −

∑
q

ωq

∣∣χ (m)
q

∣∣2 = ωm − 2λm, (14)

in which

λm ≡ 1

2

∑
q

ωq

∣∣χ (m)
q

∣∣2
(15)

is the reorganization energy [4,8]. Notice that the original
oscillator-phonon interaction cancels out, and is replaced by
a new interaction arising from the intersite coupling between
adjacent oscillators [see the third line of Eq. (11)]. The term on
the second line of Eq. (11) with a

†
ma

†
m′amam′ is a many-body

term. It can be dropped when we restrict our consideration to
the subspace of no more than one excitation [7]. This subspace
consists of the site basis

|0〉 ≡ |0,0,0, . . .〉, |1〉 ≡ |1,0,0, . . .〉, |2〉 ≡ |0,1,0, . . .〉,
(16)

and so on, where the positive integer in |m〉 denotes an
excitation at site m.

022142-2



ATTENUATION OF EXCITATION DECAY RATE DUE TO . . . PHYSICAL REVIEW E 90, 022142 (2014)

B. Diagonalization of dimer subsystem

We will now focus our attention on the dynamics of two
adjacent sites, i.e., a dimer subsystem, with the phonon field.
Since the adjacent oscillators are coupled to each other, we will
later see that they can be effectively viewed as a composite unit
collectively coupled to the phonon field. For simplicity, we
label the adjacent oscillators generically by 1 and 2, where 1
denotes the oscillator with a greater frequency among the two.
Setting N = 2 in Eqs. (11) and (12), and dropping operators
with index 3 that belong to another dimer, we denote the
resulting system Hamiltonian by H ′.

The dimer’s Hamiltonian

H ′
0 = ω′

1a
†
1a1 + ω′

2a
†
2a2 + J12(a†

1a2 + a
†
2a1) (17)

can be diagonalized by a complex rotation through an angle φ

Uφ = exp(−iφL2) (18)

along the operator

L2 = 1

2i
(a†

1a2 − a
†
2a1). (19)

This operator forms one of the algebra elements of the bosonic
representation of the SU(2) [23] (see Appendix A). This
rotation does not affect the phonon operators, nor does it affect
the oscillator-phonon interaction term that is proportional to
L2, as can be seen directly from Eq. (11). Subjecting H ′

0 to the
transformation UφH ′

0U
†
φ , we find that it can be diagonalized

by choosing the angle as

φ0 = tan−1 −2J12

ω′
1 − ω′

2

(20)

(see Appendix A).
Next, we introduce the exciton operators defined by Ai ≡

U
†
φ0

aiUφ0 , and similarly for their Hermitian conjugate, where

the index i = 1,2 from now on. Note the order of U
†
φ0

,Uφ0 in the
definition of Ai is different from the previous transformation.
We find that

A1 = a1 cos(φ0/2) + a2 sin(φ0/2), (21)

A2 = −a1 sin(φ0/2) + a2 cos(φ0/2). (22)

The exciton operators obey the commutation relation
[Ai,A

†
j ] = δij . The exciton basis consists of |ei〉 ≡ U

†
φ0

|i〉,
which satisfies the normalization condition 〈ei |ej 〉 = δij . A

†
i

and Ai raise and lower the exciton states, respectively,

A
†
i |e0〉 = |ei〉, Ai |ej 〉 = δij |e0〉. (23)

Notice from Eq. (20) that in the limit J12 � ω′
1 − ω′

2, φ0 →
π/2, both A1,A2 consist of equal weights of a1,a2 [see
Eqs. (21) and (22)].

In terms of the exciton operators, the system Hamiltonian
becomes

H ′ = H ′
0 +

∑
q

ωqb
†
qbq + η

∑
q

Vq(L+b−q + L−b†q)

− η
∑

q

Vq(L−b−q + L+b†q), (24)

H ′
0 = ω+A

†
1A1 + ω−A

†
2A2, (25)

where

L+ ≡ A
†
1A2, L− ≡ A

†
2A1 (26)

are the raising and lowering operators for the composite system
of two excitons, in which both excitons are collectively viewed
as a unit. We have omitted the index 1 on η1 and V (1)

q for
simplicity. Notice that when the site asymmetry vanishes ηm =
0, though H ′ for a dimer system (24) can be diagonalized
up to a many-body term, but not H ′

