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Erosion by a one-dimensional random walk
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We consider a model introduced by Baker et al. [Phys. Rev. E 88, 042113 (2013)] of a single lattice random
walker moving on a domain of allowed sites, surrounded by blocked sites. The walker enlarges the allowed
domain by eroding the boundary at its random encounters with blocked boundary sites: attempts to step onto
blocked sites succeed with a given probability and convert these sites to allowed sites. The model interpolates
continuously between the Pólya random walker on the one-dimensional lattice and a “blind” walker who attempts
freely, but always aborts, moves to blocked sites. We obtain some exact results about the walker’s location and
the rate of erosion.
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I. INTRODUCTION

The problem of a single random walker moving on an
unbounded periodic lattice, or on a fragment of such a lattice
with relatively simple fixed boundaries, has been extensively
studied [1–7] and used in a variety of ways to model physical,
biological, and social phenomena [1,3,4]. There has been much
less study of walkers that interact with their boundaries in ways
that may change the boundary location, with the principal
exceptions being two models that consider the sequential
release of walkers: diffusion-limited aggregation (DLA) [8,9]
and internal DLA [10,11], which are models of cluster growth.
In both DLA and internal DLA, each walker interacts with the
boundary once only (causing the boundary to move) and then
dies before the next walker is released into the system.

We consider here a single random walker that is permitted
to interact with the boundary repeatedly, eroding the boundary
to enlarge the domain within which the random walk takes
place. This model was introduced by Baker et al. [12] as
a simple model of a motile biological cell that remodels
extracellular matrix as it moves through tissue. Baker et al.
gave for one-dimensional cases some exact results for times
associated with boundary growth events and some mean-field
approximations and also reported on simulations in higher
dimensions. We take up the model of Baker et al. [12]
and address for its one-dimensional version the important
questions of the current location of the boundary of the allowed
interval, the position of the walker within the allowed interval,
and the probability that at any given instant the walker is
currently at the boundary of the allowed interval. Our results,
based on generating functions, recover as special cases a
number of elegant known asymptotic properties of random
walks.

Following Baker et al., we consider a one-dimensional
random walk of Pólya type (unbiased, nearest-neighbor step-
ping) on an interval of “allowed” sites, bounded by an endless
succession of “blocked” sites. If the walker attempts to step
from an allowed site to an adjacent blocked site, then with
probability � (the snipping or erosion probability), the step
is permitted to take place and the blocked site changes its
status to become allowed, while with probability 1 − � the
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stepping attempt is aborted, the walker does not move on this
time step and no sites change status. (The symbol � , a variant
of π , serves as a mnemonic to remind us that this quantity
is a probability and avoids recycling symbols that are already
overused in the random-walk literature.) If � = 1, the model
reduces to the familiar one-dimensional Pólya random walk
without boundaries [13], whereas if � = 0, we have a “blind”
random walker in a bounded interval [14], who attempts to
step onto blocked sites but always aborts such attempts.

The lattice sites are assigned integer coordinates in the
standard way. We are interested in the integer-valued variables
Xn, Ln, and Rn, defined as follows: Xn is the location of the
walker after n steps, Ln is the leftmost allowed site, and Rn

is the rightmost allowed site, so that Ln � Xn � Rn for all
n � 0. Averages of these and other random variables will be
indicated by angle brackets. Random variables are capitalized.

In Fig. 1 we illustrate the model and our notational
conventions for an attempted erosion event when a walker
currently at the rightmost allowed site attempts to make a step
to the right.

In each realization of the walk, the random sequence
{(Xn,Ln,Rn)} is, of course, implicitly dependent on the value
of � , though we only exhibit this explicitly in notation by
writing such things as Rn(� ) when it is useful to do so. The
number of sites in the allowed interval is 1 − Ln(� ) + Rn(� ).
It may be noted that if we commence with the initial condition

step attempt

attempt succeeds attempt fails

X R=n n+1 +1 X R=n n+1 +1

X R=n n

1−ϖ ϖ

FIG. 1. Illustrating erosion or snipping for a walker currently at
the rightmost allowed site (Xn = Rn) who attempts to step to the
right for the (n + 1)th step. The walker’s location is shown as a
black disk. White disks denote allowed sites and asterisks denote
blocked sites. With probability � the attempt succeeds (the blocked
site becomes allowed and the walker steps onto it) and so Xn+1 =
Rn+1 = Xn + 1 = Rn + 1. With probability 1 − � the attempt fails
and the walker does not move and so Xn+1 = Rn+1 = Xn = Rn.
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L0 = X0 = R0 = 0, then the random variable

Sn = 1 − Ln(1) + Rn(1) (1)

is the number of distinct sites visited (sometimes called the
“range” of the walk) for a walk of Pólya type on the set Z
of integers. Some known properties of Sn [4] are useful for
checking and interpreting results that we produce. For later
reference we note the classical results [4] that

〈Xn(1)〉 = 0, 〈Xn(1)2〉 = n, (2)

〈Sn〉 = 2〈Rn(1)〉 + 1 =
√

8n

π
+ o(1) as n → ∞. (3)

The last result is valid with any initial prescription of L0 � 0,
provided that X0 = R0 = 0. There has been a little work on the
set of sites visited by a number of simultaneous, independent
random walkers (starting with the “moles’ labyrinth” of
Herrmann [15]), but in the present paper we never consider
more than one walker being present.

In Sec. II we consider a one-sided erosion problem: we
take as our initial condition L0 = −∞ and X0 = R0 = 0. In
this case we are considering erosion of a half-line of blocked
sites, with the walk commencing at the rightmost allowed site.
There is no loss of generality in assuming that X0 = R0 = 0.
If we were to start with X0 < R0, then since a Pólya random
walk on Z is certain to visit all sites eventually [4,13], the
problem reduces to the composition of two consecutive random
walks: a walk from the starting site to R0, then a walk (with
a shifted time origin) starting at the right boundary. We are
able to determine exactly the generating function over the step
number n of the joint probability distribution of Xn and Rn,
from which several attractive results follow.

