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We develop a mean-field approach for multicomponent stochastic spatially extended systems and use it to obtain
a multivariate nonlinear self-consistent Fokker-Planck equation defining the probability density of the state of
the system, which describes a well-known model of autocatalytic chemical reaction (brusselator) with spatially
correlated multiplicative noise, and to study the evolution of probability density and statistical characteristics of
the system in the process of spatial pattern formation. We propose the finite-difference method for the numerical
solving of a general class of multivariate nonlinear self-consistent time-dependent Fokker-Planck equations. We
illustrate the accuracy and reliability of the method by applying it to an exactly solvable nonlinear Fokker-Planck
equation (NFPE) for the Shimizu-Yamada model [Prog. Theor. Phys. 47, 350 (1972)] and nonlinear Fokker-Planck
equation [Desai and Zwanzig, J. Stat. Phys. 19, 1 (1978)] obtained for a nonlinear stochastic mean-field model
introduced by Kometani and Shimizu [J. Stat. Phys. 13, 473 (1975)]. Taking the problems indicated above as
an example, the accuracy of the method is compared with the accuracy of Hermite distributed approximating
functional method [Zhang et al., Phys. Rev. E 56, 1197 (1997)]. Numerical study of the NFPE solutions for
a stochastic brusselator shows that in the region of Turing bifurcation several types of solutions exist if noise
intensity increases: unimodal solution, transient bimodality, and an interesting solution which involves multiple
“repumping” of probability density through bimodality. Additionally, we study the behavior of the order parameter
of the system under consideration and show that the second type of solution arises in the supercritical region if
noise intensity values are close to the values appropriate for the transition from bimodal stationary probability
density for the order parameter to the unimodal one.
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I. INTRODUCTION

Mean-field approximation (MFT) is an effective tool for
the study of noise-driven dynamics of systems of different
nature and noise-induced phenomena [1]. It is successfully
applied for the study of noise-induced phase separation
in conserved-order-parameter systems [2], the noise-driven
mechanism of pattern formation [3], intrinsic noise-induced
phase transitions [4], nonequilibrium first-order phase transi-
tion induced by additive [5] and multiplicative [6,7] noise,
noise-induced reentrant transition in nonlinear chains [8],
pure noise-induced nonequilibrium second-order reentrant
phase transition [9], and reentrant disorder-order-disorder and
order-disorder-order phase transitions with the saddle-point
phase diagram structure [10].

In quantum mechanics MFT implies the replacement of
a multiparticle interaction Hamiltonian with a single-particle
one. Weiss MFT for spatially extended systems implies that
the interaction between a certain spatial point and its nearest
neighbors occurs through the field, whose value corresponds
to the statistically average field at this point. Herewith, a
suitable way is used to carry out the discretization of the
space of the initial spatially extended system and the Fokker-
Planck equation (FPE) for the multivariate probability density
function can be written for field values in the points of the
obtained regular lattice. The obtained FPE is integrated over
the values of the field at all points except the given one. This
leads to FPE for the one-dimensional probability distribution

density for field values at a given point. In the latter equation the
conditional average values of the field at neighboring points are
replaced with an average value of the field at a given point [2].

Many real physical, chemical, biological, etc., systems are
multicomponent ones and they are modeled by means of
partial differential equation systems. However, in [1–10] only
single-component spatially extended systems with additive,
multiplicative, or both noise types are considered. Therefore,
one of the purposes of the present paper is to extend MFT for
multicomponent stochastic reaction-diffusion systems which
are a specific, but extremely important case of spatially
extended systems.

Applying MFT to the study of noise-induced phenomena
arising in single-component problems leads to the necessity
of numerical solution of a single-site nonlinear self-consistent
Fokker-Planck equation (NSCFPE). Various methods are used
for the numerical integration of NSCFPE. In [11,12] an
elegant and effective method based on Hermite distributed
approximating functionals (DAF) is presented. High precision
of the solution is achieved at small numbers of grid points.
In [13] the finite-difference method based on a K-point
Stirling interpolation formula is proposed. In Ref. [14] a
finite-difference scheme is used in the differential part and
the trapezoid rule in the integral part of NFPE. Finite
element [15] and finite-difference methods [15,16], discrete
singular convolution algorithm [17], direct quadrature based
method of moments [18,19], pseudospectral method [20],
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path-integral [21,22] and eigenfunction expansion meth-
ods [23,24], and others [25,26] are also used to find numerical
solutions of NFPEs.

Despite the variety of existing numerical methods of NFPE
solution, only a few of them, for example [12,15], are success-
fully applied for the integration of multidimensional equations.
Therefore, numerical solution of multivariate NSCFPE is still
a challenging problem, and the second purpose of the present
paper is to propose the numerical method for this problem and
to test its accuracy and reliability.

Finally, the third purpose is to apply the mean-field
approach proposed and the method developed in Ref. [27]
to the research of evolution of probability distribution density
and statistical characteristics in the process of spatial pattern
formation in the “brusselator” model [28], which incorporates
parameter fluctuations, and to compare the results of these
approaches.

The rest of this paper is organized as follows. In Sec. II
we introduce a generalized mean-field approach developed
for multicomponent stochastic reaction-diffusion systems and
taking into account the spatial correlation of the external
noise. In Sec. III the finite-difference method for numerically
solving a general class of multivariate nonlinear self-consistent
time-dependent Fokker-Planck equations is presented. The
accuracy and reliability of the presented method are demon-
strated by applying it to NSCFPE for the Shimizu-Yamada
model [29,30] and the Desai-Zwanzig model [31]. The results
of comparing the accuracy of the proposed method with the
accuracy of the Hermite DAF method [11] are reviewed. A
two-dimensional NSCFPE for spatially extended stochastic
brusselator is derived in Sec. IV. Different types of this system
probability density evolution arising with the noise intensity
increase in the Turing bifurcation region are presented. The
first- and second-order statistical characteristics of the system
under consideration are studied. A FPE for order parameters
of the system under study is received. Its stationary solutions
for the critical mode and its stationary statistical characteristics
are explored. Finally, some conclusions are reported in Sec. V.

II. MEAN-FIELD APPROACH FOR MULTICOMPONENT
STOCHASTIC REACTION-DIFFUSION SYSTEMS

The system of stochastic equations of the reaction-diffusion
type is one of the mathematical models describing the
spatiotemporal dynamics of real multicomponent spatially
extended systems under the influence of external fluctuating
environment and incorporating internal noises:

∂xi

∂t
= fi(x1, . . . ,xn) + gi(x1, . . . ,xn)ξi(r,t) + ηi(r,t)

+Di∇2xi, i = 1, . . . ,n. (1)

In Eq. (1) xi are state functions of the system,
fi(x1, . . . ,xn) and gi(x1, . . . ,xn) are nonlinear functional de-
pendencies defining the interaction and evolution of com-
ponents xi in space and in time, and Di are diffusion
coefficients of components. The additive random Gaussian
fields ηi(r,t) with zero means and correlation functions

K[ηi(r,t),ηi ′(r′,t ′)] = 2ζiδ(r − r′)δ(t − t ′)δii ′ model internal
white noises, in the presence of which and in the absence
of multiplicative noise the system can exhibit equilibrium
properties. The intensities of internal noises are measured by
parameters ζi . Hereafter we use the notation K[F1,F2] that is
defined by the equality K[F1,F2] = 〈F1F2〉 − 〈F1〉〈F2〉 for the
correlation function. The multiplicative random fields ξi(r,t)
model the external noises which disturb the system out of equi-
librium. They are also Gaussian [32] with zero means, but it
is assumed that they are homogeneous and spatioisotropic and
can have a nontrivial spatial structure: K[ξi(r,t),ξi ′(r′,t ′)] =
2θi�i(|r − r′|)δ(t − t ′)δii ′ , where �i(|r − r′|) are spatial cor-
relation functions of external noises and θi are their intensities.
Further, to be definite, we use exponential spatial correlation
functions: �i(|r − r′|) = exp[−kf i(|r − r′|)]. Parameters kf i

characterize the correlation lengths rf i of noises: rf i = 1/kf i .
In Ref. [2] the main aspects of MFT in application to

nonconserved systems with order parameter (model A in terms
of literature of critical phenomena) are outlined.

