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Nonequilibrium dynamics of a two-defect system under severe load
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In the framework of a two-defect model, based on a variation of the Landau technique, the kinetics of structural
defect generation in solids under severe external load is investigated. The approach is based on a special form
of kinetic equation in terms of internal energy, which is applied here to the description of an important practical
problem of fine-grained structure formation in metals under severe plastic deformation. It unifies strengthening
curves over the entire range of deformation, including the Hall-Petch and linear strengthening sections.
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I. INTRODUCTION

An idea to introduce the internal state variable was proposed
by Duhem in 1903 [1] and further developed in 1928 by
Herzfeld and Rice, who defined the dispersion and attenuation
of sound in polyatomic gases [2] (for details, see observations
in Ref. [3]). This idea bore two different approaches: the
internal state variable methods [4–6] (based on rational
mechanics principles [7]) and the Landau approach [8–10].
There is no impenetrable boundary between these approaches
since both are based on the same fundamental idea. The main
difference is that the internal state variable approach starts
with the principles and postulates of continuum or ordinary
thermodynamics [11], while the Landau approach is based on
a combination of variational and energetic (thermodynamic)
principles. There is a clear interest in comparing the two
approaches [12].

In modern science the applications of the Landau approach
may in turn be subdivided into two large groups. The phase
field method is one of the most adequate primary postulates
of the Landau theory and although it does not have a
strict statistical ground, the models based on this method
describe real objects surprisingly realistically. This direction
is presently under active development [13–17]. This makes it
necessary to reevaluate the initial principles and postulates of
the original Landau theory.

The second group of works is based on strict statistical
principles taking into account fluctuation effects using modern
notions, methods, and expedients such as methods of statistical
physics and renormalization-group theory [18–21]. It is ap-
plied to phenomena requiring precise account of fluctuations,
such as the critical phenomena and phase transitions.

All nonequilibrium processes occurring in a thermody-
namic system can be divided into spatially homogeneous
and heterogeneous ones. Homogenous processes are a kind
of abstraction, but their description is simpler and it can be
realized in the framework of a set of ordinary differential
equations [11,22–24] or in the framework of the Landau-
Khalatnikov evolution equations [9]. These frameworks are
generally applicable for the description of small systems
or systems with mixing [25]. The description of hetero-
geneous processes can be achieved in the framework of
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the continuum (gradient) approach or in the framework of
the Ginzburg-Landau evolution equation[10], which is also
nonlocal.

The development of mesoscopic nonequilibrium thermo-
dynamics of soft matter with mesoscopic structural elements
followed [26,27]. It is based on considering the entropy
production, which is an important quantity at the mesoscopic
level of condensed-matter organization; it also describes
kinetic and thermodynamic properties of entropic barrier
dynamics well.

To study the problem of metal treatment by severe plastic
deformation (SPD) methods [28,29] another approach, which
is a variation of the Landau technique, was proposed [3,30–32].
The approach combines the elements of classic nonequilibrium
thermodynamics (generalization of the Gibbs relation) and
the Landau theory of evolution equations. To achieve such a
combination the evolution equations are formulated in terms
of the internal energy (instead of the free energy). In addition,
defect densities (of vacancies, dislocations, grain boundaries,
etc.) are used as an order parameter or the configurational
entropy.

An important problem of metal treatment by SPD requires
a theoretical description of the laws of strengthening and
dependences of yield stresses on the parameters of the system
and, above all, on the average size of grains. It is known that
when the grain size is large (of the order of a few micrometers)
such a dependence obeys the Hall-Petch law [33–35]. A
departure from the Hall-Petch law was found in the region
of grain sizes around a few dozen nanometers [29,36–38],
which manifests itself as a linear dependence of yield stresses
on the reverse size grain [39,40].

The existing theoretical approaches are both too general
and too complex [41–43] to yield a practical solution of the
problem or, vice versa, they are too particular or specific [44–
47] to reproduce the strengthening laws in a wide range of
deformations. The proposed approach is general and at the
same time is able to describe both the Hall-Petch law and the
linear strengthening law from common grounds.

