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Theory of diffusion of active particles that move at constant speed in two dimensions
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Ciudad Universitaria, Coyoacán, 04510 México Distrito Federal, Mexico
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Starting from a Langevin description of active particles that move with constant speed in infinite two-
dimensional space and its corresponding Fokker-Planck equation, we develop a systematic method that allows
us to obtain the coarse-grained probability density of finding a particle at a given location and at a given time in
arbitrary short-time regimes. By going beyond the diffusive limit, we derive a generalization of the telegrapher
equation. Such generalization preserves the hyperbolic structure of the equation and incorporates memory effects
in the diffusive term. While no difference is observed for the mean-square displacement computed from the
two-dimensional telegrapher equation and from our generalization, the kurtosis results in a sensible parameter
that discriminates between both approximations. We carry out a comparative analysis in Fourier space that sheds
light on why the standard telegrapher equation is not an appropriate model to describe the propagation of particles
with constant speed in dispersive media.
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I. INTRODUCTION

The study of transport properties of active (self-propelled)
particles has received much attention during the past two
decades [1,2]. Self-propulsion, as a feature of systems out
of equilibrium, has been introduced in a variety of contexts to
describe the foraging of organisms in ecology problems [3,4],
the motion of bacteria [5], and photon migration in multiple
scattering media [6–8], just to name a few. More recently
self-propulsion was incorporated into micron-sized particles
by conversion of chemical energy into self-phoretic motion
[9,10].

A simple model for self-propulsion is to consider that the
particles move with constant speed in a manifold of interest,
which in many cases coincides with the two-dimensional
space. This simplified modeling of particle activation has been
approximately supported by experimental studies in many real
biological systems [11–16] and has been used in several theo-
retical studies of systems that exhibit collective motion [17,18]
for interacting self-driven particles, anomalous diffusion [19]
when particles move in heterogeneous landscapes, and motion
persistence [20–22] if the particles are under the influence of
fluctuating torques.

Previous studies on diffusion theory within the framework
of random walks used persistent random walks (see [23], and
references therein) and their phenomenological generaliza-
tions [24] to incorporate internal states, which sometimes are
related to kinematic properties of the walker, such as velocity.
Generally, the interest lies in a coarse-grained description of
the probability density P (x,t) of finding a particle at position
x at time t , for which the detailed information about the
internal states is irrelevant. As a standard procedure, the
limit of the continuum is taken, which leads to a partial
differential equation (PDE) for P (x,t). Depending on the
spatial dimension, those PDEs are reminiscent of the well-
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known diffusion equation. For instance, the one-dimensional
persistent random walk leads to the telegrapher equation (TE)
whose solution corrects, in the short-time regime, the infinite
speed of signal propagation exhibited by the solution to the
diffusion equation. In fact, the solution to the TE shows a
transition from a wavelike behavior at short times to a diffusive
behavior in the long-time regime (see [25], and references
therein).

That dimensionality plays a significant role in various
physical phenomena has been pointed out by many authors (see
Ref. [26], and references therein), particularly regarding the
transmission of information described by the wave equation,
which favors three dimensions for signal fidelity transmission,
a feature desired as part of an anthropic principle. By contrast,
the solution to the two-dimensional wave equation presents
signal reverberation, making impossible the transmission of
sharply defined signals. In additional, such a solution is
negative for points inside the propagating front if initial data
correspond to an impulse with zero velocity [27].

Generalizations of the persistent random walk to arbitrary
dimension d greater than one have been formulated [28];
however, physical interpretation of the PDE obtained after
taking the limit of the continuum is hindered due to the
presence of partial derivatives of order 2d. This departure
from the one-dimensional case, which contains at most partial
derivatives of order 2, is conspicuously important in the short-
time regime. Thus deriving an appropriate transport equation
for the coarse-grained probability distribution in dimensions
larger than one has been a central issue [24,29–31].

The description of particles that move with constant speed
is also susceptible to the spatial dimension of the system and
one dimension seems to be particularly exceptional regarding
the TE since this has been derived exactly from various
equivalent microscopic models [32–34] that consider the
random transitions between the velocity states ±c (also known
as the Goldstein-Kac process; see Ref. [35]), namely,

∂2

∂t2
P (x,t) + γ

∂

∂t
P (x,t) = c2 ∂2

∂x2
P (x,t), (1)
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where γ is the transition rate between the internal states ±c. A
generalization of this dichotomic process to dimensions larger
than one has lead to a fourth-order PDE [7] for particles that
move with constant speed

√
2c along the diagonals of a square

lattice in two dimensions. The straightforward generalization
to d > 1 spatial dimensions ∂2

t P + γ ∂tP = c2∇dP has been
considered before in the context of photon propagation in
turbid media [36–38]; however, it does not always result
in an appropriate physical interpretation as already discussed
in Refs. [25,39,40], particularly in two dimensions, since at
short times the wavelike behavior implies that the particle
probability density becomes negative.