We carry out the discretization of continuous d-dimensional
space of the system (1) and obtain a regular d-dimensional
lattice with the mesh size 	r and lattice points, the location of
which will be characterized by vectors rl , l = 1, . . . ,p. Thus,
regardless of the dimensionality of the lattice, each lattice
point will correspond to only one index. We assume that the
interaction takes place only between the nearest neighbors,
which allows us to approximate the Laplace operator with a
finite-difference expression with a second-order difference. As
a result of the discretization the system (1) is replaced with the
system n × p of ordinary differential equations,

dxil

dt
= Fil(t), i = 1, . . . ,n; l = 1, . . . ,p,

(2)

Fil(t) = fil + gilξil(t) + ηil(t) + Di

2d(	r)2

∑
l′


ll′xil′ .

In Eqs. (2) the following notations are introduced:
fil = fi(x1l , . . . ,xnl), gil = gi(x1l , . . . ,xnl).

∑
l′ 
ll′ is the

discrete analog of the Laplace operator [2]:
∑

l′ 
ll′ =∑
l′ (δnn(l),l′ − 2dδl,l′ ), where nn(l) is a set of indexes of all

sites which are the nearest neighbors of the site with index l.
The discrete noises ηil(t), ξil(t) have the correlation functions

K[ηil(t),ηi ′l′(t
′)] = 2ζi

δll′

(	r)d
δ(t − t ′)δii ′ and

K[ξil(t),ξi ′l′(t
′)] = 2θi�i,|l−l′|δ(t − t ′)δii ′ . (3)

Here we have incorporated the fact that the continuum
δ function δ(r − r′) has been replaced in the usual way
with a ratio that contains the Kronecker δ and the lattice
spacing δll′/(	r)d , and �i,|l−l′| is convenient discretization
of function �i(|r − r′|). The values of �i,0 required further
can be computed numerically [33].

The Fokker-Planck equation corresponding to Eqs. (2)
in the Stratonovich interpretation [34] for multivari-
ate probability density w̃(x11, . . . ,x1l , . . . ,x1p, . . . ,xn1, . . . ,

022135-2



WEISS MEAN-FIELD APPROXIMATION FOR . . . PHYSICAL REVIEW E 90, 022135 (2014)

xnl, . . . ,xnp; t) = w̃({x1, . . . ,xn}; t) has the form

∂w̃({x1, . . . ,xn}; t)
∂t

= −
n∑

i=1

p∑
l′=1

∂

∂xil′

⎛
⎝
⎧⎨
⎩〈Fil′(t)〉 +

n∑
j=1

p∑
m=1

∫ 0

−∞
K

[
∂Fil′(t)

∂xjm

,Fjm(τ )

]
dτ

⎫⎬
⎭ w̃

⎞
⎠

+
n∑

i,j=1

p∑
m,l′=1

∂2

∂xil′xjm

({∫ 0

−∞
K[Fil′(t),Fjm(τ )]dτ

}
w̃

)
(4)

for all lattice points.
Considering Eqs. (2) the correlators included in Eq. (4) are easily computed,

K

[
∂Fil′(t)

∂xjm

,Fjm(τ )

]
= ∂gil′

∂xjm

gjmK[ξil′(t),ξjm(τ )]δij δml′ , m = l,nn(l),

(5)
K[Fil′(t),Fjm(τ )] = {gil′gjmK[ξil′(t),ξjm(τ )] + K[ηil′(t),ηjm(τ )]}δij δml′ , m = l,nn(l).

After the substitution of correlators (5) and (3) into Eq. (4) and some simple transformations the equation for multivariate
probability density w̃({x1, . . . ,xn}; t) will appear as

∂w̃({x1, . . . ,xn}; t)
∂t

= −
n∑

i=1

p∑
l′=1

∂

∂xil′

⎡
⎣fil′+ Di

2d(	r)2

⎛
⎝ ∑

m=nn(l′)

xim − 2dxil′

⎞
⎠−

∑
m=l′,nn(l′)

(
ζi

∂

∂xim

− θigil′�i,|l′−m|
∂

∂xim

gim

)⎤⎦ w̃.

(6)

We choose one site with index l. In order to obtain multivariate probability density w(x1l , . . . ,xil, . . . ,xnl ; t) = w({x}; t)
for a single site it is necessary to integrate w̃(x11, . . . ,x1l , . . . ,x1p, . . . ,xn1, . . . ,xnl, . . . ,xnp; t) over all the variables except
x1l , . . . ,xil, . . . ,xnl :

w(x1l , . . . ,xil, . . . ,xnl ; t) =
∫

w̃(x11, . . . ,x1l , . . . ,x1p, . . . ,xn1, . . . ,xnl, . . . ,xnp; t)

⎡
⎣∏

k �=l

dx1k · · · dxik · · · dxnk

⎤
⎦.

We use the property of probability density to vanish at the infinity: w̃({x1, . . . ,xn}; t) → 0 if xil → ±∞, i = 1, . . . ,n; l =
1, . . . ,p. Then ∫

∂

∂xim

(gimw̃)

⎡
⎣∏

k �=l

dx1k · · · dxik · · · dxnk

⎤
⎦ =

{
0, m �= l,

∂
∂xil

[gilw({x}; t)], m = l.
(7)

According to the definition of conditional probability, we can write∫
ximw̃

⎡
⎣∏

k �=l

dx1k · · · dxik · · · dxnk

⎤
⎦ =

∫
ximw(x1l , . . . ,xim,xil, . . . ,xnl ; t)dxim

=
[∫

ximw(xim|x1l , . . . ,xil, . . . ,xnl ; t)dxim

]
w(x1l , . . . ,xil, . . . ,xnl ; t)

= w({x}; t)E(xim|x1l , . . . ,xil, . . . ,xnl ; t). (8)

Here E(xim|x1l , . . . ,xil, . . . ,xnl ; t) are nearest-neighbor conditional averages.
Finally, taking into account Eqs. (7) and (8), we get

∂w({x}; t)
∂t

= −
n∑

i=1

∂

∂xil

⎧⎨
⎩fil + Di

2d(	r)2

⎡
⎣ ∑

m=nn(l)

E(xim|x1l , . . . ,xil, . . . ,xnl ; t) − 2dxil

⎤
⎦ − ζi

∂

∂xil

− θi�i,0gil

∂

∂xil

gil

⎫⎬
⎭w (9)

for single-point multivariate probability density.
Taking into account that xil are linked by Eqs. (2) let us assume that the MFT is to imply that the conditional average

E(xim|x1l , . . . ,xil, . . . ,xnl ; t) in Eq. (9) can be replaced with the conditional average E(xil|x1l , . . . ,xi−1l ,xi+1l , . . . ,xnl ; t):

E(xim|x1l , . . . ,xil, . . . ,xnl ; t) = E(xil|x1l , . . . ,xi−1l ,xi+1l , . . . ,xnl ; t), (10)

E(xil|x1l , . . . ,xi−1l ,xi+1l , . . . ,xnl ; t) =
∫ +∞

−∞
xilw(xil|x1l , . . . ,xi−1l ,xi+1l , . . . ,xnl ; t)dxil,

w(xil|x1l , . . . ,xi−1l ,xi+1l , . . . ,xnl ; t) = w({x}; t)∫ +∞
−∞ w(x1l , . . . ,xil, . . . ,xnl ; t)dxil

. (11)
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In this approximation the exact FPE (9) is transformed into
an approximate

∂w({x}; t)
∂t

=
n∑

i=1

∂

∂xil

[
Ci

drift({x},w,t)w

+ ∂

∂xil

(
Ci

diff({x},t)w)]
, (12)

where Ci
drift({x},w,t) = −fil − Di

(	r)2 [E(xil|x1l , . . . ,xi−1l ,

xi+1l , . . . ,xnl ; t) − xil] − θi�i,0gil
∂gil

∂xil
are generalized drift co-

efficients and Ci
diff({x},t) = ζi + θi�i,0g

2
il are diffusion coef-

ficients. Hereafter the index l is omitted for the simplicity of
writing.