The present paper is devoted to the development of a
variation of the Landau approach. In Sec. II some gen-
eral issues of the approach are presented. In Sec. III the
approach is applied to the description of defect kinet-
ics during metal treatment by severe plastic deformation.
Section IV contains a discussion. Section V summarizes our
conclusions.
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II. SOME ISSUES OF THE APPROACH

A. Gibbs relations

The fundamental inequality of thermodynamics, combining
its first and second laws, for solids in a general case can be
written

dU � V σij dεij + T dS, (1)

where U is the internal energy, V is the volume of the system,
σij and εij are the stress and deformation tensors, and T and S

are temperature and entropy. For plastic solids the deformation
can be represented as a sum of reversible (elastic) εe

ij and
irreversible (plastic) εn

ij contributions. In addition, the entropy
increment can be represented as a sum of the entropy inflow
from the external sources deS and from the irreversible internal
processes diS [48,49], so the inequality (1) can be rewritten in
the form

dU � V σijdεe
ij + V σij dεn

ij + T diS + T deS. (2)

Here the first term represents the reversible portion of the work,
which is stored in the form of elastic energy; the second term
describes the irreversible part of the work, expended on the
change of the internal structure of the solid and on its internal
heating. The third term describes the increment of the heat due
to the irreversible internal processes [48] and the last term is
the influx of heat due to the external sources (thermostats).

If there is only one channel of energy dissipation in a solid
(for example, plastic deformation during the stage of easy
sliding of dislocations), which transforms the work directly
into heat via the internal friction, then, due to the energy
conservation, an equality and an inequality

V σij dεn
ij = T diS � 0 (3)

take place. Here the inequality T diS � 0 is the Clausius
inequality in the usual form [48] and the inequality σij dεn

ij � 0
is the same Clausius inequality, expressed via the irreversible
work [50–53]. The equality V σijdεn

ij = T diS means that for
one-channel model all the irreversible work is converted into
heat [54]. The equality on the right-hand side of (3) takes place
in the equilibrium case.

Thus, in the fundamental inequality (2) the same quantity
of energy is included twice. If this replica is deleted, the
fundamental inequality of thermodynamics can be presented
as an equality in two equivalent forms

dU = V σij dεij + T deS, (4)

dU = V σij dεe
ij + T dS. (5)

Both forms are valid for reversible and irreversible processes.
The last form of the (Gibbs) equality is more convenient since
it uses the reversible variable εe

ij and the total entropy S. In
this form the internal energy is a single-valued function of its
arguments U = U (εe

ij ,S).
In the presence of two channels of energy dissipation (for

example, during intensive generation of dislocations) the law
of energy transformation is more complex

V σij dεn
ij = T diS + ϕdH � 0, (6)

where ϕ and H are the energy and the number of defects. Here
the second law of thermodynamics is obeyed when diS � 0.
This is because the process of defect generation dHl � 0 is
always accompanied by conversion of part of the energy into
heat [3], which makes the entropy increment positive diS � 0.

In the general case, when Ndef types of defects are present,
the Gibbs equality takes the form

dU = V σij dεe
ij + T dS +

Ndef∑
l=1

ϕldHl, (7)

where ϕl and Hl are the energy and the number of defects of
type l. By virtue of Eq. (7) the internal energy is a single-valued
function of all its arguments U = U (εe

ij ,S,Hl). The set of
independent variables εe

ij , S, and Hl specifies an extended state
of system. The variables εe

ij and S are equilibrial in nature; the
variable Hl can be both equilibrial and nonequilibrial. In the
latter case the system needs to be closed using the evolution
equations.

Note that attempts to express the inequality (1) in the
form of an equality were made before [55–58]. However,
they were based on the introduction of additional variables,
which characterize the internal processes formally without
specification of their real nature. Here the variables are directly
associated with the formation of specific structural defects in
solids (metals).