In this work we present an analysis of Brownian-like
particles that move with constant speed in infinite two-
dimensional space and whose trajectories are obtained from
Langevin-like equations. Through suitable transformations of
the Fokker-Planck equation for P (x,ϕ,t), with ϕ the internal
state that gives the direction of motion of a single particle, we
are able to obtain approximate diffusionlike equations for the
coarse-grained probability distribution P (x,t). As expected,
the TE is obtained in the long-time limit and a generalization
of it is obtained by describing the system in a shorter-time
regime. This generalization incorporates memory functions
and keeps the hyperbolic nature of the original TE.

In Sec. II we provide the Langevin equations for the
trajectories of particles that move with constant velocity
and the Fokker-Planck equation for the probability density
P (x,ϕ,t) of a particle being at point x, moving in direction ϕ

at time t as stated. In Sec. III we present our method of analysis
and derive a generalization of the TE. A comparative analysis
of the generalized and the original TE is given in Sec. IV. We
summarize in Sec. V.

II. LANGEVIN EQUATIONS FOR BROWNIAN AGENTS
WITH CONSTANT SPEED

The kinematic state of a constant speed particle at time t

is determined by its position x(t) and the direction of motion
v̂(t). In additional, the particles are subject to the influence of
stochastic fluctuations that only affect the direction of motion.
The time evolution of the particle’s state is given by the
Langevin equations

d

dt
x(t) = v0v̂(t), (2a)

d

dt
ϕ(t) = ξ (t), (2b)

where the instantaneous unitary vector v̂(t) is given by
[cos ϕ(t), sin ϕ(t)], ϕ(t) being the instantaneous angle between
the direction of motion and the horizontal axis. These equations
describe the motion of a Brownian particle that moves with
constant speed and rotates its direction of motion due to
Gaussian white noise ξ (t), i.e., 〈ξ 〉 = 0 and 〈ξ (t)ξ (s)〉 =
2γ δ(t − s), where γ is a constant that has units of [time]−1 and
denotes the intensity of the noise. More precisely, Eq. (2b) is
the two-dimensional version of the general relation d v̂(t)/dt =
ξ (t) × v̂(t), which gives the rotational dynamics of the unitary

vector v̂ in three dimensions, caused by the fluctuating angular
acceleration ξ . Throughout this paper we consider quantities
with explicit time dependence to denote those stochastic
processes that appear in the Langevin equations (2), reserving
the use of quantities without the explicit temporal dependence
to appear in the corresponding Fokker-Planck equation.

Though active agents do not strictly move with constant
speed, fluctuations around the average value are small, as
occurs in systems of micron-sized Janus particles [9,41] whose
speed values varies from 10−2 to 10−1 μm s−1 [41] or several
μm s−1 [9], depending on the method to extract the particle
speed from trajectory data. In the same experiments, the other
parameter of our model, namely, the time scale γ −1, varies
from several seconds in Ref. [9] to approximately 2 × 102 s in
structured environments [41].

From Eqs. (2) we obtain the following equation for the one-
particle probability density P (x,ϕ,t) ≡ 〈δ(x − x(t))δ(ϕ −
ϕ(t))〉:

∂

∂t
P (x,ϕ,t) + v0v̂ · ∇P (x,ϕ,t)

= − ∂

∂ϕ
〈ξ (t)δ(x − x(t))δ(ϕ − ϕ(t))〉, (3)

where 〈·〉 denotes the average over noise realizations. After
making use of Novikov’s theorem we get the Fokker-Planck
equation

∂

∂t
P (x,ϕ,t) + v0v̂ · ∇P (x,ϕ,t) = γ

∂2

∂ϕ2
P (x,ϕ,t). (4)

In this expression we have omitted the term −v0∇ ·
〈[∫ t

0 ds v̂(s)]δ(x − x(t))δ(ϕ − ϕ(t))〉, assuming that the inte-
gral within parentheses vanishes at all times. Equation (4) has
also been derived from equivalent arguments in Ref. [8].

By performing the Fourier transform over the spatial
coordinates and performing the Fourier expansion with respect
to the angle ϕ, we transform Eq. (4) into the following set of
tridiagonal coupled ordinary differential equations for the nth
coefficient P̃n(k,t):

d

dt
P̃n(k,t) = −v0

2
[(ikx + ky)P̃n−1(k,t) + (ikx − ky)

× P̃n+1(k,t)] − γ n2P̃n(k,t), (5)

which satisfies P̃n(k,t) = P̃ ∗
−n(−k,t) and is given by

(2π )−2
∫

d2x
∫ 2π

0 dϕ ei(k·x−nϕ)P (x,ϕ,t). We are interested in
the solution of (5) with the initial condition P̃n(k,0) = δn,0/2π ,
which corresponds to the initial condition P (x,ϕ,0) =
δ(2)(x)/2π , where δn,m and δ(2)(x) denote the Kronecker delta
and the two-dimensional Dirac delta, respectively. Through a
further transformation, namely,