In Sec. III we start from a single allowed site in a boundless
sea of blocked sites: L0 = X0 = R0 = 0. Here the generating
function analysis is much harder than in Sec. II, perhaps
unexpectedly so, but we are able to use generating function
techniques to compute the asymptotic form of 〈Rn(� )〉 as
n → ∞.

To extract the asymptotic behavior of some quantities
of interest for walks of long duration, we have recourse
to a Tauberian Theorem [4,16] and to a Theorem of Dar-
boux [4,17]. Let �(ρ) denote the usual gamma function. The
Tauberian Theorem states that if

∑∞
n=0 anξ

n converges for
0 � ξ < 1, an > 0, an is monotonic and 0 < ρ < ∞, then the
following are equivalent as ξ → 1− or n → ∞, respectively:

∞∑
n=0

anξ
n ∼ (1 − ξ )−ρ and an ∼ nρ−1

�(ρ)
as n → ∞.

Darboux’s Theorem is a stronger result that bypasses the
need to establish positivity and monotonicity but requires
more analytic information. The special case of Darboux’s
Theorem that we use is the following. Let the functions a(ξ ) =∑∞

n=0 anξ
n and b(ξ ) = ∑∞

n=0 bnξ
n both be holomorphic in the

unit circle except for isolated singularities at ξ = −1 and ξ = 1
and bounded in the neighborhood of ξ = −1, but not in the
neighborhood of ξ = 1, with a(ξ ) − b(ξ ) = O[(1 − ξ )σ−1] for
some σ > 0. Then

an − bn = o(1) as n → ∞.

In several places we evaluate infinite series using the geo-
metric series identity

∑∞
n=0 Zn = (1 − Z)−1 (|Z| < 1) and Z

derivatives of this identity. The details are straightforward
and are not discussed. A number of analytical results are
checked against simulations performed using MATLAB. We
have departed from some of the notational conventions used
by Baker et al. [12]: they used Rn for the walker position, Ln

for the length of the allowed interval, and ps for the erosion
probability.

II. ONE-SIDED EROSION OF A SEMI-INFINITE
LINEAR CHAIN

Here we commence with the initial condition L0 = −∞
(sites to the left of the walker are all allowed), so it is
unnecessary for us to retain Ln in our analysis. We introduce
the joint distribution of the current walker location Xn and
the rightmost allowed site Rn, taking the initial condition
X0 = R0 = 0 (that is, starting on the rightmost allowed site,
which we take as the origin of coordinates). Where x is an
integer and r is a nonnegative integer, we write

Pn(x,r) = Pr{Xn = x,Rn = r} for x � r, (4)

so that the initial condition is simply expressed in terms of the
usual Kronecker δ symbol:

P0(x,r) = δx,0δr,0. (5)

If the walker is not currently at the rightmost allowed site, then
it has necessarily arrived at its current location by a step from
an adjacent allowed site (that is, it has just executed a Pólya
random walk step). Hence,

Pn+1(x,r) = 1
2Pn(x − 1,r) + 1

2Pn(x + 1,r) (x < r). (6)

If the walker is currently at the rightmost allowed site it could
have arrived there in one of only three ways: (i) it stepped
there from an allowed site on its left; (ii) it was already at the
rightmost allowed site and made an unsuccessful attempt to
move right; (iii) it was already at the rightmost allowed site and
made a successful attempt to step onto a blocked site, bringing
it to its current location and shifting the boundary. The third
type of move cannot occur if the rightmost occupied site still
retains its initial value 0. Hence,

Pn+1(r,r) = 1
2Pn(r − 1,r) + 1

2 (1 − � )Pn(r,r)

+ 1
2�Pn(r − 1,r − 1)(1 − δr,0). (7)

A. Lattice Green function for one-sided erosion

Where |ξ | < 1, we introduce the generating function for
the site occupation probability (the lattice Green function for
one-sided erosion),

P(x,r; ξ ) =
∞∑

n=0

Pn(x,r)ξn. (8)

Generating functions for the expectation of powers of Xn

or Rn will also be useful: where κ and λ are nonnegative
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integers,

∞∑
n=0

〈
Xκ

nRλ
n

〉
ξn =

∞∑
r=0

r∑
x=−∞

∞∑
n=0

xκrλPn(x,r)ξn

=
∞∑

r=0

r∑
x=−∞

xκrλP(x,r; ξ ). (9)

We multiply Eqs. (6) and (7) by ξn and sum over all possible
values of n, apply Eq. (8) and the initial condition Eq. (5),
obtaining the following difference equations for the lattice
Green function:

P(x,r; ξ ) = ξ

2
P(x − 1,r; ξ ) + ξ

2
P(x + 1,r; ξ ), (10)

for x < r , and

P(r,r; ξ ) = δr,0 + ξ

2
P(r − 1,r; ξ ) + ξ

2
(1 − � )P(r,r; ξ )

+ ξ

2
�P(r − 1,r − 1; ξ )(1 − δr,0). (11)

First we consider Eq. (10): this is a second-order difference
equation in one variable x. Two independent solutions can be
found in the standard way using a trial solutionP(x,r; ξ ) = zx ,
giving the quadratic equation

z2 − 2ξ−1z + 1 = 0, (12)

for which the two solutions are

1 ±
√

1 − ξ 2

ξ
=

(
1 −

√
1 − ξ 2

ξ

)∓1

.