B. Internal energy

The crucial difference in the proposed variant of the Landau
technique, which sets it apart from the classical scheme,
is usage of the internal energy as the main thermodynamic
potential. Up to now, the main, if not the sole, stress was laid on
the use of the free energy. At the same time, the internal energy
is the most clearly determined physical quantity characterizing
the system; it is basic not only for thermodynamics, but for
all branches of physics. This energy directly enters the first
law of thermodynamics; it is defined for both equilibrium and
nonequilibrium states. In addition, it defines the generalized
thermodynamic force within the framework of statistical
consideration [32]

ϕl = ∂U

∂Hl

. (8)

The variable ϕl corresponds to the average energy or chemical
potential of defects. On the other hand, Eq. (8) is the definition
of the generalized thermodynamic force. This definition,
however, is not postulated here, but follows logically as part of
the procedure for finding the equilibrium state. Consequently,
the equilibrium value of ϕl must enter the evolution equation,
which, with Eq. (8), can be written as

∂Hl

∂t
= γl(ϕl − ϕle), (9)

where γl is the kinetic coefficient, ϕle is the value of the defect
energy in the equilibrium state, the difference ϕl − ϕle is the
thermodynamic force, and the time derivative on the left-hand
side is the thermodynamic flux. Equation (9) describes the
overdamped and deterministic dynamics of nonconserving and
homogeneous parameters Hl .
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A substantial difference when considering the problem in
terms of the internal energy is that the generalized force (8)
is not zero in the equilibrium state and, consequently, the
extremal principle does not hold for the internal energy.
This deficiency is compensated by the applicability of the
generalized force definition (8) to both equilibrium and
nonequilibrium states. If the equilibrium energy of the defect
is known (not necessarily from statistical considerations), its
value can be directly substituted into the kinetic equation (9).

The second postulate, which distinguishes this approach
from the traditional one, is the use of the density of defects
as an independent thermodynamic variable instead of the
configurational entropy. Note that this variable is used not
in parallel with the configurational entropy, but instead of it.
A one-to-one correspondence between the density of defects
and the configurational entropy may serve as a foundation
for this principle. In the case of a solid with vacancies such
a one-to-one correspondence follows from the fundamental
Boltzmann relationship Sc = kB lnW and from the definition
of W (see, for example, [32]). For other types of defects
this relation is unknown, but still can be expected to be
unambiguous.

It should be noted that the influence of structural (topolog-
ical) defects and direct participation of the defects of fluctua-
tional nature in phase transitions were probed before [19,21].
However, here we examine the problem of simultaneous
generation of two structural defect types (e.g., dislocations
and grain boundaries) under severe external influence, while
taking into account their mutual interaction throughout the
process.

III. TWO-DEFECT MODEL OF SPD

Processes taking place during SPD are complex and affect
all levels of structural defects: point defects (vacancies and
interstitial atoms), linear defects (dislocations, disclinations,
and triple joints), 2D defects (grain boundaries), and volume
defects (micropores, microcracks, clusters). However, taking
into account all types of defects significantly complicates the
consideration. Let us therefore consider a simplified model,
considering only those defects that play the most substantial
role in fine-structure formation and significantly influence the
material properties.

The most important defect type to consider must be the
grain boundaries (GBs) since they directly determine the
degree of fineness of a material. The next most important
are the dislocations, which are responsible for the material
strengthening. Other defects will not be directly taken into
account here, although their presence is indirectly reflected by

the values of phenomenological constants. Thus, in the process
of SPD only these two types of defects play a crucial role,
which predetermines the two-defect nature of the problem.