P̃n(k,t) = e−γ n2t p̃n(k,t), (6)

we obtain the one-step process with nonlinear coefficients

d

dt
p̃n = −v0

2
[(ikx + ky)e−γ (−2n+1)t p̃n−1

+ (ikx − ky)e−γ (2n+1)t p̃n+1], (7)
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where the arguments of p̃n have been omitted for clarity.
Although Eq. (7) can be solved in principle by the method of
continued fractions [42], we are interested in a coarse-grained
description of the system in which the direction of motion of
the particle is not relevant. Thus we focus on the probability
density distribution P0(x,t) ≡ (2π )−1

∫
d2k e−ik·xp̃0(k,t) =∫ 2π

0 dϕ P (x,ϕ,t). The explicit appearance of the exponential
factors in Eq. (7) makes it clear that they are suitable to
perform an analysis of different time regimes for P0(x,t),
which initiates in the diffusive limit (long-time regime) and
extends to consider shorter times.

III. GENERALIZATION OF THE
TELEGRAPHER EQUATION

Let us first consider the long-time regime or diffusive limit
3γ t � 1 for which we only hold the three Fourier coefficients
n = 0,±1 in Eq. (7), i.e.,

d

dt
p̃0 = −v0

2
e−γ t [(ikx + ky)p̃−1 + (ikx − ky)p̃1], (8a)

d

dt
p̃±1 = −v0

2
eγ t (ikx ± ky)p̃0, (8b)

and by eliminating p±1 one can show straightforwardly that
P0(x,t) satisfies the TE

∂2

∂t2
P0(x,t) + γ

∂

∂t
P0(x,t) = v2

0

2
∇2P0(x,t), (9)

which agrees with the diffusive limit obtained in Ref. [39]
in the context of a transport equation that considers the
scattering of the direction of motion. This result is well known
and corresponds to our first approximation to the problem.
Equation (9) describes wavelike propagation in the short-time
regime of pulses that travel not with speed v0 but diminished
by the factor 1/

√
2, as is well known. In the asymptotic limit

γ t → ∞, the dispersive term dominates over the inertial one,
given by the second-order partial derivative with respect t ,
and Eq. (9) reduces to the diffusion equation with diffusion
constant D = v2

0/2γ . The solution to Eq. (9) is given explicitly
in Refs. [27,39] and is solved under standard boundary
conditions at infinity P0(x,t)||x|→∞ → 0 and under the initial
conditions P0(x,0) = δ(2)(x) and ∂tP0(x,0) = 0, which are
derived from the initial conditions for Eq. (5); the latter arises
exactly from the coarsening procedure. In the wave-vector
domain, the solution to (9) is simple and the same for arbi-
trary dimension d, given by P̃0(k,0)e−γ t/2(γ sin ωkd

t/2ωkd
+

cos ωkd
t) with ω2

kd
≡ c2

dk
2
d − γ 2/4 and cd ≡ v0/

√
d, kd the

speed of propagation and the norm of the wave vector
in d dimensions. At short times, the expression can be
approximated by P̃0(k,0) cos cdkt , which corresponds to the
normalized solution of the d-dimensional wave equation with
initial conditions P̃0(k,0),∂t P̃0(k,0) = 0.

For a description of the system in a shorter-time regime,
namely, 5γ t � 1, we require the next coefficients n = ±2
of the Fourier expansion to be taken into account; thus from

Eq. (7) we get

d

dt
p̃0 = −v0

2
e−γ t [(ikx + ky)p̃−1 + (ikx − ky)p̃1], (10a)

d

dt
p̃±1 = −v0

2
eγ t [(ikx ± ky)p̃0 + e−4γ t (ikx ∓ ky)p̃±2],

(10b)

d

dt
p̃±2 = −v0

2
e3γ t (ikx ± ky)p̃±1. (10c)

These equations lead to a generalization of the TE for P0(x,t)
after eliminating p̃±1 from (10a), namely,

∂2

∂t2
P0(x,t) + γ

∂

∂t
P0(x,t)

= v2
0∇2

∫ t

0
ds φ(t − s)P0(x,s) + v2

0

4
e−4γ tQ(x), (11)

where the memory function φ(t) is given by 3
4δ(t) − γ e−4γ t

and Q(x) is a function that is determined from the initial
distribution P (x,ϕ,0) through

∫ 2π

0
dϕ

[
ei2ϕ(∂x + i∂y)2 + e−i2ϕ(∂x − i∂y)2 − (

∂2
x + ∂2

y

)]
×P (x,ϕ,0). (12)

It can be shown that the initial and boundary conditions for
Eq. (11), as derived from those for the detailed probability den-
sity P (x,ϕ,t), correspond exactly to the initial and boundary
conditions for (9).