Therefore, we write

P(x,r; ξ ) = a(r; ξ )z(ξ )x−r + b(r; ξ )z(ξ )r−x for x < r,

where

z(ξ ) = 1

ξ
(1 −

√
1 − ξ 2), (13)

and 0 � z(ξ ) � 1 for 0 � ξ � 1. For frequent later use we
note the identity

[1 − z(ξ )]2 = 2

ξ
(1 − ξ )z(ξ ). (14)

To keep our solution finite for all x � r , exponential growth
of the solution as x → −∞ must be ruled out, so a(r; ξ ) must
be zero. Hence,

P(x,r; ξ ) = b(r; ξ )z(ξ )r−x, x < r. (15)

Notice that we can apply Eq. (10) as far as x = r − 1. We do
this and use Eq. (15) to obtain P(r,r; ξ ) = b(r; ξ ), so that

P(x,r; ξ ) = P(r,r; ξ )z(ξ )r−x, x � r. (16)

Next we substitute Eq. (16) into Eq. (11) to obtain a first-
order difference equation for the unknown quantity P(r,r; ξ ).
This difference equation can be tidied up using the quadratic

equation (12) satisfied by z(ξ ), and we find that

P(r,r; ξ ) = 2z(ξ )

ξ [1 − z(ξ )(1 − � )]

×
[
δr,0 + ξ�

2
(1 − δr,0)P(r − 1,r − 1; ξ )

]
,

and it follows at once that

P(r,r; ξ ) = 2

ξ

[
z(ξ )

1 − z(ξ )(1 − � )

]r+1

�r, r � 0. (17)

Consequently, we find that for x � r ,

P(x,r; ξ ) = 2

ξ�

[
z(ξ )�

1 − z(ξ )(1 − � )

]r+1

z(ξ )r−x. (18)

It is straightforward to verify by substitution that this is indeed
a solution to Eqs. (10) and (11) and satisfies the normalization
requirement

∞∑
r=0

r∑
x=−∞

P(x,r; ξ ) =
∞∑

n=0

∞∑
r=0

r∑
x=−∞

Pn(x,r)ξn

=
∞∑

n=0

ξn = 1

1 − ξ
. (19)

We have not been able to extract a simple formula for the
general term in the series expansion of P(x,r; ξ ) in powers
of ξ , so that closed-form expressions for Pn(x,r) for general
values of x, r , and n are not available. However, the expansion
can be computed as far as one’s patience extends using
MATHEMATICA or other symbolic algebra packages. For
example,

P(x,r; ξ ) = �r

(
ξ

2

)2r−x[
1 + (1 + r)(1 − � )

ξ

2
+ O(ξ 2)

]
.

(20)

However, as we now show, a number of less ambitious but
interesting questions can be answered using Eq. (18).

B. Is the walker at the wall?

We seek the probability En that after n steps the walker’s
current location is the rightmost allowed site. For the ordinary
Pólya walk on Z, covered by taking � = 1, this is the
probability that the walker is now as far right as it has ever
been. Since

En =
∞∑

r=0

Pn(r,r), (21)

we see that
∞∑

n=0

Enξ
n =

∞∑
r=0

P(r,r; ξ ). (22)

Using Eq. (17) and summing the resulting geometric series we
find that

∞∑
n=0

Enξ
n = 2z(ξ )

ξ [1 − z(ξ )]
. (23)
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The absence of the erosion probability � from the right-hand
side may come as a surprise, until we note that if the walker
is currently at the rightmost allowed site, then the result of an
attempt to step right is to place the walker at the rightmost
allowed site, whether this is a new site (this is the case
with probability � ), or the same site (this is the case with
probability 1 − � ).

Using Eq. (14) we find that

∞∑
n=0

Enξ
n = 2z(ξ )[1 − z(ξ )]

ξ [1 − z(ξ )]2
= 1

ξ

[
1 + ξ√
1 − ξ 2

− 1

]
. (24)

We do not need the Tauberian Theorem or Darboux’s Theorem
here to extract the asymptotic behavior of En, as we can extract
two explicit formulas for En for even or odd n. If we recall the
binomial expansion

(1 − z)−α =
∞∑

k=0

(α)kzk

k!
, (25)

where

(α)k = �(k + α)

�(α)
=

{
1, k = 0,

α(α + 1) · · · (α + k − 1), k ∈ N,

(26)

we find that

E2m = (1/2)m
m!

, E2m+1 = (1/2)m+1

(m + 1)!
. (27)

In view of the standard results that

k! = �(k + 1) and �(k + α)/�(k + β) ∼ kα−β as k → ∞,

we find that for both odd and even n,

En ∼ 21/2

(πn)1/2
as n → ∞. (28)

C. Where is the wall?

The mean location of the rightmost visited site, 〈Rn〉, can
be computed by noting from Eq. (9) that

∞∑
n=0

〈Rn〉ξn =
∞∑

r=0

r∑
x=−∞

rP(x,r; ξ ). (29)

When we insert the solution (18) the sums over x and r can
be evaluated using geometric series identities. Some routine
algebra, including making use of Eq. (14), leads us to

∞∑
n=0

〈Rn〉ξn = 2�z(ξ )2

ξ [1 − z(ξ )]3
= �

2

[√
1 − ξ 2

(1 − ξ )2
− 1

1 − ξ

]
.

(30)
If we exhibit the value of � explicitly by writing the rightmost
visited location as Rn(� ), we observe that

∞∑
n=0

〈Rn(� )〉ξn = �

∞∑
n=0

〈Rn(1)〉ξn, (31)

and so

〈Rn(� )〉 ≡ � 〈Rn(1)〉. (32)

As a check on the analysis, we note that from the exact
relation (3) between 〈Rn(1)〉 and 〈Sn〉 (the mean number of
distinct sites visited in a Pólya walk on Z), it follows that

∞∑
n=0

〈Sn〉ξn = 2
∞∑

n=0

〈Rn(1)〉ξn + 1

1 − ξ
,

and we can use this together with the known result [4] that

∞∑
n=0

〈Sn〉ξn =
√

1 − ξ 2

(1 − ξ )2
(33)

to verify that the generating function (30) is correct for � = 1.
Expanding the generating function in powers of 1 − ξ ,

∞∑
n=0

〈Rn(� )〉ξn = �

[
1√

2(1 − ξ )3/2
− 1

2(1 − ξ )

+O

(
1

(1 − ξ 2)1/2

)]
,

so using Darboux’s Theorem1 and Eq. (25), we find that

〈Rn(� )〉 = �

[√
2n

π
− 1

2
+ o(1)