A. Evolution equations

Thus, by setting the dependence of the internal energy on its
arguments, we fully define our problem in a thermodynamic
context. Using Landau’s idea, let us consider a homogeneous
problem, taking the internal energy in the form of a polynomial
dependence

u = u0 +
∑

l=g,D

(
ϕ0lhl − ϕ1lh

2
l + ϕ2lh

3
l − ϕ3lh

4
l

) + ϕgDhghD,

(10)
where u0, ϕkl (k = 0,1,2,3; l = g,D), and ϕgD are coefficients
depending on the equilibrium variable εe

ij (as a control
parameter)

ϕ0l = ϕ∗
0l + glε

e
ii + 1

2 λ̄l

(
εe
ii

)2 + μ̄l

(
εe
ij

)2
,

(11)
ϕ1l = ϕ∗

1l − 2elε
e
ii ,

where ϕ∗
0l , ϕ∗

1l , gl , λ̄l , μ̄l , and el are phenomenological
parameters of the model. The indices g and D are related to
grain boundaries and dislocations, respectively. For the sake of
convenience, the number of defects Hl was replaced by their
volume densities hl and similarly S → s and U → u.

Let us consider the physical meaning and values of
coefficients in the governing relations (10) and (11). The
coefficient ϕ0g corresponds to the total surface energy density
of a regular (infinite) grain boundary. For a cold-roll treatment
this energy may be taken to be equal to double the energy of
a free surface of the same material [59–61]. For example, in
copper it can reach the value of approximately 2 × 2 J/m2. The
first term ϕ∗

0g in this context is the self-energy of a boundary
without the contribution from other factors. It is considered to
be well relaxed, that is, at a minimum of its surface energy.
This energy makes 15–20 % of the free-surface energy of
the material [62]. That is, for copper it is approximately
0.2 × 2 = 0.4 J/m2 (Table I).

In the case of compressive hydrostatic stress (εe
ii < 0) the

contribution from the second term ggε
e
ii decreases the GB

energy. This is of great physical importance since the grain
boundaries can be considered to be the sites of the density lack
(or voids), distributed along a surface. These sites give the
highest contribution to the energy of boundaries. When, due to
external pressure, the volume of voids decreases, the boundary
energy decreases too. At an elastic deformation of 0.2% for
the copper, which corresponds to a tension ∼180 MPa, the
constant gg can be taken to be around 12 J/m2 (see Table I).

TABLE I. Parameters of the two-defect model.

ϕ∗
0g gg λ̄g μ̄g ϕ∗

1g eg ϕ2g ϕ3g

(J m−2) (J m−2) (J m−2) (J m−2) (J m−1) (J m−1) (J) (J m)

0.4 12 2.5 × 105 6 × 105 3 × 10−6 3.6 × 10−4 5.6 × 10−13 3 × 10−20

ϕ∗
0D gD λ̄D μ̄D ϕ∗

1D eD ϕ2D ϕ3D

(J m−1) (J m−1) (J m−1) (J m−1) (J m) (J m) (J m3) (J m5)

5 × 10−9 2 × 10−8 0 3.3 × 10−4 10−24 6 × 10−23
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For this value of gg the energy of grain boundaries decreases
to within 10% of its value for a relaxed boundary.

The contribution of terms proportional to λ̄g and μ̄g in
Eq. (11) at the same level of elastic stresses of 180 MPa must be
such that the total effective energy of the GB does not exceed
the double energy of the free surface (4 J/m2 for copper).
This condition allows us to choose the constants λ̄g = 0.25 ×
106 J/m2 and μ̄g = 0.6 × 106 J/m2 (see Table I). The values
of these constants are different because the effects of shear are
of greater significance for the structural rearrangement of the
solid.

The other constants are chosen from the requirement that
the equilibrium (stationary) values of the GB density are inside
the experimentally observed range. For grain boundaries this
gives two steady states with a density around hst1

g = 10 mm−1

and hst2
g = 10 μm−1 with corresponding average grain sizes

of 100 μm and 100 nm.
The same reasoning can be applied to dislocations. The

minimum of dislocation energy in the absence of other factors
for copper equals approximately ϕ∗

0D = 5 × 10−9 J/m [63]
(see Table I).

The parameter responsible for the interaction between dis-
locations and grain boundaries is ϕgD = 10−16 J. The time step
in numerical calculations is τ = 0.67 × 10−6 s and the kinetic
coefficients are γD = 5 × 1023 J m s and γg = 106 J m−1 s.