N (11) involving all the
oscillators, due to the coupling between the constituents of
different dimers, in H ′

osc (12).
When we assume ω′

1 > ω′
2, and choose the angle to lie in the

range −π/2 � φ0 � π/2, the frequency of exciton 1 remains
greater than that of exciton 2, ω+ > ω−. Their frequencies are
explicitly given by

ω± ≡ ω′
1 cos2(φ0/2) + ω′

2 sin2(φ0/2) ∓ J12 sin φ0

= 1
2 (ω′

1 + ω′
2) ± 1

2

√
(ω′

1 − ω′
2)2 + 4J 2

12. (27)

The site basis is related to the exciton basis explicitly by

|1〉 = cos(φ0/2)|e1〉 + sin(φ0/2)|e2〉, (28)

|2〉 = − sin(φ0/2)|e1〉 + cos(φ0/2)|e2〉, (29)

while the vacuum state remains invariant |e0〉 = U
†
φ0

|0〉 = |0〉.
Since ω+ > ω−, the exciton-phonon coupling in the second

line of Eq. (24) describes virtual processes, i.e., where exciton
1 and the phonon are simultaneously excited and created, or
simultaneously relaxed and annihilated, respectively. These
are fast oscillating terms that average to zero and are usually
neglected under the rotating-wave approximation [11]. If we
have the opposite situation ω+ < ω−, the exciton-phonon
coupling terms in the first line of Eq. (24) will now describe
virtual processes and can be dropped instead under the
rotating-wave approximation.

As a result of two unitary transformations, we arrive at
an effective Hamiltonian where both excitons are collectively
coupled to the phonon. It has the same form as the trilinear
boson model that is used to describe the processes of paramet-
ric amplification and frequency conversion in quantum optics
[12–14]. By restricting our consideration to its one-particle
subspace, it is formally the same as the Friedrichs-Lee model
[24,25] that is used to study resonances in unstable systems
[24,26–28], and renormalizable field theory [25].

III. SOLUTION OF THE MARKOVIAN
MASTER EQUATION

The reduced dynamics of a pair of excitons in a thermal bath
of phonons interacting through the trilinear boson model has
the Kossakowski-Lindblad’s form in the weak coupling limit,
and can be solved analytically [15]. The exciton subsystem
density matrix ρ evolves according to the equation ∂ρ/∂t =
−Kρ, where [15]

K = K0 + Kd (30)

can be decomposed into a unitary part,

K0 ρ = i[H ′
0,ρ], (31)
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and a dissipative part,

Kdρ = − 1
2γ n̄0(2L+ρL− − L−L+ρ − ρL−L+)

− 1
2γ (n̄0 + 1)(2L−ρL+ − L+L−ρ − ρL+L−).

(32)

In the unitary part K0, there are renormalizaions to the exciton
frequencies ω± [see Eqs. (B1)–(B4)] that we will ignore in
our discussion since they do not affect our results. We have
also dropped a many-body term in K0 [15] since it does
not contribute to the reduced dynamics in the one excitation
subspace we consider. We further assume that the phonon bath
has the Bose-Einstein distribution

n̄0 ≡ 1

exp(ω0/kT ) − 1
, (33)

where T is the temperature of the phonon bath and ω0 is the
resonant frequency between the pair of excitons

ω0 ≡ ω+ − ω−

=
√

[ω1 − ω2 + 2λ1|η|(2 cos θ + |η|)]2 + 4J 2
12, (34)

in which the angle θ is defined by

cos θ ≡ Re(η)

|η| . (35)

To obtain Eq. (34), we have made use of the relation

λ2 − λ1 = λ1|η|(2 cos θ + |η|), (36)

deduced from Eq. (15) and χ2
q = (1 + η)χ1

q (9). The decay
constant of the reduced dynamics has the form [15]

γ ≡ 2π |η|2
∑

q

|Vq |2δ(ωq − ω0) (37)