In the time regime of validity of Eq. (11) we have the
following solution in the Fourier-Laplace domain:

P̂0(k,ε) = (ε + γ )P̃0(k,0) + (
v2

0/4
)
Q̃(k)/(ε + 4γ )

ε2 + γ ε + v2
0k

2φ̂(ε)
, (13)

where φ̂(ε) = 3/4 − γ (4γ + ε)−1, ε denotes the Laplace
variable, and f̂ (ε) = ∫ ∞

0 dt e−εtf (t) is the Laplace transform
of f (t). Inversion of the Green’s function G(k,ε) = [ε2 +
γ ε + v2

0k
2φ̂(ε)]−1 can be done approximately in the time

and space regimes ε � 4γ and k � 4γ /v0, respectively (see
Appendix B), giving for G(x,t)

G(x,t) = 8γ

πv2
0

∫
d2x′e−(8γ /v2

0 t)(x−x′)2
GTE(x′,t), (14)

where GTE(x,t) is the corresponding well known Green’s
function of the TE [27,39].

Though it is possible to go beyond Eq. (11) by considering
the following coefficients of the Fourier expansion n = ±3, we
point out that partial derivatives of order 4 start to appear in the
coarse-grained description and that the memory function φ(t)
becomes more involved, making the analysis more difficult
than necessary. As is shown in the following section, Eq. (11)
gives an appropriate description of active Brownian particles
that move with constant speed, improving the results given by
the TE.
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IV. DISCUSSION

It has been established that the TE gives a better description
of particles that move with constant speed than the diffusion
equation [39]. Thus, how much better is the generalization of
the former, given by Eq. (11), at shorter times? To answer this
question we calculate the mean-square displacement (MSD)
and the kurtosis κ for the solutions of Eqs. (9) and (11)
and compare them with the exact results from numerical
simulations by solving Eqs. (2).

The time dependence of the MSD is generally measured in
real systems of active particles [9,10,41,43,44] by use of the
single-particle tracking methods [45]. Higher displacement
moments, skewness, and kurtosis in one direction have also
been determined to quantify the non-Gaussian behavior of the
particle distribution [44].

A. Mean-square displacement

A prediction from our analysis is the mean-square displace-
ment 〈x2(t)〉 = ∫

d2x x2P0(x,t) = −(∂2
kx + ∂2

ky)P̃0(k,t)|k=0.
By multiplying by x2 and integrating over the whole space
equations (9) and (11), we obtain, respectively,

d2

dt2
〈x2(t)〉 + γ

d

dt
〈x2(t)〉 = 2v2

0, (15a)

d2

dt2
〈x2(t)〉 + γ

d

dt
〈x2(t)〉 = 2v2

0 + v2
0e

−4γ t (1 + β/4),

(15b)

where β = ∫
d2x x2Q(x). It can be shown that β = −4

for all smooth circularly symmetric initial distributions (see
Appendix A). This observation ensures that the MSD for both
approximations shows the same and exact dependence with
time, namely,

〈x2(t)〉 =〈x2(0)〉 + 4D

γ
[γ t − (1 − e−γ t )], (16)

for circularly symmetric distributions taken as initial distri-
butions. Thus, the MSD does not provide a measure of the
departure between the solution of Eqs. (9) and (11), nor
between these and the exact solution obtained from numerical
simulations (see Fig. 1). Equations (15) were solved with the
initial condition d

dt
〈x2(t)〉|t=0 = 0, which has been chosen

based on the expected physical behavior. Expression (16)
coincides with the result obtained by Ornstein [46] and Fürth
[47] for the Langevin description of underdamped Brownian
motion [48] if v0 is replaced by

√
〈v2〉 = √

2kBT /m, where
kB is the Boltzmann constant, T the absolute temperature, and
m the mass of the particles.

For γ t � 1 the particles show the t2 dependence that
corresponds to the ballistic regime, while for γ t � 1 the
linear dependence is evident and leads to the effective diffusion
constant D ≡ v2

0/2γ . This transition from ballistic to diffusive
behavior at tγ ∼ 1 is well known [46,47]. Though departures
from this behavior have been observed in the motion of
human keratinocytes and fibroblasts cells [43], the transition
has been observed in experiments on micron-sized self-motile
colloidal particles that use self-diffusiophoresis as a propelling
mechanism [9].

10-2 100 102 104

tγ
10-4

10-2

100

102

104

〈x
2 (t

)〉

Numerical simulation
Analytical approximation

Ballistic regime ~ t2

Diffusive regime ~t

FIG. 1. (Color online) Mean-square displacement in units of
(v0/γ )2 vs γ t. The solid (red) line is the analytical approximation
given by expression (16) and the data shown by symbols were
obtained by averaging the numerical solution of Eqs. (2) considering
105 trajectories and integrating over 2 × 106 time steps.