Using Eq. (8), which is justified for both the equilibrium
and nonequilibrium cases, and Eqs. (10) and (11), the evolution
equation (9) can be represent in the form

∂hD

∂t
= −γD[ϕ1D(hD − hDe) + ϕgD(hg − hge)],

(12)
∂hg

∂t
= −γg[ϕgD(hD − hDe) + 	(hg − hge)],

where

	 = ϕ1g − ϕ2g(hg + hge) + ϕ3g

(
h2

g + hghge + h2
ge

)
(13)

and hDe and hge are the equilibrium values of hD and hg . It can
be seen that the evolution equations do not depend explicitly
on ϕ0D and ϕ0g , but may depend on them indirectly via the
equilibrium values of hD and hg . This dependence can be
extracted from the condition of the maximum of the probability
distribution function of the system states. For the basic defects
participating in SPD this function is unknown, which creates
some difficulties in applying the theory to specific systems.
To overcome them, let us now consider an effective potential
approach in terms of the internal energy.

B. Effective potential approach in terms of the internal energy

Let us assume that the equilibrium energy of defect ϕle

weakly depends on the current value of the defects density
so that it can be brought under the sign of differentiation in
Eq. (9). Then one can introduce an effective internal energy

ū = u −
Ndef∑
l=1

ϕlehl. (14)

The evolution equation (9) takes the form

∂hl

∂t
= ±γl

∂ū

∂hl

. (15)

The plus sign here corresponds to the case when the equilib-
rium value of ϕle is in the region of convexity of the internal
energy u, while the minus sign is for the concavity region [3]. In
the first case a stationary solution corresponds to a maximum
of the effective energy, in the second case to a minimum.
Formally, Eq. (15) realizes an extremum principle since its
stationary points coincide with maxima or minima of the effec-
tive potential of the internal energy ū. Equation (15) describes
overdamped and deterministic dynamics for nonconserved and
homogeneous order parameters (density of defects).

If the effective internal energy ū is taken in the same
form (10) as the initial internal energy u and with the same
presentation coefficients (11) with the only difference that the
equilibrium energy of ϕle is included as part of the coefficient
of ϕ0l , that is, ϕ0l → ϕ0l − ϕle, then the set of evolution
equations (15) can be written explicitly

∂hD

∂t
= γD(ϕ0D − ϕ1DhD + ϕgDhg),

(16)
∂hg

∂t
= γg

(
ϕ0g − ϕ1ghg + ϕ2gh

2
g − ϕ3gh

3
g + ϕgDhD

)
.

The results obtained directly by integration of Eqs. (12)
and via the effective potential approach (16) coincide if the
relations hge = (ϕ0g − ϕge)/ϕ1g , ϕ1g � ϕ2ghge, and ϕ1g �
ϕ3g(hge)2 between the coefficients of the internal energy
presentations are fulfilled.

Setting the right-hand side of Eqs. (16) to zero, we get the
equations for the stationary state

ϕ0D − ϕ1DhD + ϕgDhg = 0,
(17)

ϕ0g − ϕ1ghg + ϕ2gh
2
g − ϕ3gh

3
g + ϕgDhD = 0.

The first equation is linear in defect densities and therefore
has a single solution. The second equation is cubic; it can
have two stable solutions or two modes (at ϕgD = 0). A mode
corresponding to a lower value of defectiveness describes a
coarse-grained structure; a mode with higher defectiveness
describes a fine-grained structure. The possibility of formation
of several different modes of the same defect type is due
to the microscopic mechanisms of deformation. In the case
of grains this is because growth of the total surface area of
GBs in the initial stage is an effective mechanism of energy
dissipation. The contribution from triple junctions at this stage
is negligible. The situation changes dramatically when the
average size of grains decreases to about 100 nm. In this
case, the triple junctions start to contribute considerably to the
energy of boundaries, which may result in the formation of a
new stationary state. Triple junctions can also be considered as
a distinct defect type, but, since they are topologically attached
to the grain boundary, it is more convenient to combine them
with grain boundaries and consider them as a single defect
type, but with a somewhat more complex dependence of its
energy on their number.