Equations (10)–(12) form a self-consistent system for
which it is impossible to write a stationary solution even
implicitly as opposed to the one-dimensional case. The
numerical solution of (10)–(12) is a complicated problem.
The next section is devoted to the development of a numerical
method for the solution of this problem and testing its accuracy
and reliability.

III. NUMERICAL METHOD FOR THE MULTIVARIATE
NONLINEAR SELF-CONSISTENT FOKKER-PLANCK

EQUATION

A. Finite-difference method

A multivariate NSCFPE (12) can be presented as

∂w

∂t
=

n∑
α=1

∂

∂xα

[
kα(x,t)

∂w

∂xα

− ρα(x,t)w

]

=
n∑

α=1

Lαw, x = (x1, . . . ,xn), α = 1, . . . ,n, (13)

where kα(x,t) = Cα
diff({x},t),kα(x,t) > 0,ρα(x,t) =

Cα
drift({x},w,t) + 2θα�α,0gα

∂gα

∂xα
.

Here x = (x1, . . . ,xn) belong to the region G. The functions
ρα(x,t) implicitly depend on w [see Eq. (11)].

Let us choose natural boundary conditions (BCs) for the
probability density,

w(x,t) → 0 if xα → ±∞, (14)

and the initial condition (IC)

w(x,0) = w0(x). (15)

Let us transform the operators Lα to the form

Lα = ∂

∂xα

[
kα

qα

∂

∂xα

(qαw)

]
, qα = exp

∫
ρα

kα

dxα. (16)

The functions qα from (16) obtained by
integrating over xα include the conditional average
E(xα|x1, . . . ,xα−1,xα+1, . . . ,xn; t) that represents the
function of the variables x1, . . . ,xα−1,xα+1, . . . ,xn except
xα . Finding qα , therefore, does not present a problem. If∫

(ρα/kα)dxα cannot be integrated precisely, one can use
approximative methods, for example, the trapezoid rule.

For the problem (13)–(15) we choose a rectangular
spatial mesh ωh = ({xi} = {i1h1, . . . ,iαhα, . . . ,inhn} ∈ G),
where i1, . . . ,in (iα = 0,1, . . . ,Nα) and h1, . . . ,hn are the
indices of the mesh points and the steps, respectively,
and ωτ is a time mesh with a step τ over the
interval 0 � t � T . For the mesh functions given on
ωh × ωτ we use the following notations: y = yj+α/n =
y(xi,tj+α/n), yx̄α

= [y(x1,i1 , . . . ,xα,iα , . . . ,xn,in ,t) −
y(x1,i1 , . . . ,xα,iα−1, . . . ,xn,in ,t)]/hα is the left-side
difference derivative at the point x1,i1 , . . . ,xα,iα , . . . ,xn,in ,
and yxα

= [y(x1,i1 , . . . ,xα,iα+1, . . . ,xn,in ,t) − y(x1,i1 , . . . ,

xα,iα , . . . ,xn,in ,t)]/hα is the right-side difference derivative at
the point x1,i1 , . . . ,xα,iα , . . . ,xn,in .

Applying the finite-volume method [35] we associate Lα to
difference analogs [36],


αy = [
aα(qαy)x̄α

]
xα

, (17)

where aα,i = [
∫ xα,iα

xα,iα−1

qα

kα
dxα]

−1
.

A locally one-dimensional scheme for the problem (13)–
(15) will take the form

yj+α/n − yj+(α−1)/n

τ
− 
αy = 0, y0 = w0. (18)

It is shown in Refs. [36,37] that scheme (18) is uncondi-
tionally stable in the Banach space with the norm ‖y‖ =∑N1−1

i1
· · ·∑Nn−1

in
|y(x1,i1 , . . . ,xα,iα , . . . ,xn,in )|h1 · · ·hn and

has the accuracy O(τ + ∑
α h2

α).
Depending on the sign of the function ρα(x,t), we can use

the appropriate variant of a tridiagonal matrix algorithm or any
other method of solving systems of linear algebraic equations.
The integrals (11) are easily calculated using the Simpson’s
rule from the preceding layer.

B. Accuracy, reliability, and limitations

To demonstrate the accuracy and reliability of the results
obtained with the help of the finite-difference scheme (18)
and to find out its limitations, we apply (18) to the exactly
solvable NFPE for the Shimizu-Yamada model [29,30] and
the NFPE [31] obtained for the nonlinear stochastic mean-
field model introduced by Kometani and Shimizu [38]. The
accuracy of the method is compared with the accuracy of
Hermite DAF method [11] taking the problems indicated above
as an example.

The NSCFPE for Shimizu-Yamada model has the form

∂f (x,t)

∂t
= ∂{[ωx + θEx(t)]f (x,t)}

∂x
+ D

∂2f (x,t)

∂x2
, (19)

where Ex(t) = ∫ +∞
−∞ xf (x,t)dx is mathematical expectation,

ω, θ, and D are constants. With the initial spatial distribution
in the form of the Dirac δ function f (x,0) = δ(x − x0) the
exact solution of the problem (19) takes the form (Fig. 1)

f (x,t) = 1√
2πσ (t)

exp

{
− [x − Ex(t)]2

2σ (t)

}
, (20)

where Ex(t) = x0e
−(ω+θ)t , σ (t) = D

ω
(1 − e−2ωt ).
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FIG. 1. Analytical solution (20) for the problem (19). Hereafter
the parameters ω = 1, θ = 1, D = 0.1, and x0 = 1 are chosen for the
problem (19).

The accuracy and reliability of the scheme (18) was
determined by the relative error

ε(t) = {Ex2(t) − [Ex(t)]2}|Num

σ (t)
− 1. (21)

The expression {Ex2(t) − [Ex(t)]2}|Num is the second mo-
ment obtained in solving (19) by various numerical methods.
Additional control was accomplished by checking the fulfill-
ment of the condition of probability density normalization per
unit l(t) = ∫ +∞

−∞ f (x,t)dx at each time step. The condition
was also used as the criterion of the correct choice of the
integration region size governing the observation of boundary
conditions (14).

Figures 2 and 3 compare the plots of the decimal logarithm
of the relative error log10 |ε(t)| and the decimal logarithm of
the deviation of probability density normalization from unit
log10 |1 − 1(t)|. Figures 4(a), 4(b), 5(a), and 5(b) demonstrate
numerical solutions of Eq. (19) obtained on the basis of the
scheme (18) and the method based on DAF and the decimal
logarithm of module of absolute error f (x,t) − f (x,t)Eq.(20)

defining the deviation of numerical solution from the analytical

FIG. 2. Dependencies of the decimal logarithm of the relative
error log10 |ε(t)| (21) on time. The dashed line is the DAF-based
method [11]; the solid line is the finite-difference method (18).

FIG. 3. Dependencies of logarithm of the probability density
normalization deviation log10 |1 − 1(t)| from unity on time. The
dashed line is the DAF-based method; the solid line is the finite-
difference method (18).

one Eq. (20). Figure 6 shows the dependencies f (x) for
t = 0.01 for the analytical solution and the solutions obtained
by methods (18) and DAF. The appropriate dependencies are
obtained for the parameters recommended (giving the least
error) in [11] for the DAF-based method in the proper order of

FIG. 4. Surfaces f (x,t) (a) and log10 |f (x,t) − f (x,t)Eq.(20)| (b)
obtained as a result of the numerical solution (19) by the method (18).
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FIG. 5. Surfaces f (x,t) (a) and log10 |f (x,t) − f (x,t)Eq.(20)| (b)
obtained as a result of the numerical solution (19) by the DAF-based
method.

time approximation [O(τ )], the same as in scheme (18). The
solution by the scheme (18) is obtained for h1 = τ = 0.001.

It can be seen from the plots presented in Figs. 2, 4(b),
and 5(b) that in the first order of approximation over time
the accuracy of the solution obtained by using scheme (18)

FIG. 7. Distributions f (x) at time moments t = 1, 4, 72, 105.5
obtained on the basis of scheme (18) (lines) and on the basis
of the DAF method (separate symbols). t = 1, solid line, cir-
cles; t = 4, dotted line, triangles; t = 72, line with long dashes,
squares; t = 105.5, dashed line, rotated triangles. Hereinafter, the
parameters θ = 0.5, D = 0.01, and x0 = 10−4 are chosen for the
problem (22).

is higher, especially when steady-state values are reached and
time moments are close to the initial one. Figure 3 shows
that the values log10 |1 − 1(t)| obtained by the DAF-based
method have order 10−2, which means some violation of
the normalization condition. On the contrary, scheme (18)
conserves asymptotically (at large times) the condition of
normalization of probability density per unit with precision
of order 10−8. The analysis of Figs. 1, 4, 5, and 6 shows that
scheme (18) provides the positive definiteness of probability
density values at time moments close to the initial one, where
the solution is close to discontinuity, and a higher precision of
the solution.

