
PHYSICAL REVIEW E 90, 022126 (2014)

Fractional entropy decay and the third law of thermodynamics
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We report in this paper a theoretical study on the quantum thermodynamic properties of a fractional
damping system. Through the analysis, few nontrivial characteristics are revealed, which include (1) a
fractional power-law decay entropy function, which provides an evidence for the validity of the third law of
thermodynamics in the quantum dissipative region and (2) the varying of the entropy from a nonlinear divergent
function to a semilinear decay function with a fractional exponent as the temperature approaches absolute
zero.
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I. INTRODUCTION

In theoretical physics, it is of great importance to establish
a new theory or discover a fundamental law by exploring new
evidence. In the past few years, with the rapid development of
research areas such as anomalous diffusion [1–3], quantum
thermodynamics [4], and small systems [5], a number of
basic problems in statistical physics have been reconsidered.
For example, research on small systems has found that the
second law of thermodynamics may be violated if the system
is driven to a state which is far from equilibrium [6]. However,
the validity of the third law is ensured in quantum dissipa-
tive environments due to system-reservoir coupling [4,7–9].
These findings have led to a new upsurge of research
challenging the foundations of conventional statistical physics.

Recently, enormous progress has been made in the study
of fractional Brownian motion (fBm) and related problems
[10–12]. Some unusual results have been reported such as
ergodic and weak ergodicity-breaking properties in certain
kinds of classical fBm processes [13,14]. However, few efforts
have been made on fBm in the quantum regime, or even for the
systems with some quantum fractional characteristics. Despite
the mathematical difficulties due to fractional calculus, more
achievements are expected in this challenging field.

Therefore in this paper we report one of our recent
studies on the quantum fractional damping (FD) systems.
Thermodynamical properties of the system are concerned
gradually in the framework of standard fBm. The paper is
organized as follows: in Sec. II, we give a clear definition of
the so-called fractional damping system from a short review of
fBm theory. In Sec. III, the free energy and entropy functions
are computed analytically through the convenient methods
raised in previous studies. Finally in Sec. IV, we make a
short summary of our results and the prospects for further
discussions of this subject.
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II. FRACTIONAL BROWNIAN MOTION AND
FRACTIONAL DAMPING

In recent years, fractional Brownian motion has attracted
considerable attention, since it offers an alternative model of
random processes displaying the “Joseph effect” (long-range
correlations) [15]. Similar to the standard Brownian motion
induced by white noises, fBm is generally believed to originate
from the fractional Gaussian noise (fGn) [10,16],

ξ (t) = dx(t)

dt
, (1)

which is zero mean with autocorrelation 〈ξ (t1)ξ (t2)〉 =
2DH H (2H − 1)|t1 − t2|2H−2, where H is the Hurst exponent
ranging from 0 to 1. Here H = 1/2 corresponds to the
standard Brownian motion, H < 1/2 and H > 1/2 denote the
sub- or superdiffusive cases, respectively, and DH = [�(1 −
2H )cos(Hπ )]/(2Hπ ) is the diffusion coefficient identified by
the Gamma function �(z) = ∫ ∞

0 t z−1e−t dt .
In general, fBm is regarded as the universal scaling limit of

the Langevin dynamics whose microscopic-level correlations
transcend to the macroscopic level, but its microscopic-level
fluctuations do not. Mathematically, fBm can be described by a
generalized Langevin equation containing fractional calculus.
The trajectory sample of fBm is a self-affine stationary
Gaussian process and is characterized by a standard normal
probability distribution in the Boltzmann form:

P (x,t) = 1√
2πDH t2H

exp

[
− (x − x0)2

4DH t2H

]
. (2)

Given the initial conditions such as position x0, any details
about fBm can be revealed by numerically simulating its
trajectories.