]
as n → ∞. (34)

For � = 1, this agrees with a general result of Comtet and
Majumdar [18] on the average value of the maximum of a
(not necessarily lattice-based) one-dimensional random walk.
Also, since

√
1 − ξ 2/(1 − ξ )2 = (1 + ξ )2(1 − ξ 2)−3/2, we can

use the binomial expansion (25) to recover the closed form
expressions of Henze [19],

〈S2n〉 = (4n + 1)

22n

(
2n

n

)
, 〈S2n+1〉 = (4n + 2)

22n

(
2n

n

)
, (35)

and corresponding results of Katzenbeisser and Panny [20] for
the rightmost site visited in the ordinary Pólya walk, yielding
for one-sided erosion

〈R2n(� )〉 = �

2

[
(4n + 1)

22n

(
2n

n

)
− 1

]
, (36)

〈R2n+1(� )〉 = �

2

[
(4n + 2)

22n

(
2n

n

)
− 1

]
. (37)

These elegant exact representations suppress the simplicity of
the asymptotic behavior for long walks.

To quantify the fluctuations in the location of the rightmost
visited site, we compute its variance,

Var{Rn(� )} = 〈Rn(� )2〉 − 〈Rn(� )〉2. (38)

1Within the unit circle in the complex ξ plane the generating
function is bounded except as ξ → 1, so that if we develop
its asymptotic expansion about this point, we can determine the
asymptotic behavior of 〈Rn(� )〉 obtaining all terms that do not decay
as n → ∞, using the special version of Darboux’s Theorem stated in
Sec. I.
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Similar algebra to that used for analyzing 〈Rn〉 establishes that

∞∑
n=0

〈Rn(� )2〉ξn =
∞∑

r=0

r∑
x=−∞

r2P(x,r; ξ )

= 2�z(ξ )2

ξ [1 − z(ξ )]4
[1 + (2� − 1)z(ξ )]

= �ξ

2(1 − ξ )2

[
1+ (2� − 1)

ξ
(1 −

√
1 − ξ 2)

]
,

and using Eq. (30), we have

∞∑
n=0

〈Rn(� )2〉ξn = � 2ξ

(1 − ξ )2
+ (1 − 2� )

∞∑
n=0

〈Rn(� )〉ξn.

Hence, we have the exact result that

〈Rn(� )2〉 = � 2n + (1 − 2� )〈Rn(� )〉. (39)

Closed form expressions for 〈Rn(� )2〉 for even and odd n can
be deduced from Eqs. (36)–(39), but we refrain from writing
them out here. Using Eqs (34), (38), and (39), we find that as
n → ∞,

Var{Rn(� )} = � 2

(
1 − 2

π

)
n + � (1 − � )

√
2n

π
+ O(1).

(40)

The asymptotic expansion (40) can easily be compared
numerically against the exact solution for Var{Rn(� )} or
simulations. We show in Fig. 2 only the comparison between
the asymptotic form and simulations. At the resolution of
the figure, the exact and asymptotic solutions cannot be
distinguished. The fluctuations in Rn(� ) are characterized by
the square root of the variance, and we find that they are of the
same order as the mean.

FIG. 2. (Color online) The asymptotic expansion (40) for
Var{Rn(� )} [red (smooth) curves] agrees very well with simulations
(blue curves: 10 000 walk realizations for each value of n and � ;
� increments 0.01). Fluctuations in the simulation-based estimates
increase with n and � .

If we sum over x in Eq. (18), we obtain the generating
function for the probability distribution of the rightmost
allowed site:

∞∑
n=0

Pr{Rn(� ) = r}ξn

= 2

ξ� [1 − z(ξ )]

[
z(ξ )�

1 − z(ξ )(1 − � )

]r+1

. (41)

We can recover Pr{Rn(� ) = r}, if desired, for modest values
of n by expanding the right-hand side in powers of ξ [cf.
the discussion below Eq. (19)]. For the special case � = 1, a
theorem of Erdös and Kac [21] on limit theorems in probability
implies that for fixed α > 0,

lim
n→∞ Pr{Rn(1) < α

√
n} = erf

(
α√
2

)
, (42)

where “erf” is the usual error function [22].

D. Where is the walker?

The mean displacement 〈Xn(� )〉 of the walker has the
generating function

∞∑
n=0

〈Xn(� )〉ξn =
∞∑

r=0

r∑
x=−∞

xP(x,r; ξ ). (43)

Using Eq. (18) it can be shown that

∞∑
n=0

〈Xn(� )〉ξn = −2z(ξ )2(1 − � )

ξ [1 − z(ξ )]3
(44)

= − (1 − � )

2

[√
1 − ξ 2

(1 − ξ )2
− 1

1 − ξ

]
. (45)

We observe at once that 〈Xn(� )〉 = (1 − � )〈Xn(0)〉 and
setting � = 1 we recover the elementary result that for a
Pólya random walk on Z the mean displacement from the
starting site is always zero. Moreover, if we compare Eqs. (30)
and (44), we conclude that

〈Xn(� )〉
1 − �

≡ −〈Rn(� )〉
�

. (46)

Hence, from Eq. (34), we have

〈Xn(� )〉 = −(1 − � )

[√
2n

π
− 1

2
+ o(1)

]
as n → ∞. (47)

It can be seen from Fig. 3 that the asymptotic expansion (47)
is in excellent agreement with simulations, even when n is as
small as 20. Drift to the left is enhanced when the erosion
probability � is small.

Proceeding in a similar manner, we find the generating
function for the mean-square displacement 〈X2

n(� )〉 to be

∞∑
n=0

〈Xn(� )2〉ξn =
∞∑

r=0

r∑
x=−∞

x2P(x,r; ξ )

= 2z(ξ )2[1 + � + z(ξ )(1 − 3� + 2� 2)]

ξ [1 − z(ξ )]4
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FIG. 3. (Color online) The mean displacement 〈Xn(� )〉. The
blue curves give the average of 10 000 realizations of the random
walk (� increments 0.01) and the red (smooth) curves show our
asymptotic expansion (47).