FIG. 6. The dependence of probability density f (x) at t = 0.01. The solid line is the analytical solution (20), the dashed line is the solution
obtained by method (18), and the line with a long dashes is the DAF-based method [11].
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FIG. 8. Dependencies of the logarithm of normalization deviation
from unit on time for the problem (22). The dashed line is the DAF-
based method [11]; the solid line is the finite-difference method (18).

The second problem chosen for the examination of
scheme (18),

∂f (x,t)

∂t
= ∂({x3 + (θ − 1)x − θE[x(t)]}f (x,t))

∂x

+D
∂2f (x,t)

∂x2
, (22)

has a larger computational complexity than problem (19), since
long-lived bimodality is observed here at certain parameters,
and consequently calculations are to be performed for large
times. It imposes an additional requirement—asymptotic
stability—on the numerical method.

The problem (22) was solved numerically in Ref. [11] by
Hermite DAF method. Below the distributions f (x) at different
time moments, the dependencies of normalization 1(t) on
time, mean E[x(t)], variance Dx(t) = Ex2(t) − [Ex(t)]2,
and the decimal logarithm of relative error log10 |εNum(t)| =
Dx(t)|Eq.(18)

Dx(t)|DAF
− 1 are presented in Figs. 7–11 for comparison. In

the last expression Dx(t)|Eq.(18) is the variance calculated on
the basis of scheme (18), Dx(t)|DAF is the variance calculated
on the basis of the DAF-based method. Here the DAF-based
method solution is chosen as a benchmark for comparison.

It can be seen from Fig. 7 that the difference between
numerical solutions begins to appear at times of the order
of 105.5. Figure 8 gives the explanation for this. It follows
from it that significant violation of the normalization condition
arises at the same time. Evidently, insignificant differences in
dependencies of means Ex(t) and variances Dx(t) (see Figs. 9
and 10) and the increase of relative error (see Fig. 11) are
associated with it.

FIG. 9. Expectation Ex(t) vs time. The dashed line is the DAF-
based method [11]; the solid line is the finite-difference method (18).

FIG. 10. Variance Dx(t) vs time. The dashed line is the DAF-
based method [11]; the solid line is the finite-difference method (18).

Thus, the DAF-based method limitations connected with
the violation of probability density normalization condition
manifest themselves stronger in the problems with large
computational complexity. That is why its stability and the
reliability of solution fail at large times. Also, this method
violates locally the positive definiteness of solutions required
for the fulfillment of the standard properties of the probability
density.

Method (18) is free from the above features. The necessity
of choosing a sufficiently dense uniform mesh can be clas-
sified as a limitation of scheme (18). However, this can be
avoided by choosing a mesh with a variable space step. It is
possible to construct an unconditionally stable homogeneous
conservative finite-difference scheme for problem (13)–(15)
on a nonuniform mesh using Refs. [39,40].

IV. SPATIALLY EXTENDED STOCHASTIC BRUSSELATOR

A. Mean-field result

Let us apply the method developed in Sec. III to the study of
probability density of the system describing the well-known
model of autocatalytic chemical reaction (brusselator [28])
with spatially correlated multiplicative noise. Simultaneously,
let us study the variance of some statistical first- and second-
order characteristics of the system by increasing the intensity
of the external noise. In this paper the range of parameters at
which the Turing bifurcation arises in a deterministic system
is considered.

Brusselator is a model of a simple autocatalytic chemical
reaction having a trimolecular step [28]. The concentrations
of the initial and final products in this reaction are maintained
constant. The influence of external fluctuating environment

FIG. 11. Decimal logarithm of relative error log10 |εNum(t)| vs
time for the problem (22).
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FIG. 12. Probability density (24) drift directions on the plane
(x1,x2). The solid lines are the boundary of the regions of different
drift directions, the regions defined by equations C

1,2
drift(x1,x2,w,t) =

0. Parameters are A = 3, B = 7, θ1 = θ2 = 0.1, D1 = 1, D2 = 5,
E(x1|x2,t) = A,E(x2|x1,t) = B/A, �1,0 = �2,0 = 1.

FIG. 13. The evolution of probability density (24) for the
model (23). Unimodal distribution (top view in the left-hand side).
The color gradient presented in the figure visualizes the change from
minimum to maximum. The model parameters are B = 5.5, θ1 =
θ2 = 0.005. The time moment t = 7 corresponds to the stationary
state.

FIG. 14. The dependencies of variance Dx of concentration on
time with increasing noise intensity: (a) first product, (b) second
product. Solid lines, θ1 = θ2 = θ = 0.0005; long-dashed lines, θ =
0.001; dashed lines, θ = 0.002; dotted lines, θ = 0.003; dash-dotted
lines, θ = 0.005; dash-dot-doted lines, θ = 0.008; the three-dots-
dashed line, θ = 0.01. B = 5.5.

can lead to the fact that concentrations of the initial and final
products become random functions. This leads to the necessity
of including noise into the kinetic equations of a deterministic
model. Let us assume that the concentration of the initial
product Bin is most affected by external random environment.
Then kinetic equations of the reaction under consideration
have the form

∂x1

∂t
= A + x2

1x2 − [B + 1 + ξ1(r,t)]x1 + D1∇2x1,

(23)
∂x2

∂t
= −x2

1x2 + [B + ξ2(r,t)]x1 + D2∇2x2,

where x1 and x2 are concentrations of intermediate compo-
nents, D1 and D2 are their diffusion coefficients, and A and Bin

are concentrations of initial products with Bin = B + ξi(r,t).
Parameter B is the spatiotemporal average of the initial product
concentration Bin. The decrease in concentration x1 is due
to the two decays: with the formation of one of the final
products and with the formation of an intermediate product
x2 and the second final product. These decays have different
chemical reaction rates which are affected by external noises
in different ways. It is taken into account by including different
uncorrelated fields ξi(r,t) into Eqs. (23). Statistical properties
of the fields ξi(r,t) are described in Sec. I.

The system of Eqs. (23) is a specific case of Eq. (1) with
n = 2. Therefore, multidimensional single-site NSCFPE in the
Stratonovitch interpretation can be immediately written for the
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model (23) using Eq. (12):

∂w(x1,x2,t)

∂t
= ∂

∂x1

({−A − x2
1x2 + (B + 1 + θ1�1,0)x1

−D1[E(x1|x2) − x1]
}
w + θ1�1,0x

2
1
∂w

∂x1

)

+ ∂

∂x2

({
x2

1x2 − Bx1 − D2[E(x2|x1) − x2]
}
w

+ θ2�2,0x
2
1
∂w

∂x2

)
, (24)

E(x1|x2,t) =
∫ +∞

−∞
x1w(x1|x2,t)dx1,

E(x2|x1,t) =
∫ +∞

−∞
x2w(x2|x1,t)dx2,

w(x1|x2,t) = w(x1,x2,t)∫ +∞
−∞ w(x1,x2,t)dx1

,

w(x2|x1,t) = w(x1,x2,t)∫ +∞
−∞ w(x1,x2,t)dx2

.

Numerical solutions for Eq. (24) are obtained using
the finite-difference scheme (18) (see Appendix A).
Equation (24) has a greater computational complex-
ity than, for example, the problems (19) and (22).
This is related to the fact that, first, the general-
ized drift coefficients C1

drift(x1,x2,w,t) = −A − x2
1x2 + (B +

1 − θ1�1,0)x1 − D1[E(x1|x2) − x1] and C2
drift(x1,x2,w,t) =

x2
1x2 − Bx1 − D2[E(x2|x1) − x2] are nonlinear and of alter-

nating sign. This leads to the fact that regions with the
different direction of the probability density drift arise on
the plane (x1,x2) (see Fig. 12). Moreover, the boundaries of
these regions defined by the equations C

1,2
drift(x1,x2,w,t) = 0

are moving since conditional means E(x1|x2,t),E(x2|x1,t)
are time functions. Second, the diffusion coefficients are
proportional to x2

1 , which leads to a significant increase
of the integration region necessary to satisfy the boundary
conditions (14). Third, the problem (24) is two-dimensional
and increasing the dimension of the space always leads to an
increase of computational complexity.