B. Skewness and kurtosis

In contrast to the MSD, the next higher moments result
in sensible parameters to measure the departure between our
results given by Eq. (11) and those given by the TE (9) and
those from the exact results given by numerical simulations.
We refer to the skewness  and the kurtosis κ, which have been
used as a measure to test multivariate normal distributions [49]
and are given explicitly by

 = 〈[(x − 〈x〉)�−1( y − 〈 y〉)T ]3〉, (17a)

κ = 〈[(x − 〈x〉)�−1(x − 〈x〉)T ]2〉, (17b)

where xT and y denote the transposed vector and an inde-
pendent identically distributed vector to x, respectively, and
� is the matrix defined by the average of the dyadic product
(x − 〈x〉)T · (x − 〈x〉). For circularly symmetric distributions
�−1 is diagonal and averages of odd powers of x entries vanish,
thus leading to

 = 0, (18a)

κ = 4
〈|x|4〉rad

〈|x|2〉2
rad

, (18b)

where 〈·〉rad denotes the average over the radial distribution
rP (r), i.e.,

∫ ∞
0 dr r P (r)(·).

For two-dimensional Gaussian distributions κ takes the
invariant value 8, i.e., κ = 8, independently of the width and
mean of the distribution. This occurs, for instance, for the
marginal distribution P (x,t) of the underdamped Brownian
particle of Ornstein and Uhlenbeck (see [48]) for which the
MSD corresponds to (16) and a kurtosis value of 8 for all
times. On the other hand, it can be shown, following the
lines in Appendix B, that the circularly symmetric normalized
solutions of the two-dimensional wave equation (with zero
initial velocity) has a kurtosis value 8

3 .
We have from Eqs. (9) and (11) that the kurtosis in each

case is given by (see Appendix B)
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FIG. 2. (Color online) Kurtosis κ for the circularly symmetric
solutions of the TE (9) (dashed magenta line), Eq. (11) (solid red line),
and the exact solution obtained from numerical simulations of Eqs.
(2) (crosses) vs tγ . Dotted lines mark the values 8, 4, and 8

3 � 2.6667
that correspond to the values of κ for the two-dimensional Gaussian
distribution, the two-dimensional distribution of particles that move
with constant speed, and the circularly symmetric solutions of
the two-dimensional wave equation, respectively. The insets show
snapshots obtained from numerical simulations of the particles
distribution P0(x,t) when they start to move from the origin at four
different values of tγ, whose values of κ are characteristic (closed red
triangles): (a) tγ = 0.1 and κ = 4.003, (b) tγ = 1.25 and κ = 4.33,
(c) tγ = 7.5 and κ = 6.352, and (d) tγ = 225 and κ = 7.938 (the
radius of the distribution has been scaled to fit the viewing area).
Numerical simulations were performed by averaging 105 trajectories
computed from Eqs. (2) and integrating over 2 × 106 time steps. The
dash-dotted green line shows the time dependence of the kurtosis
of the symmetric solution of the nonhomogeneous TE obtained in
Ref. [30].

κ3 = 8[γ 2t2 − 2γ t(2 + e−γ t )

+ 6(1 − e−γ t )][γ t − (1 − e−γ t )]−2, (19a)

κ5 = 8
[
γ 2t2 − 5γ t

(
3
4 + 1

3e−γ t
)

+ (
87
16 − 49

9 e−γ t + 1
122 e

−4γ t
)]

[γ t − (1 − e−γ t )]−2,

(19b)

where the subindex denotes the number of Fourier modes
retained. These results are compared with the exact calculation
of κ in Fig. 2 (crosses). As expected, both descriptions and
exact numerical calculations lead asymptotically to a Gaussian
distribution since κ → 8 as γ t → ∞. On the other hand,
in the short-time limit γ t � 1, a discrepancy between both
descriptions is conspicuous. From the TE (9) the kurtosis of

the distribution goes to 8
3 , which coincides with the value for

the two-dimensional wave equation (the dashed magenta line
in Fig. 2). However, from our numerical calculations, the time
dependence of the kurtosis of the distribution of Brownian

particles that move with constant speed acquires the value 4
for short times (the crosses in Fig. 2) and coincides with the
kurtosis for the distribution that solves the generalized TE (11)
(the solid red line) at all times.

Inset (a) in Fig. 2 shows a propagating ringlike distribution
of particles at tγ = 0.1 for which κ = 4.003. Here κ rises as
the ring starts to fill, as can be appreciated in inset (b), for which
tγ = 1.25 and κ = 4.33. In inset (c) the ring is full and the
distribution is approximately homogeneous on the disk. This is
reflected in the value κ = 6.352 at tγ = 7.5 (κ = 16

3 � 5.333
for a uniform distribution on a disk of given radius). At longer
times the distribution becomes Gaussian, as indicated by the
value κ = 7.938, as shown in inset (d) for tγ = 225.