However, instead of focusing on the microscopic character-
istics of the pure fBm dynamics, we present here a statistical
exploration of the quantum thermodynamic properties of a
particular type of dissipative systems which exhibit fBm,
namely, the fractional damping (FD) system. Mathematically
it can be expressed as a generalized system-plus-reservoir
Hamiltonian model of quantum oscillators [17–19]. The

1539-3755/2014/90(2)/022126(4) 022126-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.022126


CHUN-YANG WANG, XUE-MEI ZONG, HONG ZHANG, AND MING YI PHYSICAL REVIEW E 90, 022126 (2014)

Heisenberg equations of motion for this system lead to
the following Langevin equation written in good quantum
numbers [20–23]:

mẍ +
∫ t

0
η(t − t ′)ẋ(t ′) dt ′ + ∂xU (x) = ξ (t), (3)

where x is the coordinate operator of the system oscillator
commuting with its momentum p by [x,p] = i�, η(t) =
ηαt−α/�(1 − α) is the frictional kernel with fractional expo-
nent 0 < α < 1, �(s) is the gamma function, ηα is the strength
constant, U (x) is the potential energy of the external force,
ξ (t) is a stationary fractional Gaussian noise whose correlation
obeys the quantum fluctuation-dissipation theorem [24,25]

〈ξ (t)ξ (t ′)〉s = β�

π

∫ ∞

0
dωJ (ω)coth

(
β�ω

2

)
cos(t − t ′),

(4)

where J (ω) ∝ ηαωα is the spectral density of the sub-Ohmic
bath, β = 1/kBT is the inverse temperature, and 〈· · · 〉s
denotes the quantum symmetric average operation.

III. ENTROPY AND THE THIRD LAW

In the study of quantum thermodynamics, it is a matter of
prime importance to obtain the entropy function. But before
this, the free energy of the system must first be calculated.
According to the remarkable formula [26–29]

F (T ) = 1

π

∫ ∞

0
dωf (ω,T )Im

{
d log 
(ω + i0+)

dω

}
, (5)

this can easily be achieved. Here f (ω,T ) = kBT log[1 −
exp(−�ω/kBT )] is the free energy of a single oscillator with
the zero-point contribution �ω/2 neglected, and 
(ω) is the
generalized susceptibility which can be derived from Eq. (3)
through a series of Fourier transformations.

Since f (ω,T ) in Eq. (5) vanishes exponentially for ω �
kBT /�, the whole integrand is actually confined to low
frequencies as T → 0. The free energy of the system can then
be calculated by expanding 
(ω) in the powers of frequency ω.
In the particular case of a harmonic potential U (x) = 1

2mω2
0x

2,
we have from Eq. (3)


(ω) = x̃(ω)/ξ̃ (ω) = [−mω2 − mηα(iω)α + mω2
0

]−1
. (6)

Note that a special factor (iω)α is met in the calculation of

(ω) which should be addressed carefully, but we remember in
mathematics that (i)α = cos(απ/2) + isin(απ/2). Then after
some algebra, we obtain in the low-frequency limit

Im

{
d log 
(ω)

dω

}

= ηαωα−1
[
α
(
ω2

0 − ω2
) + 2ω2

]
sinαπ

2

η2
αω2α − ηαωα

(
ω2 − ω2

0

)
cos απ

2 + (
ω2 − ω2

0

)2

∼= αηαωα−1

ω2
0

sin

(
απ

2

)
. (7)

FIG. 1. Free energy and entropy of the FD system as a function
of the inverse temperature. Dimensionless parameters in use are ηα =
�ω0 = kB = 1.0.

This leads to an analytical expression of the free energy

F (T ) ∼= αηαkBT

πω2
0

sin

(
απ

2

)∫ ∞

0
dωωα−1 log[1 − e−�ω/kBT ]

= −αηα�

ω1−α
0

sin

(
απ

2

)
�(α)ζ (α + 1)

(
kBT

�ω0

)α+1

, (8)

where a special integral
∫ ∞

0 dyyν log(1 − e−y) = −�(ν +
1)ζ (ν + 2) is relevant with �(s), the gamma function, and
ζ (z) = 
∞

n=1
1
nz , Riemann’s ζ function.

With this knowledge, the entropy function of the frictional
damping system can then be evaluated as

S(T ) = −∂F (T )

∂T

= α(α + 1)ηα

ω2
0(�/kB)α+1

sin

(
απ

2

)
�(α)ζ (α + 1)T α. (9)

Here we emphasize that as T → 0, S(T ) decays rapidly,
providing more evidence for the validity of the third law of
thermodynamics in the quantum region.