= ξ

2(1 − ξ )2

[
1 + � + 1

ξ
(1 −

√
1 − ξ 2)

× (1 − 3� + 2� 2)

]
. (48)

If we rewrite the generating function in the equivalent form
∞∑

n=0

〈Xn(� )2〉ξn

= (1 − � + � 2)ξ

(1 − ξ )2

− (1 − 2� )(1 − � )

2

[√
(1 − ξ )2

(1 − ξ )2
− 1

1 − ξ

]
, (49)

the first term on the right is a multiple of the generating function
for the sequence {n}, while the second is a multiple of the
generating function Eq. (45) for 〈Xn(� )〉. We can therefore
deduce the exact relation

〈Xn(� )2〉 = (1 − � + � 2)n + (1 − 2� )〈Xn(� )〉. (50)

We can now deduce the asymptotic behavior of the variance
of the walker’s position:

Var{Xn(� )} = 〈Xn(� )2〉 − 〈Xn(� )〉2

= (1 − � + � 2)n

− (1 − 2� )(1 − � )

[
(2n)1/2

π1/2
− 1

2
+ o(1)

]

−
[

(2n)1/2

π1/2
− 1

2
+ o(1)

]2

=
[

1 − � + � 2 − 2

π
(1 − � )2

]
n

+ � (1 − � )
(2n)1/2

π1/2
+ O(1). (51)

FIG. 4. (Color online) The asymptotic expansion (51) for
Var{Xn(� )} [red (smooth) curves] agrees very well with simulations
(blue curves: 1000 walk realizations for each value of n and � ;
� increments 0.01). Fluctuations in the simulation-based estimates
increase with n and � .

The asymptotic formula for the variance in the walker position
is compared against simulation in Fig. 4. We note that
limn→∞ n−1Var{Xn(� )} is an increasing function of � on
the interval 0 � � � 1, and that

lim
n→∞

Var{Xn(0)}
n

= 1 − 2

π
, lim

n→∞
Var{Xn(1)}

n
= 1.

The latter result is, of course, the standard result for a Pólya
random walk onZ. Unsuccessful walk erosion attempts reduce
the fluctuations in position, as one would expect.

Using Eqs. (36), (37), (46), and (50) it is possible to de-
termine Var{Xn(� )} exactly in terms of binomial coefficients,
but we refrain from writing out the resulting formulas here.

III. TWO-SIDED EROSION FROM A SINGLE SITE

Now we consider the two-sided erosion model, where the
walker is initially placed on the only allowed site of the lattice
(at x = 0) and on both sides is surrounded by blocked sites, so
that the initial conditions on the leftmost allowed site, initial
walker position, and rightmost allowed site are L0 = X0 = R0

and thereafter Ln � Xn � Rn.
Baker et al. [12] studied the time (that is, the number of

steps, including failed attempts to erode) that elapses until the
allowed interval length takes a prescribed value s. If we denote
this random time by Ts(� ), then the exact results obtained by
Baker et al. are

〈Ts(� )〉 = s(s − 1)

2�
, (52)

Var{Ts(� )} = s(s − 1)

12� 2
[�s2 + (4 − 5� )s − 2]. (53)

The results of Baker et al. concerning averages of Xn and Sn

at given n values were limited to mean-field arguments and
empirical formulas based on simulations. We shall determine
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exactly the leading-order large-n behavior of 〈Sn(� )〉, the
mean interval length at time n, by determining first the behavior
of 〈Rn(� )〉, the mean rightmost allowed site.

We write

Pn(x,l,r) = Pr{Xn(� ) = x,Ln(� ) = l,Rn(� ) = r}, (54)

so the initial condition is

P0(x,l,r) = δx,0δl,0δr,0. (55)

It is easy to determine the probability that the walker always
fails to enlarge the allowed interval and remains at the initial
site: Pn+1(0,0,0) = (1 − � )Pn(0,0,0), so

Pn(0,0,0) = (1 − � )n. (56)

If we have Ln < Rn, then unless the walker is at either end
of the interval of allowed sites, it moves like a normal Pólya
walker. Hence, for l < x < r , the site occupation probability
evolution equation is

Pn+1(x,l,r) = 1
2Pn(x − 1,l,r) + 1

2Pn(x + 1,l,r). (57)

At the boundaries (provided that l < r), the site occupation
probability evolution equations are

Pn+1(x,l,r) = 1
2Pn(x + 1,l,r) + 1

2 (1 − � )Pn(x,l,r)

+ 1
2�Pn(x + 1,l + 1,r)(1 − δl,0),

x = l, (58)

Pn+1(x,l,r) = 1
2Pn(x − 1,l,r) + 1

2 (1 − � )Pn(x,l,r)

+ 1
2�Pn(x − 1,l,r − 1)(1 − δr,0),

x = r. (59)

Unlike the one-sided erosion model considered above, this
problem contains an element of symmetry. In particular, we
expect that

Pn(x,l,r) = Pn(−x, − r, − l). (60)

In fact, if we let r = −l and l = −r in Eq. (58), then apply
Eq. (60), we obtain Eq. (59), and vice versa.

A. Lattice Green function for two-sided erosion

We commence as in Sec. II, by introducing the generating
function of the site occupation probability

P (x,l,r; ξ ) =
∞∑

n=0

Pn(x,l,r)ξn. (61)

If we follow closely the approach of Sec. II, we arrive at a
solution of Eq. (57) of the form

P (x,l,r; ξ ) = a(l,r; ξ )z(ξ )x−l + b(l,r; ξ )z(ξ )r−x, (62)

for l � x � r , where z(ξ ) is given by Eq. (13). Unlike the
one-sided erosion problem, both of the coefficient functions
a(l,r; ξ ) and b(l,r; ξ ) are nonzero, and the relations between
them that follow from Eqs. (58) and (59) are difficult to
analyze.