The evolution of the system with the parameters from
Table I is shown in Fig. 1. From Fig. 1(a) it is evident that
the kinetics of grain boundaries and dislocations during the
structural phase transition is closely correlated. At the first
stage, a growth in the number of dislocations initiates the
growth of grain boundaries and the structural phase transition.
During the structural phase transition, when the density of
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FIG. 1. Regularities of defect formation during SPD: (a) kinetics
of defects: 1, density of grain boundaries; 2, density of dislocations
and (b) unified strengthening curve: 1, region of the Hall-Petch law;
2, region of the linear law of strengthening. Points A–C highlight the
formation of the most typical regions of kinetics and strengthening.
Dots on the strengthening curve correspond to equal time steps.

dislocations is close to the stationary plateau, reciprocally,
the growth of grain boundaries provokes the growth of the
density of dislocations. Thus, in this range of deformations,
dislocations follow the grain boundaries and repeat the shape
of the structural phase transition curve, but to a weaker extent.

C. Strengthening curves

It is known that the strengthening comes from a dislocation
mobility decrease due to breaking by various defects and by
dislocations on other slip planes. At a dislocation level, the
law of strengthening is described by the Taylor relation [64]

τ = αμb
√

hD, (18)

where τ is the shear stress, α is a coefficient taking values in
the interval [0.2,1.0], μ is the shear modulus for a defectless
solid, b is the Burgers vector, and hD is the dislocation density.

If GBs are formed directly due to the emergence of
dislocations, we can limit ourselves to the relation (18). The
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FIG. 2. Strengthening curves (a) including the effect of GB
slip: 1, w = 0; 2, w = 1.2 × 10−11; 3, w = 5 × 10−11 and (b)
with the parameter ϕ0g increased 50 times: 1, ϕ∗

0g = 0.4 J m2; 2,
ϕ∗

0g = 20 J m2; B and C are the same points as in Fig. 1.

Hall-Petch law at the grain level follows immediately from
that at the dislocation level.

In the present approach the elastic deformation is a control
parameter, which, in the case of shear deformation, is related
to stress by a simple dependence τ = μεe. In terms of the
present theory, the law of strengthening is

εe = αb
√

hD. (19)

This dependence can be used as a supplemental relation to
the energy and kinetic equations written above. Here for
calculations it is assumed that αb = 2.75 × 10−11 m3/2.

The multistage character of deformation during SPD is also
demonstrated by changes in the character of the strengthening
law. At the first stage [region 1 to the left of point A in Fig. 1(b)]
the law of strengthening can be approximated by the Hall-
Petch law. In terms of the elastic deformations it is

εe = εe0 + A
√

hg, (20)
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where the constants are εe0 = 0.075 and A = 0.119 mm. It can
be seen that the elastic deformation varies within the limits of
[0.1%,0.5%], which, in view of the value of the shear modulus,
is well within the region of values for real materials.

In region 2 between points A and C, corresponding to the
most rapid phase of SPD, the law of strengthening can be
approximated by a linear dependence

εe = εe1 + Bhg (21)

with constants εe1 = 0.27 and B = 0.0059 mm2. A similar
change of the strengthening law at different stages of defor-
mation was noted in Ref. [65], which is discussed in Sec. III.

It is interesting to elucidate the influence of grain boundary
slide on the above regularities. This requires taking more
realistic (and complex) base relationships (18) and (19),
including the weakening effect of sliding

εe = αb
√

hD − whg, (22)

where w is the coefficient of weakening at the expense of the
grain boundary sliding. The influence of this term is illustrated
in Fig. 2(a).

The contribution of grain boundary sliding has almost no
influence on the Hall-Petch region since its contribution is
negligible at a low grain boundary density. At the same time,
the sliding decreases the slope of the linear section (curve 2
in comparison to curve 1), which testifies to a lower material
strengthening at this stage. At higher sliding the slope of the
curve may change its sign (curve 3), which means that the
material becomes weakened.