In order to further reveal the quantum thermodynamic prop-
erties of the FD system, we plot in Fig. 1 the free energy and

TABLE I. Comparison of the thermodynamic properties of
various conventional quantum dissipative systems with different
spectra density J (ω). A replacement D(ω) = d log 
(ω)/dω is used
for simplicity.

Type of QD systems J (ω) Im{D(ω)} F (T ) S(T )

Harmonica ω Const. T 2 T

Ohmicb ω Const. T 2 T

Drudec ω Const. T 2 T

Harmonic velocitya ω3 ω T 3 T 2

Blackbody radiationb ω3 ω2 T 4 T 3

Harmonic accelerationa ω5 ω3 T 5 T 4

Non-Ohmicc ωδ ωδ−1 T δ+1 T δ

Fractional damping ωα ωα−1 T α+1 T α

Arbitrary chosen bathb ων+1 ων T ν+2 T ν+1

aReference [8].
bReference [4], where ν ∈ (−1,1).
cReference [9], where δ ∈ (0,2).
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FIG. 2. Entropy of the FD system plotted as a function of the
fractional exponent at various system temperatures. Inserts: local
amplification of the linear curves. Dimensionless units are used as
those of Fig. 1.

entropy as a function of the inverse temperature for different
α. From this we can see that in all cases the entropy decays
rapidly. and the decay rate increases as the increasing of α. This
reminds us of the previous results because the power law decay
of S(T ) has been witnessed in various quantum dissipative
systems such as those listed in Table I. The difference lies
mainly in that the power-law decay of the entropy in the FD
system is characterized by the fractional exponent α. Then, one
may argue, was it a coincidence or an inevitable consequence?

To clarify this question, we give in Table I a comparison of
the temperature-dependent decay of the entropy functions for
different quantum dissipative systems. The arguments of other
quantities including the power spectra density J (ω) for each
system are listed as well. From Table I one may notice that
the exponent of S(T ) for each case is identical to that of J (ω)
except for the two structured baths (harmonic velocity and
harmonic acceleration). Alternatively, given that the spectra
densities of the systems were identified by a universal power
exponent, the entropy decay of each quantum dissipative
system then can be classified with the same trend of the power
law, regardless of the exponent α, δ, ν, or others. Therefore in
our opinion, the fractional entropy decay of the FD system is
an inevitable result under quantum thermodynamics.

To get a deeper understanding into the quantum thermo-
dynamics of the FD system, we present in Fig. 2 a further
investigation of the α dependence of S(T ) for different system

temperatures. From this we can see that S(T ) varies from a
nonlinear divergent function to a semilinear decay function of
α as the temperature decreases. In the low-temperature limit,
it decays approximately in a standard linear form. This is a
nontrivial phenomenon. Despite that the intrinsic mechanism
is not clear in the current calculations, we believe that new
physics may exist in the FD systems.

IV. SUMMARY AND DISCUSSION

In conclusion, to date we have had a preliminary un-
derstanding of the quantum thermodynamic properties of
the FD system. The free energy and entropy functions are
calculated analytically, which have fractional power-law decay
characteristics as the temperature goes to absolute zero.
This represents further evidence for the validity of the third
law of thermodynamics, even in the quantum dissipative
region. Moreover, our results show some nontrivial phenomena
including that S(T ) varies from a nonlinear divergent function
to a semilinear decay function of α as the temperature reduces
gradually. All these findings show that although the FD system
is not a real system of fBm, there are many interesting things
deserving further investigations.

We note that among all kinds of stochastic processes
that produce subdiffusion, fBm may be a model particularly
relevant to subcellular transport. For example, the negative and
long-range correlation appearing as H < 1/2 has been ob-
served in subdiffusing mRNA molecules [30], RNA proteins,
and chromosomal loci within E. coli cells [31]. In a similar
way, fBm can be used to describe unbiased translocations
[32,33], the dispersion of apoferritin proteins in crowded
dextran solutions [34], and lipid molecules in lipid bilayers
[35]. Hence, although several aspects for the understanding of
fBm and FD systems remain formidable, we expect that this
work could motivate the continuous demystification of this
seemingly simple subject.
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