= αγd, (38)

where

α ≡
(

|η|J12

ω0

)2

, (39)

and

γd ≡ 2π
∑

q

ω2
q

∣∣χ (1)
q

∣∣2
δ(ωq − ω0) (40)

is the dephasing constant of an individual oscillator at site
1 immersed in a phonon bath with the oscillator-phonon
interaction in Eq. (1). In the case of zero site asymmetry or
vanishing intersite coupling, the exciton and phonon decouple
from each other and there is no transition between the exciton
states. α is reflection symmetric with respect to θ since ω0

depends on cos θ (34).
The attenuation factor α is proportional to the square of

the ratio between the time scale of oscillation between the
excitons, 1/ω0, and the time scale of exciton transfer due to
intersite coupling, 1/J12. As a result of the attenuation, the
time scale of exciton decay 1/γ is prolonged by a factor of
1/α over the time scale of dephasing at the individual site,
1/γd . In principle, each site has its own value of γd and α.
Hence, γ has different values for different pairs of excitons.

We note that it is common in the studies on this system
to introduce the excitonic basis from the beginning prior
to the unitary transformations [4,19,29]. Consequently, the
Hamiltonian contains an additional longitudinal or diagonal
term of the form

∑
q,m ωqχ

(m)
q A

†
mAm(b−q + b

†
q) in Eq. (11).

This term leads to fluctuation in the excitons’ energies and
gives rise to an additional pure dephasing contribution to
the relaxation of the total relaxation rate in the Markovian
master equation [19,29]. But this contribution does not appear
explicitly in our formulation (38).

In the weak coupling approximation, to derive the Marko-
vian master equation, we require the factor α (39) to be small.
When the intersite coupling is comparable to the excitonic
transition energy ω0, such as in the photosynthetic systems
discussed in Sec. IV A, this condition can still be fulfilled if
the site asymmetry |η| is relatively small.

In the reduced dynamics of K (30), the total excitation
quantum number is a constant of motion. The underlying Li-
ouville space therefore separates into disconnected subspaces
according to this quantum number [15]. Each subspace evolves
independently of each other and behaves as a finite-level
system. In particular, the one exciton subspace exhibits a
dynamics similar to that of a two-level system. Each subspace
separately possesses a nondegenerate equilibrium state. They
are metastable states before processes that we have ignored
so far, such as the virtual processes, that return the excitations
to the vacuum state. Apart from a prolonged relaxation time
arising from the collective effect of the coupled oscillators, the
excitation energy transfer in this system is also facilitated by
the existence of a metastable state in each subspace that further
prolongs the excitation lifetime.

When the excitations are fermionic in nature, we can replace
the bosonic operators A

†
i ,Ai by the Pauli spin matrices σ

(i)
± =

(σ (i)
1 ± iσ

(i)
2 )/2 for exciton i, respectively. They obey the

commutation relation [σ (i)
+ ,σ

(i)
− ] = σ

(i)
3 , the anticommutation

relation {σ (i)
+ ,σ

(j )
− } = δij I , and they anticommute with one

another, {σ (i)
± ,σ

(j )
± } = 0. The expressions for the Ai’s are then

also valid for the σ (i)’s.

IV. APPLICATIONS OF THE REDUCED DYNAMICS

A. Photosynthetic systems

In photosynthetic systems, such as the light-harvesting
complex in purple bacteria [30] and the Fenna-Matthews-
Olson (FMO) pigment protein complex in green sulfur bacteria
[31], the basic light-harvesting unit consists of a group of
bacteriachlorophyll pigments held by an underlying protein
structure. Photons from sunlight excite electrons in these pig-
ments. The excitation energy then transfers from one pigment
to the other until it finally reaches the reaction center, where
charge separation occurs and the excitation energy is kept in
chemical compounds. It was found that the energy transfer
process in photosynthetic systems is extremely efficient. With
the discovery of the long-lived quantum coherence in this
system, it was suggested that oscillations in the site populations
as a result of wavelike energy transfer increase the probability
of energy transfer to the reaction center [16].
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Electronic excitations in the pigments are modeled by the
excitations of oscillators at each site. The excitations transfer
across the pigments to the reaction center while the process is
attenuated by the interactions with phonon modes arising from
the underlying protein structure that carries them. It was found
that the correlation of the bath modes between different sites is
weak [32]. This occurs, for example, when the pigments are far
apart compared to the bath correlation length. The bath modes
at each site can then be treated as independent [33,34]. By treat-
ing the bath modes as independent oscillators and expanding
the bath operators in terms of their normal modes, we obtain
the Hamiltonian in Eq. (1). For a low sunlight intensity, we can
restrict our consideration to the one excitation subspace only.