It is worth pointing out that though the kurtosis calculated
from the rotationally symmetric solutions of Eq. (11) coincides
with the exact result computed from the Langevin equation (2),
it does not show the characteristic hollow inside the ring
in the short-time regime shown in inset (a) of Fig. 2. In
fact, the solutions of related two-dimensional telegrapherlike
equations, such as the one presented in this work (another
is presented in Ref. [30] for the two-dimensional persistent
random walk), show a wake effect that is characteristic of
the solution of the two-dimensional wave equation [27]. In
additional, although the solution of the inhomogeneous TE
obtained in Ref. [30] does give the values κ = 4 and 8 at short
and long times, respectively, it differs from our results in the
intermediate regime, as is shown in Fig. 2 (the dash-dotted
green line).

Realization of ensemble averages (such as those carried
out in this paper) would be impractical in almost all realistic
situations since too many trajectories would be required to
have a good sample statistics. Thus, transport properties and/or
other quantities such as the kurtosis shown in Fig. 2 can be
extracted from trajectory data obtained using the camera-based
single-particle tracking. However, as discussed in Ref. [45],
inherent technical difficulties of the method introduce artifacts
into the measurement results that are not properly taken into
account when performing data analysis based on the MSD. An
equivalent theory that considers higher moments has not been
carried out and we believe that research to find good estimators
to compute them from single-particle trajectories is required.

We finish this section by comparing the probability density
distributions obtained in Fourier space in the short- and long-
time regimes. Due to the simple appearance of the Laplace
operator in Eqs. (9) and (11) and the symmetrical initial condi-
tions, their respective solutions in Fourier space depend simply
on k = |k|. In the short-time regime, γ t = 0.1 in Fig. 3(a), the
behavior of the solution to the TE (dashed magenta line) is
close to that of the normalized solution to the two-dimensional
wave equation (dashed gray line). Thus, those features attached
to the solution of the two-dimensional wave equation are
inherited by the two-dimensional TE. On the other hand, the
solution to Eq. (11) (solid red line) departs conspicuously from
that wavelike behavior, improving, as shown by the previous
results, the description of particles that move with constant
speed. In this regime, the equation satisfies the inhomogeneous
wave equation ∂2

t tP0(x,t) = 3
4v2

0∇2P0(x,t) + (v2
0/4)Q(x) (see

Appendix C), whose solution is given by (C6) and shown by
the solid gray line in Fig. 3(a). We also show P̃0 obtained
from the numerical solution of Eq. (7) considering the first
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FIG. 3. (Color online) Plots showing the probability density P̃0(k,t) as a function of k = |k| at four different times, namely, (a) γ t = 0.1,
(b) γ t = 1, (c) γ t = 10, and (d) γ t = 100. The solid red line corresponds to the solution of Eq. (11) and the dashed magenta line is the solution
of the TE (9). The numerical solution, considering up to seven Fourier modes in Eq. (7), is shown by the dash-dotted line. In (a) the dashed
gray line corresponds to the normalized solution to the two-dimensional wave equation with propagation speed v0

√
2, namely, cos v0kt/

√
2,

and the solid gray line corresponds to the short-time limit of the Laplace inversion of expression (13) given by Eq. (C6).

seven Fourier modes (dash-dotted line). It is evident from
Figs. 3(a) and 3(b) that more than five modes are needed to
describe accurately the time evolution of P0(x,t) and we point
out that J0(kv0t), which corresponds to the two-dimensional
Fourier transform of δ(|x| − v0t)/2π |x|, approximates well
the seven-mode solution up to kv0t � 50.

At γ t = 1 [Fig. 3(b)] the solution to Eq. (9) departs from
its wavelike behavior and starts to resemble the solution to
Eq. (11), while the latter is qualitatively similar to the one
provided by the seven-mode approximation. For longer times
γ t = 10,100 [Figs. 3(c) and 3(d), respectively], the three
approximations shown are closer to each other and tend to
a Gaussian distribution (solid gray line) that is the solution of
the diffusion equation with the diffusion constant v2

0/2γ .

V. CONCLUSION

Starting from a Langevin formalism to describe active par-
ticles that move in two dimensions with constant speed v0, we
obtained a Fokker-Planck equation for P (x,ϕ,t), namely, the
probability density of finding a particle at position x moving in
direction (cos ϕ, sin ϕ) at time t. By using Fourier transforms
we obtained an infinite system of coupled ordinary differential
equations for the Fourier modes P̃n(k,t). By a suitable trans-
formation we were able to do a systematic analysis for different
time regimes that tends towards a shorter-time description of
the coarse-grained probability P0(x,t). Our formalism allows

us, in principle, to obtain solutions arbitrarily close to the exact
one by taking into account higher Fourier modes.