We adopt a different approach, escaping the awkward
constraint that l � x � r by extending the problem to define
Pn(x,l,r; ξ ) for −∞ < x < ∞. This extension is only accept-
able if we can ensure that Pn(x,l,r) evolves in such a way that
the requirement that Pn(x,l,r) = 0 for x < l and for x > r is
preserved. The required evolution equation is

Pn+1(x,l,r) = 1

2
Pn(x − 1,l,r) + 1

2
Pn(x + 1,l,r) − 1

2
δx,l−1Pn(l,l,r) − 1

2
δx,r+1Pn(r,l,r)

+ δx,l

2

[
(1 − � )Pn(l,l,r) + �Pn(l + 1,l + 1,r)(1 − δl,0) − Pn(l − 1,l,r)

]

+ δx,r

2

[
(1 − � )Pn(r,l,r) + �Pn(r − 1,l,r − 1)(1 − δr,0) − Pn(r + 1,l,r)

]
. (63)

The six Kronecker δ symbols are inserted to ensure that the evolution equation is valid for l � 0, r � 0 and −∞ < x < ∞. The
terms in braces with prefactors δx,l and δx,r , respectively, deal with the case when the walker is at the leftmost allowed site or
the rightmost allowed site. The two terms containing δx,l−1 and δx,r+1 ensure that there is no “leakage” of probability into x < l

or x > r (and so also ensure that the last term of each of the expressions enclosed in braces is zero). The approach we have
taken is a novel extension of the simpler defect technique used in lattice dynamics [23] and simple random walk problems [1,4],
where a small number of sites in an otherwise translationally invariant system have different parameters.

If we define the discrete Fourier transform of the generating function P (x,l,r; ξ ) with respect to x by

P̃ (θ,l,r; ξ ) =
∞∑

x=−∞
P (x,l,r; ξ )eiθx (64)

=
∞∑

n=0

∞∑
x=−∞

Pn(x,l,r)eiθxξn, (65)
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then we find from Eq. (63) that

P̃ (θ,l,r; ξ ) = δl,0δr,0

1 − ξ cos θ
+ ξ

2

[
− ei(l−1)θ

1 − ξ cos θ
P (l,l,r; ξ ) − ei(r+1)θ

1 − ξ cos θ
P (r,l,r; ξ )

+ (1 − � )eilθ

1 − ξ cos θ
P (l,l,r; ξ ) + �eilθ

1 − ξ cos θ
P (l + 1,l + 1,r; ξ )(1 − δl,0)

+ (1 − � )eirθ

1 − ξ cos θ
P (r,l,r; ξ ) + �eirθ

1 − ξ cos θ
P (r − 1,l,r − 1; ξ )(1 − δr,0)

]
. (66)

We now recall [4] that for x ∈ Z,

1

2π

∫ π

−π

e−ixθ dθ

1 − ξ cos θ
= z(ξ )|x|√

1 − ξ 2
, (67)

where z(ξ ) is given by Eq. (13). This is simply the lattice Green
function for the Pólya walk on Z, the evaluation of the integral
being a simple exercise in contour integration.2 Hence, if we

apply

1

2π

∫ π

−π

e−ixθ {· · · }dθ

to invert the transform with the specific choices x = l and
x = r , respectively, we obtain

P (l,l,r; ξ )

= δl,0δr,0√
1 − ξ 2

+ ξ

2

[
− z(ξ )√

1 − ξ 2
P (l,l,r; ξ ) − z(ξ )r−l+1√

1 − ξ 2
P (r,l,r; ξ ) + (1 − � )√

1 − ξ 2
P (l,l,r; ξ )

+ �√
1 − ξ 2

P (l + 1,l + 1,r; ξ )(1 − δl,0) + (1 − � )z(ξ )r−l√
1 − ξ 2

P (r,l,r; ξ ) + �z(ξ )r−l√
1 − ξ 2

P (r − 1,l,r − 1; ξ )(1 − δr,0)

]
, (68)

P (r,l,r; ξ )

= δl,0δr,0√
1 − ξ 2

+ ξ

2

[
−z(ξ )r−l+1√

1 − ξ 2
P (l,l,r; ξ ) − z(ξ )√

1 − ξ 2
P (r,l,r; ξ ) + (1 − � )zr−l√

1 − ξ 2
P (l,l,r; ξ )

+ �z(ξ )r−l√
1 − ξ 2

P (l + 1,l + 1,r; ξ )(1 − δl,0) + (1 − � )√
1 − ξ 2

P (r,l,r; ξ ) + �√
1 − ξ 2

P (r − 1,l,r − 1; ξ )(1 − δr,0)

]
. (69)

We now write � = −l so that � � 0, and

A(�,r; ξ ) = P (−�,−�,r; ξ ), B(�,r; ξ ) = P (r,−�,r; ξ ),

(70)

and note the reflection symmetry property

A(�,r; ξ ) = P (−�, − �,r; ξ ) = P (�, − r,�; ξ ) = B(r,�; ξ ).

(71)

If we introduce the convenient functions

α(ξ ) = z(ξ )−1 − (1 − � ), β(ξ ) = z(ξ ) − (1 − � ),

γ (ξ ) = β(ξ )/α(ξ ),

2See Ref. [4], pp. 140–141. The integrand is an even function of x,
so that we can replace −x by |x| and make the standard substitution
Z = eiθ to produce a contour integral around the unit circle, enclosing
one simple pole of the integrand.

two of which are used immediately, while γ (ξ ) is used later,
we find after a modest amount of algebra that

α(ξ )A(�,r; ξ ) − �A(� − 1,r; ξ )(1 − δ�,0)

= 2

ξ
δ�,0δr,0 − z(ξ )r+�[β(ξ )B(�,r; ξ ) − �B(�,r − 1; ξ )

× (1 − δr,0)]. (72)

Similarly,

α(ξ )B(�,r; ξ ) − �B(�,r − 1; ξ )(1 − δr,0)