In the usual studies on photosynthetic systems, the influence
of the bath on the system is often characterized by the spectral
density Jm(ω) ≡ ∑

q ω2
q(χ (m)

q )2δ(ω − ωq) [4], which is usually
assumed to be the same for different sites [8,29,31], whereas in
our study, we consider χ (m)

q to be site dependent. The difference
in the influence of the bath on different sites is encoded in the
site asymmetry parameter ηm. We can then estimate |ηm| using
experimental results. In the literature, the site dependence
is sometimes considered by assuming that the correlation
functions between different sites decays exponentially with
respect to intersite distance [31,35].

As an example, let us consider the chlorophyll pigments
labeled by 1 and 2 in the FMO pigment protein complex of the
green sulfur bacteria Chlorobium tepidium [31]. The pigment
2 with greater site energy is labeled by i = 1. We note that
we are extending our result to photosynthetic systems, even
though the intersite coupling, J12 = 96 cm−1, is comparable
to the site energy difference, ω1 − ω2 = 120 cm−1 [31], so far
as |η| is small enough so that the weak coupling assumption
is still valid (see the discussion in Sec. III). We assume the
reorganization energy λ1 = 35 cm−1 [17].

In Fig. 1, we plot 1/α against |η| for a few values of θ lying
in 0 � θ � π , and we recall that α is reflection symmetric
with respect to θ [see Eqs. (39) and (34)]. Each curve has a
minimum. The second and third rows of Table I are lists of their
coordinates. The table shows that 1/α are greater than 1 for
all curves. Hence, in general, the relaxation time scale of this
dimer subsystem is longer than the site dephasing time scale

0 0.5 1 1.5 2 2.5 3 3.5 4
η

5

10

15

20

25
1 α

FIG. 1. 1/α vs |η| for a few θ , with parameters ω1 − ω2 =
120 cm−1, J12 = −96 cm−1 [31], and λ1 = 35 cm−1 [17]. Solid,
long-dashed, short-dashed, dotted-dashed, and dotted lines represent
θ = 0, π/4, π/2, 3π/4, and π , respectively.

TABLE I. Coordinates of the minimum of 1/α for a few θ in
Fig. 1. Using the same parameters in Fig. 1, γd = 50 fs and 1/γ12 =
1100 fs [36], the fourth row is the smallest real solution of |η| when
1/α = γd/γ12 = 22, and the last row is λ2 calculated from Eq. (36)
in cm−1.

θ 0 π/4 π/2 3π/4 π

|η|min 1.64 1.68 1.80 2.05 2.24
(1/α)min 13.2 10.4 5.26 2.10 1.33
|η| 0.71 0.63 0.53 0.47 0.45
λ2 (cm−1) 102 80 45 19 11

1/γd by a factor 1/α. We also note that for equal |η|, greater
Re(η) = |η| cos θ results in a longer relaxation lifetime for the
excitons.

To get an estimate of |η|, let us use the experimental
values for the relaxation lifetime between pigments 1 and 2,
1/γ12 = 1100 fs [36], and a site dephasing time of 1/γd = 50
fs [17], yielding γd/γ12 = 22. We note that the value ω1 −
ω2 = 120 cm−1 we use is slightly different from 160 cm−1 in
Ref. [36]. Setting 1/α = γd/γ12 (38) gives a quartic equation
in |η|. The fourth row of Table I lists the smallest real solution
of |η| for various θ .

Using Eq. (36), we can further estimate λ2. The results are
listed in the last row of Table I for corresponding |η| and θ ,
with λ2 ranges from 11 to 102 cm−1.