The long-time or diffusive approximation considers only
the first three Fourier modes and lead to the well known TE (9)
with a propagation speed v0/

√
2. A shorter-time description

that takes into account the next two Fourier modes leads to
a generalized TE. Such an equation is inhomogeneous and
the generalization relies on the non-Markovian nature of the
diffusive term. A comparison between both approximations
was made by computing the second and fourth moments of
the circularly symmetric solutions of both equations, namely,
the mean-square displacement and the kurtosis. The former
did not exhibit a difference between the two descriptions
and coincides with the exact result, while the latter, being
a measure of the shape of the probability density, resulted in a
sensible parameter in the short-time regime. However, despite
the outstanding agreement between the numerical results and
the kurtosis given by our generalization of the TE, the latter
could not describe a shorter-time regime where sharp signals
are transmitted as shown in inset (a) of Fig. 2.

From our analysis it is clear why the TE is not an appropriate
model to describe the dynamics of Brownian particles that
move with constant speed in the short-time regime, namely,
only the three lowest modes of the Fourier expansion of the
joint probability density P (x,ϕ,t) are considered; however,
the drift term v0v̂ · ∇P (x,ϕ,t) in (4) induces important
correlations among the rest of the Fourier modes. Those
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correlations are damped as the fluctuating direction of motion
[cos ϕ(t), sin ϕ(t)] becomes Gaussian distributed. The numer-
ical calculation considering up to the first seven Fourier modes
shows that in the short-time regime there exist strong correla-
tions between the particle position and its direction of motion.

Although our description considers active point parti-
cles, our analysis can be extended to consider the diluted
micron-sized systems of self-diffusiophoretic particles studied
experimentally and theoretically in Ref. [44], where fluctu-
ations of the rotational dynamics of the polar direction in
which the particles move are separated from the fluctuations
of the translational dynamics. Consideration of additional
noise on the translational motion would induce a change in
the transport properties at the short-time regime, exhibiting
different behaviors in the MSD due to the competition of the
different time scales involved. On the other hand, due to the
intrinsic difference between two-dimensional rotations and the
ones in three dimensions, it seems to be of interest to extend
the present analysis to dimensions larger than 2.

We comment, in passing, that the appearance of memory
in Eq. (11) makes it suitable to consider it as a candidate to
describe anomalous diffusion phenomena as does a former
generalization of the TE that uses fractional-time derivatives
[50]. Indeed, if for the moment we disregard the inhomo-
geneous term, the mean-square displacement for arbitrary
memory function φ(t) is

〈x2(t)〉 = 4v2
0

∫ t

0
ds e−γ (t−s)

∫ s

0
ds ′

∫ s ′

0
ds ′′φ(s ′′). (20)

If the memory function φ(t) decays algebraically for long
times as t−α, with 0 < α < 1, as does the Mittag-Leffler
function τ−1Eα,1(−tα/τα) [where τ is a constant with units
of time and Eμ,ν(z) = ∑∞

n=1 zn/�(μj + ν)], the mean-square
displacement can be expressed as

〈x2(t)〉 = 4
v2

0

τ

∫ t

0
ds e−γ (t−s)s2Eα,3(−sα/τα), (21)

which behaves superdiffusively ∼ t2−α in the asymptotic limit.
Extensions of our analysis would consider colored noise and/or
the effects of interactions among particles.
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APPENDIX A: SECOND AND FOURTH MOMENTS OF
THE CIRCULARLY SYMMETRIC
INHOMOGENEOUS TERM Q(x)

If smooth circularly symmetric initial distributions of the
form P (x,ϕ,0) = X (x)/(2π )2 are considered, with x = |x|,
expression (12) reduces simply to

Q(x) = − 1

2π

[
1

x

∂

∂x

(
x

∂

∂x

)]
X (x) (A1)

since the terms proportional to
∫ 2π

0 dϕ e±i2ϕ are zero. Thus,
the factor β = ∫

d2x x2Q(x) that appears in (15b) is obtained

by computing

β = −
∫ ∞

0
dx x2

[
∂X (x)

∂x
+ x

∂2X (x)

∂x2

]
,

where the Laplacian in polar coordinates has been used.
Integrating by parts once the second term in large square
brackets and using boundary conditions X (x)|x=∞ = 0 and
∂X (x)

∂x
|x=∞ = 0 we get that

β = 2
∫ ∞

0
x2 ∂X (x)

∂x
dx.

Integrating by parts again and using that
∫

dx xX (x) = 1 we
finally arrive at the result

β = −4.

Analogously, the fourth moment is given by

∫ ∞

0
dx x4

[
∂X (x)

∂x
+ x

∂2X (x)

∂x2

]
= 24

∫ ∞

0
dx x3X (x),

which gives zero for the localized initial condition X (x) =
δ(x)/x.