= 2

ξ
δ�,0δr,0 − z(ξ )r+�[β(ξ )A(�,r; ξ ) − �A(� − 1,r; ξ )

× (1 − δ�,0)]. (73)

It can now be seen from the symmetry property Eq. (71)
that Eqs. (72) and (73) are equivalent. In order to determine
P̃ (θ,l,r; ξ ) we need to construct the solution for one of
A(�,r; ξ ) or B(�,r; ξ ) from these equations and this appears
to be a very difficult problem. If we only seek the generating
function for the mean location of the rightmost allowed site,
we obtain something more tractable.
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B. A functional equation and its solution

The reflection symmetry has an important consequence,
since it enables us to evaluate exactly a generating function
needed to infer the asymptotic growth of 〈Rn(� )〉 as n → ∞.
If we define

ϕ(κ; ξ ) =
∞∑

p=0

∞∑
q=0

κp+qA(p,q; ξ ) =
∞∑

p=0

∞∑
q=0

κp+qB(p,q; ξ ),

(74)
we see that on multiplying Eq. (73) by κ�+r and summing over
� and r , we have

[α(ξ ) − �κ]ϕ(κ; ξ ) = 2

ξ
− [β(ξ ) − �κz(ξ )]ϕ(κz(ξ ); ξ ).

(75)
If we write [α(ξ ) − �κ]ϕ(κ; ξ ) = 2

ξ
�(κ; ξ ) then

�(κ; ξ ) = 1 − β(ξ ) − �κz(ξ )

α(ξ ) − �κz(ξ )
�(κz(ξ ); ξ ). (76)

Since �(κ; ξ ) is holomorphic with respect to κ for |κ| < 1, we
know that �(κ; ξ ) → �(0; ξ ) = α(ξ )/[α(ξ ) − β(ξ )] as κ →
0. Iterating Eq. (76) produces a convergent infinite series for
|ξ | < 1 and we find that

ϕ(κ; ξ ) = 2

ξ [α(ξ ) − �κ]

×
{

1 +
∞∑
i=1

(−1)i
i∏

j=1

(
β(ξ ) − �κz(ξ )j

α(ξ ) − �κz(ξ )j

)}
. (77)

Where |q| < 1, the q-Pochhammer symbol is defined by

(a; q)n =
{∏n−1

m=0(1 − aqm), n ∈ N,

1, n = 0,
(78)

and Fine’s basic hypergeometric series is defined by [24]

F (a,b; t : q) =
∞∑

n=0

(aq; q)ntn

(bq; q)n
, (79)

we deduce that

ϕ(κ; ξ ) = 2

ξ [α(ξ ) − �κ]
F

[
�κ

β(ξ )
,
�κ

α(ξ )
; −γ (ξ ) : z(ξ )

]
.

(80)

It is also straightforward to solve the functional
equation (75) by writing ϕ(κ; ξ ) = ∑∞

m=0 ϕm(ξ )κm, extracting
a recurrence relation for the coefficients ϕm(ξ ) and solving it,
leading to

ϕ(κ; ξ ) = 1

1 − ξ (1 − � )
F

[
−1, − γ (ξ );

�κ

α(ξ )
: z(ξ )

]
.

The equivalence of this solution and Eq. (80) is a manifestation
of the identity (6.3) of Fine [24].

C. Where is the right wall?

We shall now determine the generating function for
〈Rn(� )〉, the mean position of the rightmost allowed site, in
terms of Fine’s basic hypergeometric series. If we set θ = 0 in
Eq. (66), we have

P̃ (0,l,r; ξ ) =
∞∑

n=0

Pr{Ln = l,Rn = r}ξn

= δl,0δr,0

1 − ξ
+ ξ

2

{
−P (l,l,r; ξ )

1 − ξ
− P (r,l,r; ξ )

1 − ξ
+ (1 − � )P (l,l,r; ξ )

1 − ξ
+ �P (l + 1,l + 1,r; ξ )

1 − ξ
(1 − δl,0)

+ (1 − � )P (r,l,r; ξ )

1 − ξ
+ �P (r − 1,l,r − 1; ξ )

1 − ξ
(1 − δr,0)

}

= δl,0δr,0

1 − ξ
+ �ξ

2(1 − ξ )
{P (l + 1,l + 1,r; ξ )(1 − δl,0) + P (r − 1,l,r − 1; ξ )(1 − δr,0) − P (l,l,r; ξ ) − P (r,l,r; ξ )}.

(81)

If we multiply Eq. (81) by r and sum over l and r , then the first
and third terms in braces cancel, and using Eqs. (74) and (80)
we find that

∞∑
n=0

〈Rn(� )〉ξn = �ξ

2(1 − ξ )
ϕ(1; ξ ) (82)

= �

(1 − ξ )[α(ξ ) − � ]

× F

[
�

β(ξ )
,

�

α(ξ )
; −γ (ξ ) : z(ξ )

]
. (83)

It is easy to verify from Eq. (30) that

1

(1 − ξ )[α(ξ ) − � ]
=

∞∑
n=0

〈Rn(1)〉, (84)

where 〈Rn(1)〉 is the mean location of the rightmost allowed
site for one-sided erosion with � = 1. However, when � = 1,
the solutions for the one- and two-sided problems coincide
(there are never aborted steps), and we now have the elegant
result for the two-sided problem that

∞∑
n=0

〈Rn(� )〉ξn = F(� ; ξ )
∞∑

n=0

〈Rn(1)〉ξn, (85)

where

F(� ; ξ ) = �F

[
�

β(ξ )
,

�

α(ξ )
; −γ (ξ ) : z(ξ )

]
. (86)
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Since 〈Rn(� )〉 is positive and grows monotonically, if we can
show that

F(� ) = lim
ξ→1

F(� ; ξ ) (87)

exists, then from the Tauberian Theorem we will have a
rigorous proof of the exact asymptotic formula

〈Rn(� )〉 ∼ F(� )〈Rn(1)〉 ∼ F(� )

(
2n

π

)1/2

as n → ∞.