Figures 13, 17, 21, and 22 present characteristic types of
solutions (24) obtained at different values of the parameters
of the problem and the noise intensity. The initial distribution
is Gaussian with variances θ1 and θ2, and expectations equal
to stationary values of x10 and x20 in the absence of noise
(see Appendix A). The following parameters for numerical
integration (24) remain constant in our calculations: A = 3,
D1 = 1, D2 = 5, �1,0 = �2,0 = 1. The other parameters are
indicated under the figures. The critical value of parameter B

is 5.4833 in a deterministic case at given A, D1, and D2.
Figure 13 demonstrates the evolution of probability density

w(x1,x2,t) in the vicinity of the deterministic bifurcation point
and small noise intensity. It can be seen from this figure that
the symmetry of initial distribution is violated in the evolution
process. The probability density distribution remains unimodal
throughout the time until the stationary state is reached. Hence,
the state of the system (23) is ordered, despite the noise.

FIG. 15. The dependencies of mean Ex (solid lines) and most
probable xmp (dashed lines) values on time in the case of increasing
noise intensity: (a) first product, (b) second product. B = 5.5. θ1,θ2

are as in Fig. 14. The greater the noise intensity, the greater is the
deviation of values Ex and xmp from the stationary values of x10 and
x20 (t = 0).

Figure 14 shows the appropriate dependencies of variance
of concentrations x1 and x2 on time if noise intensity increases.
It can be seen that the greater external noise intensity, the
faster the variance increases and the greater is its value in the

FIG. 16. Changes of the mean Ex (solid lines) and most probable
xmp (dashed lines) values x1 and x2 in case of increasing noise intensity
for unimodal distribution. B = 5.5. θ1,θ2 are as in Fig. 14. The greater
the noise intensity, the greater is the size of the wreath of the curve.
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FIG. 17. The evolution of probability density (24) for the
model (23). Transient bimodality is observed in the time interval
t ∈ [1.5,4]. Model parameters are B = 6, θ1 = θ2 = 0.09. The time
moment t = 11 corresponds to the setting of the stationary state.

FIG. 18. Dependencies of variance Dx1 of concentration x1 on
time with increasing noise intensity. Solid line, θ1 = θ2 = θ = 0.01;
long-dashed line, θ = 0.03; dashed line, θ = 0.05; dotted line, θ =
0.09; dash-dotted line, θ = 0.12. B = 6.

FIG. 19. The dependencies of mean Ex (solid lines) and most
probable xmp (dashed lines) values on time with increasing noise
intensity: (a) first product, (b) second product. B = 6. θ1,θ2 are as
in Fig. 14. The greater the noise intensity, the greater the deviation
of values Ex and xmp from the stationary values of x10 and x20. The
most probable jump (discontinuity of the first kind) corresponds to
the disappearance of bimodality.

stationary state. Figure 15 demonstrates the dependencies of
the mean and most probable values on time with different noise
intensities. The increase of noise intensity leads to the increase
of difference between the mean and the appropriate most

FIG. 20. Changes of the mean Ex (solid lines) and the most
probable xmp (dashed lines) values x1 and x2 in case of increasing the
noise intensity. B = 6; the other model parameters are as in Fig. 18.
A jump from a wreath of the curve x2mp(x1mp) shown in the figure by
a thin dashed line and the arrow corresponds to the disappearance of
bimodality.
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FIG. 21. The evolution of probability density (24) for the model (23). “Repumping” of probability density through bimodality (top view).
The model parameters are B = 7, θ1 = θ2 = θ = 0.1. The figure presents one “period” of repumping. The sequences of the frames in the
left-hand side and the right-hand side correspond to unimodal distribution, while in the center they correspond to the bimodal one.

probable in the steady stationary state. Figure 16 illustrates this
more clearly. All the results given above are quite expectable.

Quite a different picture is observed at a greater distance
from the deterministic bifurcation point. Figure 17 presents a
more complicated type of the probability density w(x1,x2,t)
evolution. We can see that at first unimodal distribution is

conserved, but it is strongly “blurred” and the maximum of
density drifts away from the initial position. Then the splitting
of probability density with the formation of two maxima
takes place at a certain point in time. Bimodal probability
distribution “lives” during a certain time interval. Herewith
competition occurs between maxima, as a result of which one
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FIG. 22. Repumping of probability density through bimodality
(corresponds to the center of Fig. 21).

of the maxima suppresses the other. The distribution becomes
unimodal again. That is, transient bimodality is observed in the
ordered phase. The behavior of the statistical characteristics
also varies as the noise intensity increases.

Figure 18 shows the dependencies of variance Dx1 of
concentration of the first product on time when the noise inten-
sity increases. Figures 19 and 20 demonstrate the appropriate
changes of the mean and most probable values. Dependencies
Dx1(t), Exi(t),ximp(t) are similar to the ones given in
Figs. 14, 15, and 16 if the noise intensities θ1,θ2 < 0.09.
The distribution remains unimodal. A clearly visible “dip”
corresponding to the disappearance of transient bimodality is
observed in the dependence Dx1(t) at θ1,θ2 � 0.09. Herewith
the discontinuity of the first kind appears in plots of the
most probable vs time. The jump from a wreath of the
curve x2mp(x1mp) corresponds to the disappearance of transient
bimodality in Fig. 20.

A completely unexpected solution (24) appears at a greater
distance from the deterministic point of bifurcation (see

Figs. 21–24). At first, density drifts from the initial position to
the boundary of the integration region in accordance with the
directions indicated in Fig. 12. Then the splitting of density
occurs at t ∼ 5 (Figs. 21 and 22) just as in transient bimodality.

Peculiar “repumping” of probability density from one
maximum to another through bimodality is observed until
the time moment t ∼ 6.5 (Fig. 22). It can be noticed that the
duration of the existence of one- and bimodal distributions
are comparable in the order of magnitude. Then a drift
towards the boundaries happens again. The process is repeated
until the stationary state is established. This is accompanied
by “oscillations” in Dxi(t) (Fig. 23) and a decrease in
the size of the wreath of the curve Ex2(Ex1) (Fig. 24).
Figure 24 shows two jumps from a wreath of the curve
x2mp(x1mp), which corresponds to the double appearance and
disappearance of repumping of the probability density through
bimodality.

Such behavior of the probability density implies multiple
appearance of the other state (other phase) that corresponds to
bimodal distribution in the ordered phase. We can assume that
there is a kind of phase “intermittency.” This noise-induced
effect will be presented in more detail in our future paper.

So, as a result of the numerical study of Eq. (24) solutions
we found that different types of solutions can arise in the region
of Turing bifurcation when noise intensity increases: unimodal
distribution, unimodal distribution with transient bimodality,
and complicated distribution, in which unimodal and bimodal
distributions alternate until the steady state is established.
In other words, only the ordered phase is observed at low
noise intensity. The increase of the noise intensity leads to the
appearance of transient bimodality (disordered phase) in the
ordered phase. Further growth of the noise intensity disrupts
the ordering to an even greater extent: There is an intermittency
phase, which “swings” the ordered state, as it were.