IV. DISCUSSION

The above simple two-defect model allows us to build the
unified strengthening curve for the entire range of deforma-
tions, which contains both a section with the Hall-Petch law
and a section with the linear law of strengthening. The two
regions, i.e., the Hall-Petch strengthening law [33–35] and
the linear law [39,40,66], have been considered separately in
the literature. This is the main useful feature of the proposed
model.

The important distinction of the proposed multidefect
approach is that the defects at all levels are considered
simultaneously. The evolution equations are written as a
joint set of equations for all defect subsystems, whereas the
traditional approach is based on sequentially solving a problem
at one level and using the obtained results as model parameters
for the next level [67,68]. The presented approach seems to be
more natural in this regard.

Now there are questions as to whether the presented results
are universal, how much they depend on the successful or
unsuccessful combination of theory parameters, and what
parameters are important. It is possible to assert that at the
deformation stage with low defect density the main parameters
are the coefficients standing at the lowest powers in the
representation of the internal energy (10). For this stage
Eqs. (16) can be significantly simplified

∂hD

∂t
= γDϕ0D,

∂hg

∂t
= γgϕ0g. (23)

In accordance with these equations, the dislocations and GBs
multiply independently of each other during this stage and
their concentration grows linearly in time t ,

hD ∼ γDϕ0Dt, hg ∼ γgϕ0gt. (24)

Excluding time and using the Taylor relation (19), we get

hg ∼ γgϕ0g

γDϕ0D

hD = 1

α2b2

γgϕ0g

γDϕ0D

(εe)2, (25)

which is the Hall-Petch law in its pure form

εe ∼ αb

√
γDϕ0D

γgϕ0g

√
hg. (26)

Thus, a section of the Hall-Petch law is not accidental on
the strengthening curve; it reflects the fundamental features of
the strengthening process that dislocations and GBs during this
stage multiply independently of each other, but synchronously.
Actually, (26) is a direct consequence of the Taylor rela-
tion (19).

Unfortunately, it is hard to obtain analytical solutions in
other sections of the strengthening curve due to the insepa-
rability of problem variables during integration. Therefore, it
is impossible to confirm analytically the same conclusions in
the linear section of the strengthening curve. However, this
section is always present in a wide region of change of model
parameters and it is the second fundamental feature of the
strengthening process and of the defect accumulation during
deformation.

The ratio between the length of the Hall-Petch section and
the section of the linear strengthening one can be different. For
example, increasing ϕ0g ten times shortens the linear section
[Fig. 2(b)]. Numerical calculations also show that an increase
in the coefficient responsible for interconnection between the
dislocation and the GB generation implies a similar result.
Note in passing that the slope of the linear section is increased
in this case.

On the basis of our analysis and generalization and the
literary experimental data in Ref. [65] it is concluded that
the nature of strengthening is changing from the Hall-Petch
law at the initial stage of SPD, when the grains are large, to
the linear law at the final stage of SPD with fine grains. A
delimiting point for these strengthening laws in the case of an
Armco iron sample is the state with a grain size of 0.4 μm,
corresponding to hg ≈ 2.5 μm−1. Theoretical strengthening
curves, presented above (namely, curve 2 in Fig. 2), are in full
agreement with this conclusion.

V. CONCLUSION

In this paper two variants of the Landau-like approach
were considered. The method of effective potential in terms
of the internal energy is more convenient since it satisfies the
extremal principle and allows one to obtain useful practical
results. For the problem of grain structure refinement in metals,
treated by severe plastic deformation, the unified stagelike
strengthening curve over the entire range of deformation
interval was obtained. At the initial stage the strengthening
curve can be approximated by the square-root dependence,
similar to the Hall-Petch law, and at the final stage it is a
simple linear dependence.
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The presented approach is thermodynamic and thus con-
tains a large number of parameters. The values of some
of them were estimated above, while some still remain
uncertain. However, these parameters are not absolutely
free. They are defined in the framework of a thermody-
namic formalism, have clear physical meaning, and can be

determined experimentally or from a suitable microscopic
theory.
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