(88)
Moreover, as 〈Sn(� )〉 = 2〈Rn(� )〉 + 1, it will also follow that

C(� ) = lim
n→∞

〈Sn(� )〉2

n
(89)

exists, and that

C(� ) = 8

π
F(� )2. (90)

Baker et al. [12] observed from simulation that to a rough
approximation (though only truly correct at the endpoints ω =
0 and ω = 1), C(� ) ≈ 8�/π , while both simulation and a
mean-field argument led them to conjecture that C(� ) ∼ 2�

as � → 0.
We shall compute F(� ) explicitly in terms of the gamma

function and prove the conjecture of Baker et al. [12]. It is
helpful to rewrite our formula for F(� ) in terms of the basic
hypergeometric function 2φ1, rather than Fine’s function F .
Since [25]

2φ1(a,b; c; q,t) =
∞∑

n=0

(a; q)n(b; q)n
(q; q)n(c; q)n

tn (91)

we find that

F(� ) = lim
z→1−

� 2φ1

[
�z

z − (1 − � )
,z;

�z

z−1 − (1 − � )
; z,

− z − (1 − � )

z−1 − (1 − � )

]
. (92)

We cannot evaluate the limit by inserting z = 1, since the first
four arguments of the basic hypergeometric function are all 1
in this case, while the last is −1, and the resulting series does
not converge. However ([25], p. 3),

lim
q→1

2φ1(qa,qb; qc; q,t) = 2F1(a,b; c; t), (93)

where 2F1 is the ordinary (Gauss) hypergeometric function. If
we observe that

za = �z

z − (1 − � )
, zc = �z

z−1 − (1 − � )

correspond, respectively, to

a = 1 − log[1 − (1 − z)/� ]

log[1 − (1 − z)]
∼ 1 − 1

�
as z → 1−,

c = 1 − log[1 + (1 − z)/(�z)]

log[1 − (1 − z)]
∼ 1 + 1

�
as z → 1−,

we find that

F(� ) = � 2F1(1 − 1/�,1; 1 + 1/� ; −1). (94)

An identity for hypergeometric functions ([22], p. 557,
(15.1.21)) enables us to evaluate the right-hand side in terms
of the gamma function and we conclude at last that

F(� ) = �
√

π�(1 + 1/� )

2�(1/2 + 1/� )
. (95)

We note that F(1) = 1, while from the asymptotic relation

�(n + a)

�(n + b)
∼ na−b as n → ∞

(a simple consequence of Stirling’s approximation) we find
that

F(� ) ∼
√

π

2
� 1/2 as � → 0. (96)

Hence,

C(� ) = 2� 2�(1 + 1/� )2

�(1/2 + 1/� )2
∼

{
2� as � → 0,

8/π as � → 1,
(97)

establishing the truth of the conjecture of Baker et al. [12].

IV. DISCUSSION

A characteristic feature of the simplest unbiased one-
dimensional random walk is the slow decay with time of
the probability that the walker is found in a finite interval
containing the origin. This is closely connected to the well-
known certainty of such walkers to revisit the starting site
infinitely often, while making excursions to either side which
may be of very long duration. For one-sided erosion, the
right boundary continues to be eroded away, even though the
expected walker location drifts off to −∞. In contrast, for

Rn〈 〉(1)

Rn〈 〉(ϖ)
lim

n → ∞

1-sided

2-sided

1

10 ϖ

FIG. 5. (Color online) We compare the � -dependence of the
asymptotic form of the mean rightmost allowed site for one-sided and
two-sided erosion. The blue (straight) line corresponds to one-sided
erosion with the walker starting at 0 with all sites to the right initially
blocked. The black (concave down) curve corresponds to the exact
limit that we have obtained for two-sided erosion, with the walker
starting at 0, with all other sites initially blocked. Simulation data for
two-sided erosion based on 10 000 random walks of 10 000 steps of
Baker et al. [12] for the mean allowed interval length, converted to
the mean rightmost point using 〈Sn(� )〉 = 2〈Rn(� )〉 + 1, has been
plotted in red and is almost indistinguishable from the black (smooth)
theoretical curve.
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two-sided erosion the walker bounces off both walls and the
frequency of collision with walls is enhanced, especially for
small � , leading to faster erosion. We show the long-time
limit of the ratio 〈Rn(� )〉/〈Rn(1)〉 in Fig. 5. The correctness
of the exact computation of the limiting ratio is confirmed by
simulation data from Baker et al. [12]. We have been unable
to obtain exact results for other quantities of interest related
to boundary location such as Var{Rn(� )} or Var{Sn(� )},
where Sn(� ) = Rn(� ) − Ln(� ) + 1. Weiss and Rubin [26]
have discussed the large-n asymptotic distribution of Sn(1) =
Rn(1) − Ln(1) + 1, but there does not appear to be any simple
way to adapt their analysis to cover � < 1.

To date, we have also been unable to obtain compan-
ion results for the mean-square displacement 〈Xn(� )2〉 in
two-sided erosion. The generating function for 〈Xn(� )2〉
requires the evaluation at λ = ρ = 1 the first derivative with
respect to λ of

A(λ,ρ; ξ ) =
∞∑

�=0

∞∑
r=0

A(�,r; ξ )λ�ρr .

A series solution for A(λ,ρ; ξ ) reminiscent of the solution for
ϕ(κ; ξ ) can be obtained, but it appears that new results in the

theory of basic hypergeometric functions are required to finish
the calculation.

It may be noted that the stochastic model discussed in
this paper is a discrete analog of a deterministic moving
boundary value problem for the diffusion or heat conduc-
tion equation [27,28]. Such discrete stochastic models may
give insight into statistical fluctuations in moving boundary
problems.

The biological question that motivated Baker et al. [12]
to introduce the model we have discussed arose from cell
motion within tissue. There are other contexts in which
models of this type may be of interest: for example, modeling
an individual animal which moves freely within a finite
home range, but occasionally ventures beyond its previ-
ous borders, exploring new territory and so enlarging its
range.
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