B. Fokker-Planck equation for order parameters

The system (23) analysis presented above takes into account
the interaction of the whole set of both stable and unstable
modes. It is known that the system behavior is governed by
the behavior of unstable modes (order parameters) [41] in the
vicinity of the Turing bifurcation point. Therefore, additionally
we study the behavior of order parameters of this system. The
procedure of deriving generalized Ginzburg-Landau equations
for type (1) systems was proposed in Ref. [27]. Following this
procedure we obtained stochastic equations for the amplitudes
of unstable modes for system (23). These equations have the

FIG. 23. Dependencies of variances Dx1 and Dx2 on time at B =
7, θ1 = θ2 = θ = 0.1. The figure presents one “period of repumping.”
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FIG. 24. Change of the mean (solid line) and the most probable
(dashed line) values x1 and x2 in repumping. Two periods are
presented.

form
dξ

(1)
ku

dτ
= Fku(τ ), (25)

Fku(τ ) = λ1(ku)ξ (1)
ku +

∑
k′u

�1(ku,k′
u,ks ,z(τ ))ξ (1)

k′u

+
∑

k′uk′′u

�11(ku,k′
u,k′′

u,ks ,z(τ ))ξ (1)
k′uξ

(1)
k′′u

+
∑

k′uk′′uk′′′u

ω(ku,k′
u,k′′

u,k′′′
u)ξ (1)

k′uξ
(1)
k′′uξ

(1)
k′′′u

+A
[−O

∗(1)
1 (ku)z1,ku(τ ) + O

∗(1)
2 (ku)z2,ku(τ )

]
−

2∑
μ,ϕ,ϕ′=1

∑
ks

ζ
(μ)
ϕϕ′ (ks ,ku)zϕ′,ku−ks(τ )zϕ,ks(τ ).

Here ξ
(1)
ku are unstable mode amplitudes of system (23),

ku,ks are wave numbers of unstable and stable modes,
respectively, z(τ ) is the random vector field, the components
of which zϕ,k(τ ) = ∫

ξϕ(r,τ )e−ikrdr have zero means and
a given correlation tensor K[zj,k(t),zl,k′(τ )] = gjl(|k|)δ(k −
k′)δ(t − τ )δjl , and ϕ and k are index arguments of this field.

Taking into account that the functions �i(|r − r′|) in Eqs. (1)
were chosen to be exponential for definiteness, for two-
dimensional media gii = θikf i/[2π2(k2 + k2

f i)
−3/2]. Func-

tions λ1(ku), �1(ku,k′
u,ks ,z(τ )), �11(ku,k′

u,k′′
u,ks ,z(τ )),

and others introduced in Eq. (25) are presented in Appendix B.
Equations (25) define the evolution of a set of random

processes. Let us write FPE for these processes. It can be
represented in a general form as follows:

∂w
({

ξ
(1)
ku

}
,τ
)

∂τ

= −
∑
ku

∂

∂ξ
(1)
ku

({
〈Fku(τ )〉

+
∑
qu

∫ 0

−∞
K

[
∂Fku(τ )

∂ξ
(1)
qu

,Fqu(t ′)
]
dt ′

}
w

)

+
∑

ku,qu

∂2

∂ξ
(1)
ku ∂ξ

(1)
qu

({∫ 0

−∞
K[Fku(τ ),Fqu(t ′)]dt ′

}
w

)
.

(26)
Here w({ξ (1)

ku },τ ) is the multivariate probability distribution
density defining the probability of some configuration of
unstable modes {ξ (1)

ku }. After transformations with an accuracy
up to the terms linear in the noise intensity one can obtain the
correlation functions appearing in Eq. (26) that are presented
in Appendix C.

Let the space of the system under study be two-dimensional.
If only one mode with the wave number kc and amplitude ξkc is
unstable in such space the Eq. (26) acquires a simple structure:

∂w(ξkc,τ )

∂τ
= − ∂

∂ξkc

{(
h + aξkc + bξ 3

kc

)
w

− (
c + dξ 2

kc + eξ 4
kc

) ∂w

∂ξkc

}
. (27)

Constants a, b, c, d, e, and h are easily obtained assuming
that k′

u = q′
u = q′′

u = kc in correlators K[ ∂Fku(τ )
∂ξ

(1)
qu

,Fqu(t ′)]

and K[Fku(τ ),Fqu(t ′)] (see Appendix C).
The stationary solution of Eq. (27) has the form

wst (ξkc) =

⎧⎪⎨
⎪⎩

N
∣∣c + dξ 2

kc + eξ 4
kc

∣∣ b
4e
∣∣ 2eξ 2

kc+d−√
d2−4ec

2eξ 2
kc+d+√

d2−4ec

∣∣ 2ae−bd

4e

√
d2−4ec exp I, d2 > 4ec,

N
∣∣c + dξ 2

kc + eξ 4
kc

∣∣ b
4e exp

{
2ae−bd

2e
√

4ec−d2 arctan
( 2eξ 2

kc+d√
4ec−d2

)}
exp I, 4ec > d2.

(28)

Here
I =

⎧⎨
⎩

eh√
d2−4ec

(I1 − I2), d2 > 4ec,

h
4e sin α

[
sin α

2 ln
( ξ 2

kc+2qξkc cos α
2 +q2

ξ 2
kc−2qξkc cos α

2 +q2

) + 2 cos α
2 arctan

( ξ 2
kc−q2

2qξkc sin α
2

)]
, 4ec > d2;

cos α = −d/(2
√

ec), q = 4
√

c/e, f1,2 = d/2 ∓ (d2 − 4ec)1/2/2;

I1,2 =

⎧⎪⎨
⎪⎩

1√
ef1,2

arctan
(
ξkc

√
e

f1,2

)
, ef1,2 > 0,

1
2i
√

ef1,2
ln
( f1,2+iξkc

√
ef1,2

f1,2−iξkcf1,2

)
, ef1,2 < 0.

N is the normalization constant:

N =

⎧⎪⎨
⎪⎩

1/
∫ +∞
−∞ exp I

∣∣c + dξ 2
kc + eξ 4

kc

∣∣ b
4e
∣∣ 2eξ 2

kc+d−√
d2−4ec

2eξ 2
kc+d+√

d2−4ec

∣∣ 2ae−bd

4e

√
d2−4ec dξkc, d2 > 4ec,

1/
∫ +∞
−∞ exp I

∣∣c + dξ 2
kc + eξ 4

kc

∣∣ b
4e exp

{
2ae−bd

2e
√

4ec−d2 arctan
( 2eξ 2

kc+d√
4ec−d2

)}
dξkc, 4ec > d2.
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FIG. 25. Steady-state probability density [Eq. (28)] for the values
of the critical mode amplitude of system (23) in the supercritical re-
gion for six values of noise intensity. B = 5.5. Long-dashed line, θ1 =
θ2 = θ = 3.5 × 10−5; dash-dot-doted line, θ = 2.0 × 10−4; dash-
dotted line, θ = 8.0 × 10−4; dotted line, θ = 3.0 × 10−3; dashed line,
θ = 5.5 × 10−3; solid line, θ = 2.0 × 10−2.

Figure 25 demonstrates the steady-state probability den-
sity (28) for the values of the critical mode amplitude of
system (23) in the supercritical region for different values
of noise intensity. It can be seen from Fig. 25 that two
maxima merge into one at θ1 = θ2 = 5.5 × 10−3 (dashed line)
and bimodal distribution is replaced with unimodal. The plot
wst (ξkc) acquires a flat top (plateau). Herewith the steady-state
most probable value of the critical mode amplitude module
|ξkc mp| becomes zero (see Fig. 26). It also follows from Fig. 26
that as the distance from the bifurcation point increases, i.e.,
with the increase of the bifurcation parameter B, the noise
intensity, at which |ξkc mp| = 0, increases. The steady-state
mean 〈|ξkc|〉 is always other than zero and the difference
between |ξkc mp| and 〈|ξkc|〉 increases both with the increase
of the noise intensity and that of the parameter B. The latter
corresponds to the conclusions from the plots presented in
Figs. 16 and 20.

Figure 27 illustrates the behavior of the steady-state
second-order cumulant κ2 = 〈ξ 2

kc〉/〈|ξkc|〉2 and the suscepti-
bility [〈ξ 2

kc〉 − 〈|ξkc|〉2]/θ of the order parameter as the noise
intensity increases at different values of the bifurcation pa-

FIG. 26. Steady-state mean 〈|ξkc|〉 and most probable |ξkc mp|
values of the critical mode amplitude module as a function of noise
intensity. Solid line, B = 5.5; dashed line, B = 6.0; dotted line,
B = 7.