APPENDIX B: KURTOSIS OF THE SOLUTIONS
OF EQS. (9) AND (11)

Expressions (19) are obtained as follows. Equations (9)
and (11) are multiplied by x4xdx (recalling x = |x|) and are
integrated, over x, from 0 to ∞. For circularly symmetric
solutions we get

d2

dt2
〈|x|4(t)〉rad + γ

d

dt
〈|x|4(t)〉rad = 8v2

0〈|x|2(t)〉rad, (B1a)

d2

dt2
〈|x|4(t)〉rad + γ

d

dt
〈|x|4(t)〉rad = 42v2

0

∫ t

0
ds φ(t − s)

×〈|x|2(s)〉rad, (B1b)

respectively. As shown in Appendix A, the inhomogeneous
term of Eq. (11) does not contribute if the initial condition
corresponds to the case when all particles depart from the
origin. The solutions to Eqs. (B1a) and (B1b), for vanishing
initial conditions, are

〈|x|4(t)〉rad = 8v2
0

∫ t

0
ds e−γ (t−s)

∫ s

0
ds ′〈|x|2(s ′)〉rad, (B2a)

〈|x|4(t)〉rad = 42v2
0

∫ t

0
ds e−γ (t−s)

∫ s

0
ds ′

∫ s ′

0
ds ′′φ(s ′ − s ′′)

×〈|x|2(s ′′)〉rad, (B2b)

respectively. After substitution of the MSD (16) into (B2a) and
(B2b) and performing the integration we get, for the kurtosis
given by (18b), expressions (19).
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APPENDIX C: APPROXIMATE SOLUTION OF EQ. (11)

The solution in the Fourier-Laplace domain to the generalization of the TE given by expression (13) can be computed by
inverting the Green’s function

Ĝ(k,ε) = {
ε2 + γ ε + v2

0k
2
[

3
4 − γ (ε + 4γ )−1

]}−1 −−−→
ε�4γ

[
ε2 + γkε + v2

0k
2

2

]−1

, (C1)

where γk ≡ (1 + v2
0k2

24γ 2 )γ and we have explicitly used that φ̂(ε) = 3
4 − γ (ε + 4γ )−1. By defining the k-dependent frequency

ω2
k ≡ v2

0k2

2 − ( γk

2 )2, the Laplace inversion on the left-hand side can be carried out and (C1) is given by

G̃(k,t) ≈ e−γkt/2

ωk

sin ωkt (C2)

for 4γ t � 1. This approximate Green’s function generalizes the corresponding one of the TE, which is obtained by setting k = 0
in γk , namely, G̃0(k,t) = e−γ t/2 sin ω0k/ω0k with γ = γk=0 and ω0k = (v2

0k
2/2) − (γ /2)2.

By using (C2) we get

P̃0(k,t) ≈ e−γkt/2

ωk

[
ωk cos ωkt +

(
γ − γk

2

)
sin ωkt

]
P̃0(k,0)

+ v2
0

4
Q̃(k)

e−γkt/2

ωk

e−(4γ−γk/2)tωk − ωk cos ωkt + (4γ − γk/2) sin ωkt

(γk/2 − 4γ )2 + ω2
k

. (C3)

Analytical inversion of the Fourier transform seems to be intractable by the appearance of k4 in ωk; however, for large space
ranges, we have that to first order in v2

0k
2/24γ 2 � 1, ω2

k ≈ (v2
0k

2/2)(1 − 2−4) − (γ /2)2, which resembles its corresponding
counterpart of the TE. With these considerations, the Green’s function can be approximated further by e−v2

0k2t/24γ G̃0(k′,t), where
k′ = √

15k/22. Thus the Green’s function of the generalized TE in coordinate space can be written as

G(x,t) = 1

4πD′t

∫
dx′e−(x−x′)/4D′tG0(x′,t), (C4)

where D′ = v2
0/24γ.

On the other hand, in the short-time regime, expression (13) can be approximately written as

P̂0(k,ε) = εP̃0(k,0)

ε2 + 3
4v2

0k
2

+ v2
0

4

Q̃(k)

ε2 + 3
4v2

0k
2
, (C5)

from which, after inverting the Laplace transform, we obtain

P̃0(k,t) = P̃0(k,0)

(
cos

√
3

2
v0kt + 2

3
sin2

√
3

4
v0kt

)
, (C6)

where we have imposed the rotational symmetry to write Q̃(k) = k2P̃0(k,0). The term cos
√

3
2 v0kt in expression (C6) is reminiscent

of the solution of the wave equation with a speed of propagation
√

3v0/4 larger than the value v0/
√

2 given by the TE. It can be
checked in a direct manner that expression (C6) satisfies the inhomogeneous wave equation

∂2

∂t2
P0(x,t) = 3

4
v2

0∇2P0(x,t) + v2
0

4
Q(x). (C7)
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