In Sec. III, we have mentioned that the excitonic picture
for the excitation energy transfer is applicable for strong
intersite coupling. In the opposite case when the intersite
coupling is much smaller than the difference in the site energies
ω1 − ω2, the use of the excitonic picture becomes problematic
since energy transfer now moves into the incoherent hopping
mode. As an example, let us consider pigments 1 and 3
of the same protein pigment complex. Pigment 3 with a
smaller site energy than pigment 1 is labeled by i = 2.
Using ω1 − ω2 = 200 cm−1,J12 = 5.0 cm−1 [31], we have
a small ratio of J12/(ω1 − ω2) = 0.025. In the limit where
both λ1/(ω1 − ω2) and J12/(ω1 − ω2) → 0, we obtain from
Eqs. (39) and (34),

1

α
→ 1

|η|2
(

ω1 − ω2

J12

)2

. (41)

The experimental value for the relaxation lifetime is 1/γ13 =
700 fs [36]. If we assume the same site dephasing constant
time scale as in the previous example, 1/γd = 50 fs, we
obtain γd/γ13 = 14. The solution to Eq. (38) using Eq. (41)
gives an extremely large |η| = 10.7. This indicates that the
excitonic picture is not appropriate in describing excitation
energy transfer when J12/(ω1 − ω2) � 1.

The time evolution of the site populations can be worked
out readily [15]. The results are listed in Appendix C. We note
that a longer relaxation lifetime will naturally lead to longer
oscillations in the site populations. Furthermore, because of the
existence of a metastable state in the exciton basis, although the
correlation component of the density matrix between excitons
1 and 2 vanishes asymptotically (C7), the real part of the
correlation between sites 1 and 2 (C14) remains finite.
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A closely related work [19] also obtained a longer relaxation
lifetime for FMO photosynthetic complexes using the spin-
boson model for independent bath oscillators, where the bath
is characterized by the spectral density that is Ohmic.

B. Alpha-helix protein molecular chain

It is interesting to apply the result to the transfer of
vibrational energy in an alpha-helix protein molecular chain,
which consists of a series of amide-I peptide groups. The
vibrational energy transfers along the molecular chain through
dipole-dipole interactions between the bonds in the groups
[5,6]. As the vibrational modes (vibrons) travel along the chain,
they are modulated by acoustic modes (phonons) created by the
displacement of the molecules from their equilibrium positions
in the underlying protein chain.

Assuming that the amide-I peptide groups lie on a regular
lattice, we assume χ (m)

q = χq exp(imqa) [7], where a is
the distance between adjacent peptide groups. In the long
wavelength limit, qa � 1, we obtain

χ (2)
q − χ (1)

q = 2i sin(qa/2)χqe
3qai/2

≈ iqaχqe
3qai/2. (42)

Therefore, |η| ≈ qa = ωqa/v, where v is the speed of sound
in the lattice. At resonant frequency ω0, we obtain the decay
constant

γhx = αhxγd,hx, (43)

αhx ≡
(

a

v
J12

)2

, (44)

where γd,hx is the dephasing rate at the individual site. γd,hx

has a similar expression to Eq. (40), except that there is no site
dependence on χq . In this case, αhx is proportional to the square
of the ratio between the time scale for sound wave to traverse
adjacent sites, a/v, and the time scale for the vibrational
mode to move from one site to another via intersite coupling,
1/J12. Using the values J12 = 7.8 cm−1, a = 4.5 Å, and
v = 4000 m/s at a physiological temperature of 310 K [6,18],
we obtain a longer relaxation time scale of about 1/α = 36.6
times that of the dephasing time scale of the individual site
in a phonon bath. Such a prolonged relaxation time scale
and the existence of a metastable state in each fixed exciton
number subspace may facilitate the formation of solitons [5,6]
or quantum thermal sound modes in this system [18].

V. CONCLUSION

We show that the Hamiltonian of the dimer subsystem
within a series of N oscillators coupled to their nearest
neighbors, and to the phonon field produced by the displace-
ment of the underlying molecular structure, can be reduced
to the trilinear boson model under the weak coupling and
rotating-wave approximation. Due to the collective effect
arising from the coupled adjacent oscillators and the phonon
bath, there exist metastable states in the reduced dynamics of
the dimer subsystem, and a prolonged relaxation lifetime of the
excitations over the dephasing time of the individual uncoupled
oscillator. These properties can facilitate the transfer of
excitation energy in the system, such as in photosynthetic

complexes. They may also play a role in the formation of
solitons or quantum thermal sound modes in molecular chains.
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APPENDIX A: SU(2) BOSONIC REPRESENTATION

The set of operators

L1 = 1
2 (a†

1a2 + a
†
2a1), (A1)

L3 = 1
2 (a†

1a1 − a
†
2a2), (A2)

and L2 in Eq. (19) forms the bosonic representation of the
algebra of SU(2) [23]. Under the rotation Uφ defined in
Eq. (18), L1 and L3 transform into