FIG. 27. Steady-state second-order cumulant κ2 (a) and suscep-
tibility χ (b) as functions of noise intensity. θ2 = θ1 = θ . Solid line,
B = 5.5; dashed line, B = 6.0; dotted line, B = 7.

rameter. The second-order cumulant is a monotone increasing
function at low noise, whereas the susceptibility has a marked
maximum. This maximum is observed for the values of noise
intensity slightly smaller than the values at which |ξkc mp| = 0.
This maximum can be called a “forerunner” of a change in the
system state.

The analysis of the plots presented in Figs. 14 and 18 shows
that the steady-state variance of system (23) increases in the
region of low noise. This qualitatively corresponds to the areas
where the susceptibility of the order parameter in Fig. 27(b)
increases.

One can observe an interesting correspondence between
the values of noise intensity at which steady-state bimodal
distribution disappears for the critical mode amplitude of
system (23) and transient bimodality arises in the ordered
phase. We turn to Figs. 19 and 26. At B = 6 these values
are ≈0.16 and ≈0.09–0.12, respectively.

V. CONCLUSION

Mean-field approximation was developed for studying
the state of multicomponent stochastic spatially extended
systems. We assume that in this case equality (10) is true.
Herewith the nontrivial spatial structure, spatial homogeneity,
and isotropy of multiplicative noise are taken into account. In
this approximation a multivariate single-site NSCFPE (12) was
derived for the probability density of the state of the system
under consideration. The limitations of applying Eq. (12) arise
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either due to the limitations of using MFT, which are discussed
in [42], or due to the limitations of using Fokker-Planck
equation, which are formulated in [34].

The finite-difference method is proposed for the numer-
ical solution of the general class of multivariate nonlinear
self-consistent time-dependent Fokker-Planck equations. The
accuracy and reliability of the method was illustrated on known
one-dimensional problems. It was shown that the method
proposed conserves the positive definiteness of solutions
and the normalization condition of the probability density
unlike the Hermite DAF-based method. In the first order
of approximation over time the method proposed makes it
possible to obtain solutions with higher accuracy, especially
in a steady state and in the region where the solution is
close to discontinuity. The necessity of choosing a sufficiently
dense uniform grid can be classified as a limitation of the
proposed method. However, this can be avoided if the proposed
scheme is transferred onto a nonuniform grid. Mean-field
approximation was applied to the study of the evolution of
the system describing the well-known model of autocatalytic
chemical reaction with spatially correlated multiplicative
noise. In this paper the region of parameters, in which the
Turing bifurcation arises in the deterministic system, was
considered.

As a result of the numerical study of NSCFPE solutions
for a stochastic spatially extended brusselator we found that
only unimodal probability distribution (ordered phase) can
be observed at low noise intensity. The increase of noise
intensity leads to the occurrence of transient bimodality
(disordered phase) in the ordered phase. Further growth of
noise intensity disrupts the ordering to an even greater extent:
“Intermittency” of unimodal and bimodal distribution, that is
“phase intermittency,” is observed which “swings” the ordered
state. The behavior of variance over time, the most probable
and mean of the function defining the system state in case
of increasing the external noise intensity and the bifurcation
parameter, has been studied. It was shown that the most
probable has the discontinuity of the first kind when transient
bimodality disappears.

The behavior of the order parameter of the system under
consideration was studied. It was shown that some statistical
characteristics of the order parameter and the functions
defining the system state behave in a similar way in the steady
state. Thus, in the vicinity of the bifurcation point the greater
the external noise intensity, the greater is the variance in the
steady state. Simultaneously the increase of noise intensity
leads to the increase of difference between the mean and the
appropriate most probable in the steady state. It was shown
that transient bimodality occurs in the ordered phase when
noise intensity values are close to the values corresponding
to the transition from a bimodal density of steady-state order
parameter probability distribution to a unimodal one.
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APPENDIX A

A rectangular spatial mesh ωh = ({ih1,jh2}) was chosen
for problem (24). Here i,j (i = 0,1, . . . ,I ; j = 0,1, . . . ,J ),
h1,h2 are indexes of mesh nodes and steps, respectively, and
ωτ is a temporal mesh with a step τ on the interval 0 � t � T .

We associate the discrete function wk
ij defined on the mesh

ωh × ωτ with the continuous function w(x1,x2,t).
We choose the ICs

w0 = w(x1,x2,0)

= 1

2π
√

θ1θ2
exp

{
− (x1 − x10)2

2θ1
− (x2 − x20)2

2θ2

}
,

x10 = A, x20 = B/A

and boundary conditions w(x1,x2,t) → 0 if x1 → ∞,

x2 → ∞.
A locally one-dimensional scheme (13)–(15) for prob-

lem (24) has the form

wk+α/n − wk+(α−1)/n

τ
− 
αw = 0, w0 = w0,

α = 1,2; n = 2.


αw = [aα(qαw)x̄α
]xα

,

q1 = exp

(
a0

x1
+ a1 ln |x1| − x1x2

θ1

)
,

q2 = exp
[−b1(x1)x2 + b2(x1)x2

2

]
,

a1,i =
{

1

2θ1

[
exp

(
a0

x1,i

− x1,ix2

θ1

)
x

a1−2
1,i

+ exp

(
a0

x1,i−1
− x1,i−1x2

θ1

)
x

a1−2
1,i−1

]}−1

, x1,i = ih1,

a2,j =
(

1

2θ2x
2
1

{
exp

[−b1(x1)x2,j + b2(x1)x2
2,j

]

+ exp
[−b1(x1)x2,j−1 + b2(x1)x2

2,j−1

]})−1

,

x2,j = jh2.

Here the notations are introduced:

a0 = A + D1E(x1|x2,t)

θ1
, a1 = B + 1 + θ1 + D1

θ1
,

b1(x1) = B

θ2x1
+ D2E(x2|x1,t)

θ2x
2
1

, b2(x1) = x2
1 + D2

2θ2x
2
1

.
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On the boundary,

wk
1j = wk

0j ∼ 0, wk
i 1 = wk

i 0 ∼ 0, wk
Ij = wk

I−1j ∼ 0, wk
i J = wk

i J−1 ∼ 0.

At the transition to a semilayer,

−Biw
k+1/2
i+1j + Ciw

k+1/2
i j − Aiw

k+1/2
i−1 j = wk

i j ;

A0 = 0; B0 = 1; C0 = 1; F0 = 0; AI = 1; BI = 0; CI = 1; FI = 0;

Ai = τθ1

h2
1

|x1 − h1|2
1 + exp

{− a0h1
x1(x1−h1) − x2h1

θ1
+ (a1 − 2) ln

∣∣ x1
x1−h1

∣∣} ,

Bi = τθ1

h2
1

|x1 + h1|2
1 + exp

{
a0h1

x1(x1+h1) + x2h1
θ1

+ (a1 − 2) ln
∣∣ x1
x1+h1

∣∣} ,

Ci = 1 + τθ1x
2
1

h2
1

1

1 + exp
{− a0h1

x1(x1+h1) − x2h1
θ1

+ (a1 − 2) ln
∣∣ x1+h1

x1

∣∣} + τθ1x
2
1

h2
1

1

1 + exp
{

a0h1
x1(x1 − h1) + x2h1

θ1
+ (a1 − 2) ln

∣∣ x1−h1
x1

∣∣} .

At the transition to a whole layer,

−Bjw
k+1
i j+1 + Cjw

k+1
i j − Ajw

k+1
i j−1 = w

k+1/2
i j ;

A0 = 0; B0 = 1; C0 = 1; F0 = 0; AJ = 1; BJ = 0; CJ = 1; FJ = 0;

Aj = τθ2x
2
1

h2
2

1

1 + exp {−b1h2 + 2b2h2(x2 − 0.5h2)} ,

Bj = τθ2x
2
1

h2
2

1

1 + exp {b1h2 − 2b2h2(x2 + 0.5h2)} ,

Cj = 1 + τθ2x
2
1

h2
1

[
1

1 + exp {−b1h2 + 2b2h2(x2 + 0.5h2)} + 1

1 + exp {b1h2 − 2b2h2(x2 − 0.5h2)}
]
.