UφL1U
†
φ = L1 cos φ − L3 sin φ, (A3)

UφL3U
†
φ = L1 sin φ + L3 cos φ, (A4)

whereas L2 and

L0 = 1
2 (a†

1a1 + a
†
2a2) (A5)

are invariant.
In terms of the Lis, the Hamiltonian of the dimer (17) is

H ′
0 = (ω′

1 + ω′
2)L0 + (ω′

1 − ω′
2)L3 + 2J12L1. (A6)

The 2J12L1 term can be rotated away with the operator (18)
by choosing the angle φ0 (20). We then obtain

Uφ0H
′
0U

†
φ0

= ω+a
†
1a1 + ω−a

†
2a2. (A7)

By substituting the exciton operators Eqs. (21) and (22) into
H ′

0 and H ′, we obtain Eqs. (24) and (25).

APPENDIX B: RENORMALIZED FREQUENCIES

The renormalized excitonic frequencies due to the influence
of the phonon bath are [15]

ω̄± ≡ ω± − δω±, (B1)

δω+ ≡
∑

k

P
|Vk|2

ωk − ω0
(n̄k + 1), (B2)

δω− ≡ −
∑

k

P
|Vk|2

ωk − ω0
n̄k, (B3)

n̄k ≡ 1

eωkβ − 1
. (B4)

APPENDIX C: TIME EVOLUTION OF POPULATIONS IN
THE SITE BASIS

To find out the time evolution of the site populations,
we need to first solve the Markovian master equation in the
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exciton basis, and then convert the solution back to the site
basis. A density matrix in the one exciton subspace can be
written as

ρ(t) = ρe0e0 (t)|e0; e0〉〉 + ρe1e1 (t)|e1; e1〉〉 + ρe2e2 (t)|e2; e2〉〉
+ [

ρe0e1 (t)|e0; e1〉〉 + ρe0e2 (t)|e0; e2〉〉
+ ρe1e2 (t)|e1; e2〉〉 + H.c.

]
, (C1)

where we define |ei ; ej 〉〉 ≡ |ei〉〈ej |. For completeness, we have
included the vacuum state. The solutions to the components of
the density matrix are

ρe0e0 (t) = ρe0e0 (0), (C2)

ρe0e1 (t) = ρe0e1 (0)e−γ (1+n̄0)t/2ei ω1t , (C3)

ρe0e2 (t) = ρe0e2 (0)e−γ n̄0t/2ei ω2t , (C4)

ρe1e1 (t) = ρe1e1 (0)e−γ (1+2n̄0)t

+ n̄0
[
1 − ρe0e0 (0)

]
1 + 2n̄0

(1 − e−γ (1+2n̄0)t ), (C5)

ρe2e2 (t) = 1 − ρe0e0 (0) − ρe1e1 (t), (C6)

ρe1e2 (t) = ρe1e2 (0)e−(1+2n̄0)γ t/2e−iω0t . (C7)

The solutions in the site basis defined by the components

ρij (t) ≡ 〈〈i,j |ρ(t)〉〉 (C8)

have the following forms:

ρ00(t) = ρe0e0 (0), (C9)

ρ01(t) = ρe0e1 (t) cos(φ0/2) + ρe0e2 (t) sin(φ0/2), (C10)

ρ02(t) = −ρe0e1 (t) sin(φ0/2) + ρe0e2 (t) cos(φ0/2), (C11)

ρ11(t) = 1
2 + (

ρe1e1 (t) − 1
2

)
cos φ0 + Re

[
ρe1e2 (t)

]
sin φ0,

(C12)

ρ22(t) = 1 − ρ11(t), (C13)

ρ12(t) = (
1
2 − ρe1e1 (t)

)
sin φ0 + Re

[
ρe1e2 (t)

]
cos φ0

+ i Im
[
ρe1e2 (t)

]
. (C14)

Equations (C12) and (C7) indicate that the real part of the
interexciton correlation component Re(ρe1e2 ) gives rise to
oscillations in the site populations. Since a smaller decay
constant of the reduced dynamics γ leads to a longer relaxation
time in the excitonic correlation ρe1e2 (C7), the oscillation in
the site populations will also last longer.
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