APPENDIX B

The functions introduced in Eq. (25) can be written as follows:

λμ(k) = α(k)

2
±

√
α2(k)

4
− β(k),

α(k) = B − 1 − A2 − (D1 + D2)k2, β(k) = [A2D1 − (B − 1)D2]k2 + D1D2k
4 + A2,

�1(ku,k′
u,ks ,z(τ )) =

∑
μ,ϕ

η(μ)
ϕ (ku,k′

u)zϕ,ku−k′u −
∑
k′s

∑
μ,ϕ,ϕ′

A
(μ)
ϕϕ′(k′

u,ks ,ku)zϕ,ku−kszϕ′,ks−k′u,

�11(ku,k′
u,k′′

u,ks ,z(τ )) = δ(ku,k′
u,k′′

u) −
∑
μ,ϕ

(−1)ϕν(μ)
ϕ (ku,k′

u,k′′
u)zϕ,ku−k′u−k′′u,

η(μ)
ϕ (ku,k′

u) = (−1)ϕ
[
O

(1)
1 (k′

u)O∗(1)
ϕ (ku) − β(μ)

ϕ (ku,k′
u)
]
,

A
(μ)
ϕϕ′(k′

u,ks ,ku) = (−1)ϕ+ϕ′
O

(1)
1 (k′

u)ε(μ)
ϕϕ′(ks ,k′

u),

ζ
(μ)
ϕϕ′ (ks ,ku) = (−1)ϕ+ϕ′

Aε
(μ)
ϕϕ′ (ks ,k′

u),

ε
(μ)
ϕϕ′ (ks ,k′

u) = O
(μ)
1 (ks)

λμ(ks)
O∗(μ)

ϕ (ks)O
∗(1)
ϕ′ (ku),

β(μ)
ϕ (ku,k′

u) = O
∗(1)
1 (ku) − O

∗(1)
2 (ku)

λμ(|ku − k′
u|) O∗(μ)

ϕ (|ku − k′
u|)σ 1μ(ku,|ku − k′

u|),

ν(μ)
ϕ (ku,k′

u,k′′
u) = β(μ)

ϕ (ku,k′
u)O(1)

1 (k′′
u) + O∗(1)

ϕ (ku)
O

(μ)
1 (|k′

u + k′′|u)

λμ(|k′
u + k′′

u|)
[
O

∗(μ)
1 (|k′

u + k′′
u|)

−O
∗(μ)
2 (|k′

u + k′′
u|)

][
2AO

(1)
1 (k′

u)O(1)
2 (k′′

u) + B

A
O

(1)
1 (k′

u)O(1)
1 (k′′

u)

]
,
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δ(ku,k′
u,k′′

u) = [
O

∗(1)
1 (ku) − O

∗(1)
2 (ku)

][
2AO

(1)
1 (k′

u)O(1)
2 (k′′

u) + B

A
O

(1)
1 (k′

u)O(1)
1 (k′′

u)

]
δ(ku − k′

u − k′′
u),

ω(ku,k′
u,k′′

u,k′′′
u) = [

O
∗(1)
1 (ku) − O

∗(1)
2 (ku)

]
O

(1)
1 (k′

u)O(1)
1 (k′′

u)O(1)
2 (k′′′

u)δ(ku − k′
u − k′′

u − k′′′
u)

−
∑
ks,μ

{[
O

∗(1)
1 (ku) − O

∗(1)
2 (ku)

]
λμ(ks)

σ 1μ(k′
u,ks)

[
O

∗(μ)
1 (ks) − O

∗(μ)
2 (ks)

]

×
[

2AO
(1)
1 (k′′′

u)O(1)
2 (k′′

u) + B

A
O

(1)
1 (k′′′

u)O(1)
1 (k′′

u)

]
δ(ku − k′

u − ks)δ(ks − k′′
u − k′′′

u)

}
,

σ 1μ(k′
u,ks) = 2AO

(1)
1 (k′

u)O(μ)
2 (ks) + 2

B

A
O

(1)
1 (k′

u)O(μ)
1 (ks) + 2AO

(μ)
1 (ks)O

(1)
2 (k′

u),

O(μ)(k) =
(

[−A2 − D2k
2 − λμ(k)]/B

1

)
,

O∗(μ)(k) =
(

(−1)μO
(μ′)
2 (k)/

[
O

(1)
2 (k)O(2)

1 (k) − O
(2)
2 (k)O(1)

1 (k)
]

(−1)μ
′
O

(μ′)
1 (k)/

[
O

(1)
2 (k)O(2)

1 (k) − O
(1)
2 (k)O(1)

1 (k)
]
)

, if μ = 1, μ′ = 2; if μ = 2, μ′ = 1.

APPENDIX C

The correlators from Eq. (26) can be written as follows:

K

[
∂Fku(τ )

∂ξ
(1)
qu

,Fqu(t ′)
]

=
∑

ϕ

ηϕ(ku,qu)O∗(1)
ϕ (qu)p(0)

ϕ gϕϕ(|ku − qu|)δku−qu,quδ(τ − t ′)

+
∑

ϕ

[νϕ(ku,qu,ku − 2qu) + νϕ(ku,ku − 2qu,qu)]O∗(1)
ϕ (qu)p(0)

ϕ gϕϕ(|qu|)ξku−2quδ(τ − t ′)

+
∑

ϕ

ηϕ(ku,qu)ηϕ(qu,2qu − ku)gϕϕ(|ku − qu|)ξ2qu−kuδ(τ − t ′)

+
∑
ϕ,q′u

ηϕ(ku,qu)νϕ(qu,q′
u,2qu − ku − q′

u)gϕϕ(|ku − qu|)ξq′uξ2qu−ku−q′uδ(τ − t ′)

+
∑

ϕ,q′u,q′′u

[νϕ(ku,qu,ku − 2qu + q′
u + q′′

u) + νϕ(ku,ku − 2qu + q′
u + q′′

u,qu)]

× νϕ(qu,q′
u,q

′′
u)gϕϕ(|qu − q′

u − q′′
u|)ξq′uξq′′uξku−2qu+q′u+q′′uδ(τ − t ′)

+
∑
ϕ,q′u

ηϕ(qu,q′
u)[νϕ(ku,ku − 2qu + q′

u,qu) + νϕ(ku,qu,ku − 2qu + q′
u)]

× gϕϕ(|qu − q′
u|)ξq′uξku−2qu+q′uδ(τ − t ′),

K[Fku(τ ),Fqu(t ′)] =
∑

ϕ

[
O∗(1)

ϕ (ku)
]2(

p(0)
ϕ

)2
gϕϕ(|ku|)δku,quδ(τ − t ′)

+
∑

ϕ

ηϕ(ku,ku − qu)O∗(1)
ϕ (qu)p(0)

ϕ gϕϕ(|qu|)ξku−quδ(τ − t ′)

+
∑

ϕ

ηϕ(qu,qu − ku)O∗(1)
ϕ (ku)p(0)

ϕ gϕϕ(|ku|)ξqu−kuδ(τ − t ′)

+
∑
ϕ,q′u

ηϕ(ku,ku − qu + q′
u)ηϕ(qu,q′

u)gϕϕ(|qu − q′
u|)ξq′uξku−qu+q′uδ(τ − t ′)

+
∑

ϕ,k′u,q′u

νϕ(ku,k′
u,ku − k′

u − qu + q′
u)ηϕ(qu,q′

u)gϕϕ(|qu − q′
u|)ξk′uξq′uξku−k′u−qu+q′uδ(τ − t ′)

+
∑
ϕ,q′u

νϕ(qu,q′
u,qu − q′

u − ku)O∗(1)
ϕ (ku)p(0)

ϕ gϕϕ(|ku|)ξq′uξqu−q′u−kuδ(τ − t ′)
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+
∑

ϕ,k′u,q′u

νϕ(qu,q′
u,qu − q′

u − ku + k′
u)ηϕ(ku,k′

u)gϕϕ(|ku − k′
u|)ξk′uξq′uξqu−q′u−ku+k′uδ(τ − t ′)

+
∑

ϕ,k′u,q′u,q′′u

νϕ(ku,k′
u,ku − k′

u − qu + q′
u + q′′

u)νϕ(qu,q′
u,q

′′
u)

× gϕϕ(|qu − q′
u − q′′

u|)ξk′uξq′uξq′′uξku−k′u−qu+q′u+q′′uδ(τ − t ′).
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